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Abstract

This paper considers the control of a single server tandem queueing system with setups. Jobs arrive
to the system according to a P;)isson process and are produced to order. A single server must perform
a number of different operations on each job. There is a setup time for the server to switch between
different operations. We assume that there is a holding cost at each operation which is non-decreasing
in operation number (i.e., as value is added to a job, it becomes more expensive to hold). The control
problem is to decide which job the server should process at each point in time.

We formulate this control problem as a Markov-Decision Process. We partially characterize the
optimal policy, develop an exact analysis of exhaustive and gated polling policies and develop an
effective heuristic policy. The results of a simulation study, which tests the performance of the policies
considered are reported. These computational results indicate that our heuristic is effective for a wide

variety of cases.



1 Introduction

Consider a work center where jobs of a single type arrive and are produced to order. A single server must
perform a number of different operations on each job. There is a setup (or switchover) time for the server
to switch between different operations. We assume that there is a linear holding cost at each operation
which is non-decreasing in operation number. In other words, as more value is added to a job, it becomes
no less expensive to hold.

This type of environment is present in many different manufacturing companies, particularly small
companies where equipment or labor is limited. For example, consider a workshop where the parts being
produced require turning, parting and threading, all on the workshop’s only lathe. It takes time to switch
the lathe from one type of operation to the next. Or, consider a screen printing operation where a single
worker must produce garments with multiple colors. A setup is required each time a new color is printed.
Katayama [19] also gives examples of such systems in computer and telephone switching systems.

Netto [27] and Nair [26] analyze the performance of an exhaustive polling policy (or “zero-switching
rule”) for a two-stage tandem queue where switchover times are zero. Under this policy, the server serves a
queue until it becomes empty and then it switches to the next queue. Katayama [15] provides an analysis
of the same system with non-zero switchover times. Katayama [16], [17], and [18] provide extensions of
this work to gated service, K-limited service and a finite intermediate waiting room, respectively. Both
gated and K-limited service strategies are described later in this paper. Work on the N-stage tandem
queue includes the paper by Murakami and Nakamura [25] who analyze a 3-stage tandem queue and Konig
and Schmit [22] who investigate the relationships between time-stationary and customer-stationary queue
length characteristics for these systems. Katayama [19] derives expressions for mean sojourn times and
mean waiting times for an N-stage tandem queue with zero switchover times under exhaustive, gated and
K-limited service.

There has been very little work on the optimal control of tandem queues. Katayama [20] considers
a two-stage multi-class tandem queue with feedback. The server serves the two-stages in an exhaustive
and cyclic manner. The control problem is to decide in which order the different classes of customers
should be served at the second stage. In a recent parallel work, [ravani et al. [13] consider a two-stage
tandem queue and analyze the performance of several different policies including 1) that of serving a
predetermined number of jobs in stage 1, and serving stage 2 exhaustively, and 2) a class of dynamic
policies with double threshold for switching from stage 1 to 2. Sidi et al. [30] consider a tandem network

with a cyclic server similar to ours. In their model, jobs can arrive to any queue from the outside and



the jobs join other queues or leave the system probabilistically after being served at any queue. However,
they assume that when the system is empty, the server still cycles the system, settiing up each queue one
after another. In contrast, we assume that when the system is empty, the server idles at queue 1. Since in
our problem, outside arrivals can only occur to queue 1, there is no point in setting up queues 2,..., N,
when no jobs have been processed at queue 1. At such moments, these queues (i.e., ;1ueues 2,...,N) Wiﬂ
be empty as well.

There has been some recent work on the optimal control of “polling systems” in which a single server
serves multiple queues (see Takagi [33] for an extensive review of polling system literature). In this case,
jobs from N different classes arrive to N different queues and require service from the single server.
However, unlike in the tandem-queue problem that we are considering, each job requires a single service
operation from the server and leaves the system once it is served (rather than join another queue as in
the present paper.) The scheduling and control of such systems has been addressed in Boxma [2], Boxma
et al. [3], Browne and Yechiali [4], Duenyas and Van Oyen [6], [7], Gupta et al. [11], Hofri and Ross [12],
Rajan and Aggrawal [28], Reiman and Wein [29], and Liu et al. [24].

In this paper, we consider the control of a single-server tandem queueing system with N queues
and setup times required to switch between each queue. Section 2 presents the problem formulation and
introduces notation. In Section 3, we formulate the optimal control problem as a Markov Decision Process
(MDP) and partially characterize the optimal policy. Because the dynamic programming approach used
for computing the optimal policy suffers from the “curse of dimensionality” when the number of operations
is-greater than three, heuristics are required for systems with more operations. One possible heuristic
policy is to use the “exhaustive polling policy” which serves each queue until it is exhausted, and then
switchies to the next queue. Another possibility is a gated policy where the server only serves the jobs
that it finds at queue 1 upon arrival to queue 1 and then switches to queue 2 and serves all jobs at
queues 2, 3, ..., N and switches back to queue 1 again. Section 4 describes these policies further and
presents a numerical algorithm for calculating the throughput time, waiting times at each station, and
the average cost under these policies. In Section 5, we present a simple heuristic for the control of this
system. Section 6 is devoted to a simulation study which compares the performance of our heuristic and
the exhaustive and gated polling policies against the optimal policy for problems with 2 and 3 stages and

against each other for larger problems. Section 7 concludes the paper.



2 Problem Formulation and Notation

We consider a system with N stations with each station representing an operation to be performed on
the job. Customers (or jobs) arrive at station 1 according to an independent Poisson process with rate
A. After receiving service at station ¢, ¢ < N, each customer undergoes a metamorphosis and changes
class to 2 + 1. It then moves downstream to station ¢ + 1 without incurring any delay. Customers at
station N exit the system after receiving service. Thus, class N is the final stage in the processing of the
customer. Each job waiting or being processed at station 7 incurs costs with rate h;, and we assurhe that
h; is non-decreasing in 1.

Station buffers are assumed to be infinitely large. The service time for a customer at station i is
an independent random variable B; with mean b; = E[B;| and rate 8; = 1/b;. The time taken by the
server to set up for service at station i, is an independent random variable, S; with mean s; = E[S;] and
rate ¢; = 1/s;. We assume that neither setups nor services can be preempted. The traffic intensity at
station ¢ is denoted by p; = A\b;, and p = Zﬁl p; denotes the server utilization. We assume that p < 1
since when this holds, there exist policies that result in finite average cost per unit time. This follows
from, for example, Altman et al. [1], who show that p < 1 is both a necessary and a sufficient condition
for existence of the stationary joint distribution of queue lengths in polling models with exhaustive and
gated service policies.

A policy specifies, at each decision epoch, that the server either remains working in the present queue,
idles in the present queue, or sets up another queue for service. The set of decision epochs is assumed to
be the set of all artival epochs, service completion epochs, and setup bomﬁletion epochs. With R*(Z)
denoting the nonnegative reals (integers), let {X7(¢) : t € IR*} be the right-continuous queue léngth
process of queue ¢ under policy g (including any customer of queue 7 in service). Denote the vector of
initial queue lengths by X (07) € (Z*)N, where X (07) is fixed. Without loss of generality, we assume
that node one has been set up prior to time ¢t = 0 and that the server is initially placed in node one. The
average cost per unit time of policy g, J(g), can now be expressed as

J(g) = limsup lE {/Tih-Xg(t)dt} (2.1)
7 ) & iX; . .

T—o0

The total expected discounted cost of policy g with discount parameter « is expressed as

o /N
Ja(g):E{ /0 (Zh,-xf(t)) e““dt}. (2.2)
i=1



The objective of the discounted cost optimization problem is to find a policy that minimizes J,(g), while

the objective of the average cost problem is to find a policy that minimizes J(g).

3 On an Optimal Policy

In this section, we provide a partial characterization of an optimal policy for the control of a single server
tandem queue. In general, the structure of the optimal policy is extremely complicated. For example,
even in a problem with as few as three queues (see example at the end of this section), the optimal
policy at queue 1 is defined by very complicated (and not necessarily monotonic) switching curves. In
general, it is difficult to implement such a complicated policy in a practical setting. However, we provide
a partial characterization of the structure to serve as a guide in our efforts to develop an effective yet
simple heuristic. We first define the following:

Definition 1: A policy serves node i in a greedy manner if the server never idles in queue 7 while jobs
are still available in 7 and queue 7 has been set up for service.

Definition 2: A policy serves node i in an erhaustive manner if it never switches out of node ¢ while
jobs are still available in 1.

Definition 3: A top-priority queue refers to any queue (there may be more than one) that is served in
a greedy and exhaustive manner.

We can then state the following result.

Theorem 1 For both the discounted and average cost versions of the single-server tandem queue problem,

there exists an optimal policy where queue N (the last queue) is a top priority queue .

Proof: Suppose that g is a policy which does not exhaust queue N when there is at least one job at
queue N and the server is set up for queue N, and instead chooses to switch to another queue or idle.
We let the time when this action is taken by policy g be ¢t = 0. Let t(I) denote the time at which the
I* control action is taken under policy g. Finally, let L denote the stage, or index of the decision epoch,
at which the server serves queue N for the first time. Thus, the server will start to serve queue N for
the first time at time ¢(L). Let the duration of the first job’s service at queue N equal By. Now, along

each sample path of the system, we construct a policy g’ which at time ¢ = 0 serves the job in node N

that is served under policy g at ¢(L), which possesses the processing time By. During [By, By + t(L)),

!This result is also shown in Iravani et al. [13] in parallel work to ours.



¢’ mimics the actions taken by g during the first L — 1 stages [0,#(L)). At time ¢(L + 1) = ¢(L) 4 B,
both g and g’ reach the same state along any realization, and g’ mimics g from that point on. In order to
compute the difference in expected discounted reward of policy g’ with respect to g, we define Cj as the
change in cost rate that the completion of action ! by the server incurs. We note that any action that
causes a job to move from station i to i + 1 causes a cost change of hjy1 — hi. A completion of a job at
station N causes a cost change of —hy. Finally, a completion of a period in which the server idled or set
up causes no change in costs. In order to compare the costs of the policies, we are focusing only on the
cost changes caused by the actions of the policies and not by any arrivals to the system. We can then

write the cost difference between policy g and g’ as

Bn+t(L) L-1 t(l)+B
Ja(g) = Jalg') = hy / T eetg 1+ Y / Y ooty (3.3)
By =1 t(l)

The first term on the right-hand-side of (3.3) is due to the fact that policy ¢’ finishes processing the
job at node N at (random) time By while g finishes processing it at time By 4 t(L). The second term is
due to the fact that policy g’ completes processing at all other nodes By time units later than g. Because
C;>0forl=1,...,L —1 (as the only actions that g completes at these stages are actions that increase
costs or keep them constant), and hy > 0, we can conclude that policy g incurs a cost that is greater
than or equal to policy g’ and cannot be optimal. We note that the argument is not dependent on policy
g ever serving queue N. If policy g never serves queue N, then the upper limit of the first integral in
(3.3) is replaced by infinity, and the summation in the second term is an infinite sum. However, as all
the terms are still positive, the same argument applies. The proof for the average cost case is similar and
is omitted. O

The optimal policy can be fully characterized when all of the setup times are zero, and the system is
initially empty. Johri and Katehakis (1988) have shown that when the setup times are zero, the policy
where each job is processed through stations 1 through N consecutively (i.e., the server processes one job
at each station) stochastically minimizes the total number of customers in the system. It is also clear
that processing jobs in this manner minimizes the average number of customers in stations 2,3,..., N.
Since h; < hg < ... < hp, it therefore also follows that this policy also minimizes the average cost per
unit time. (On the other hand, in the discounted case, it might be optimal to idle forever if the number
of stages (or the processing times at some stages) and the discount factor are large enough. To see that
this is the case, consider a very simple two-stage problem with zero setup times, no arrivals and one job

at queue 1 at time 0. Let Ay = 1, and the discount factor equal 0.8. The processing time at stage 1 is



zero, and at the second stage it is one. In this case, when hg is greater than 1.83, it is actually better to
idle at station 1 than to try to process the job at queue 1.) When hy > ho > ... hy, and B; = § for all
i, it is similarly straightforward to show that the optimal policy is to serve the (nonempty) queue i with
the highest index h; — hi;1 (Where hy1 is defined to be equal to zero). However, in all the applications
that we consider, the holding costs are increasing rather than decreasing; we therefore focus on that case

for the rest of the paper.

Theorem 1 states that when the server is at the last queue, the number of jobs in other queues do
not matter. The optimal policy is to serve the last queue until it is exhausted. Unfortunately, when the
server is at any of the other queues, the optimal policy depends on the number of jobs at all queues.
To demonstrate this dependence, even in the simplest possible case, we consider a 2-station model with
general processing, service and setup times, and the average cost criterion. Under this criterion, server
idling is never optimal unless the system happens to be empty and the server happens to be at station
1. (The fact that the server will never idle at queue 2 when queue 2 is not empty follows from Theorem
1; once queue 2 is exhausted, it is optimal to switch to queue 1 immediately since all arrivals occur to
queue 1). Because an optimal policy will serve queue 2 exhaustively, we are interested in the optimal
control decisions when the server is set up for queue 1. Our purpose is to investigate the dependencé of
decisions at queue 1 on the number at both queue 1 and queue 2 with this simple model and to use the
results in developing heuristics.

Let V(X1, X2,1) denote the relative value function of having X; jobs in queue 1, X9 jobs in queue
2, and the server set up for queue 3,7 = 1,2. We arbitrarily let V(0,0,1) = 0 and let g denote the
average cost rate (gain). We also let 4;(t) denote the (random) number of arrivals to queue 1 during a
time duration of ¢ units. The relative value function for tlﬁs Semi-Markov Decision Process satisﬁes the

dynamic programming optimality equations:

E[f* hi(X1 + Ax(t)) + haXaldt + V(X1 + A1(B1) — 1, X2+ 1,1)] — 9/64

V(X1,X2,1) = min s for X; > 1
E[fy " [h1(X1 + A1(t)) + haXoldt + V(X1 + A1(S2), X2,2)] — 9/92
V (X1, X9,2) = B[y *[ha (X1 + A1(t)) + hoXaldt + V(X1 + A1 (By), X3 = 1,2)] = g/By for X > 1.
V(0, Xa,1) = min (hz);z)/)\ +V(1,X2,1)] —g/A
E[fy " [h1(A1(t) + haXo]dt + V (A1(S2), X2,2)] — g/%2
V(X1,0,2) = E[f;* (X1 + Ar(t))dt + V (X1 + A1($1),0,1)] = 9/91
(3.4)



We are now ready to state the structure of the optimal policy in this case.

Theorem 2 For the two-station problem defined by (8.4), the optimal policy when the server is set up
for station 1 is completely described by a switching curve f(X1) such that if Xo > f(X1), the optimal
policy is to set up for queue 2, otherwise it is to serve queue 1 (or idle when X1 = 0). Furthermore,

f(X1) is non-decreasing in X;.

Proof: The proof is given in the Appendix. O.

We note that for systems with more than two stations, the optimal policy has a very complicated
structure. For example, in a 3-station problem, the decision at station 2 depends on the number of
customers in stations 1 and 3. To illustrate this we present the optimal solution (found using dynamic
programming) for the following three station model. All stations have exponential service times with
mean one and exponential setup times also of mean one. The arrival rate to queue one is 0.2666667
(resulting in a load (excluding setups) of 0.8). The holding costs are 10 at station 1, 20 at station 2, and
30 at station 3. The structure of the optimal policy is too complicated to display in general so instead
we present a specific example that illustrates the dependence of the decision at 2 on both the number of

jobs at station 1 and the number of jobs at station 3.

1. When the server is set up for station 2 and station 1 has 3 jobs and station 3 has 10 jobs, the server
will switch to 3 if station 2 is empty, stay at 2 if station 2 has 1 to 4 jobs, switch to 3 if station 2

has 5 to 9 jobs, and stay at 2 if station 2 has 10 or more jobs.

2. When the server is set up for station 2 and station 1 has 8 jobs and station 3 has 10 jobs, the server
will switch to 3 if station 2 is empty, stay at 2 if station 2 has 1 to 7 jobs, switch to 3 if station 2

has 8 to 9 jobs, and stay at 2 if station 2 has 10 or more jobs.

3. When the server is set up for station 2 and station 1 has 3 jobs and station 3 has 9 jobs, the server
will switch to 3 if station 2 is empty, stay at 2 if station 2 has 1 to 5 jobs, switch to 3 if station 2

has 6 to 8 jobs, and stay at 2 if station 2 has 9 or more jobs.

This complicated structure may, at first, appear counter-intuitive but it can be explained. If station 2 has
only a few jobs then it is worthwhile for the server to complete these before moving on. However if there
are more jobs, then the server will be more likely to leave some jobs behind and move on to the expensive

jobs at 3. But, if there are too many jobs at 2 then the cost of making these jobs wait while the server



incurs unnecessary switchover time is too high and the server will remain at 2. However, determining
(other than numerically) how many jobs is “too many” or “a few” seems impossible.

Not only must the optimal policy be found numerically, but also, in general, applying such complicated
policies is very difficult. This difficulty leads us to consider simpler policies. First, in the next section, we
analyze the performance of exhaustive and gated polling policies. These policies are interesting because
(a) they are simple to implement, and (b) we can obtain exact results for their performance and hence
they can serve as straw policies when we compare them to more complicated policies. Then, in Section 5,

we develop an effective heuristic policy.

4 Analysis of an “Exhaustive/Gated Polling” Policy

This section analyzes the performance of an “exhaustive/gated polling” policy for our single server tandem
queueing system. Under this policy, stations are visited in the fixed cyclic sequence 1,2,---,N,1,.--.
Customers present at a station, if any, are served in an ezhaustive or gated fashion immediately after the
server finishes a set up for that station.

This section is organized as follows. Section 4.1 describes the policy in more detail and introduces
the notation needed. Section 4.2 sets up some preliminary expressions needed to analyze the system.
Section 4.3 demonstrates how to find the number of customers present at a polling instant using the
computationally efficient descendant sets method. These results are used in section 4.4 to obtain explicit
expressions for station 1 mean waiting times. Lastly, Section 4.5 shows how to find mean waiting times
at stations 2, 3, ---, N as a function of the station 1 mean waiting time. The expected cost per unit time
under the exhaustive or gated policies can be computed using these mean waiting times and Little’s law.
In the interest of brevity, we provide detailed arguments only for the exhaustive policy and simply report

the equivalent mathematical expressions for the gated policy.

4.1 The Model and Notation

When the server arrives at a station it registers a server-arrival epoch. The moment service begins at
a station is called a polling epoch. The polling and server arrival epochs coincide whenever the polled
station has at least one waiting customer. Thus, owing to the downstream movement of type 1 customers,
polling and server arrival epochs always coincide at stations 2, 3, ---, N. In other words, stations 2, 3,

.-+, N are never empty at a server-arrival instant at any of these stations. In contrast, upon arriving at



station 1 the server may find no waiting customers and in that case it will idle there until the next arrival
occurs.

The possibility of server idling makes our model fundamentally different from related polling models
that consider customer routing, for example Sidi et al. [30]. Although the model we consider here is
a special case of customer routing in which customers always move downstream, our approach can be
modified to accommodate any general probabilistic routing. Analysis of our model is more difficult
when compared to non-idling server models because we need to find the idling probabilities and modify
functional equations to accurately capture server idling behavior. Furthermore, while the non-idling
server model can be obtained as a special case of ours by setting the idling probabilities to zero, the
opposite is not true, i.e., the model with server idling cannot be obtained from the non-idling server
model. The relationship between these two types of models, in absence of customer routing, has been
discussed in detail in two recent papers: Eisenberg [8] and Srinivasan and Gupta [32].

Following the polling instant, the server either serves exactly the number of customers present at the
polling instant (gated service) or continues to serve customers until the station queue is empty (exhaustive
service). Notice that there is no difference between these two regimes at stations 2, 3, - - -, N which receive
only as many customers as are served at station 1. Put differently, only station 1 is affected by the chdice
of service strategy.

When the server empties a station’s queue, it immediately registers a server-departure epoch. The
server-departure epoch is followed, in turn, by the server-arrival epoch to the next station, after the
paséage of the appropriate setup time.

1t is implicitly assumed that an index used for summation over the stations is (a) replaced by 1 if
the index becomes N + 1 and (b) replaced by N if it drops down to 0. We adopt the convention that
an empty product equals 1, and that an empty sum equals 0. For any random variable A, the first two
moments are denoted by E[A] and E[A?]. The Laplace Stieltjes Transform (LST) of a random variable
A is denoted by A*(:). Any 1 x N vector of elements z; is denoted by z.

The waiting time for a customer, which is the time it spends at station i before its service begins at
that station, is denoted by W;. For this part of our mathematical analysis, we define T; = S;;; as the
setup time at station ¢ + 1. This results in more compact expressions. Later when reporting the mean
waiting time we shall substitute S;;; in place of T; as appropriate. By default, we treat the case when
the service is provided exhaustively. Whenever needed the corresponding notation for the gated service

strategy is shown with a hat. For example, W; denotes station ¢ waiting time under the gated regime.
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4.2 Preliminaries

Let n; denote the queue length at station j and Y(ny,ng, - -,ny) denote the state of the system (queue
lengths) at a station i observation epoch. As noted in section 4.1, we consider three observation epochs:
server arrival, polling, and server departure epochs. Consider the joint probability that a polling epoch
happens to be at station ¢ and that there are n; customers at station j. Let f;(z) denote the probability
generating function (PGF) of this joint probability distribution. Similarly, let g;(z) and h;(z) denote the
PGF’s of corresponding joint probabilities at a server-departure and a server-arrival epoch respectively.
It is clear that the terms f;(1), g;(1) and h;(1) represent, respectively, the probabilities that an arbitrary
polling, server-departure and server-arrival epoch happens at station «.

Let F(z) = fi(2,1,1,---,1)/f1(1) denote the PGF of the number of customers found at station 1
when (i.e., given that) the server polls that station. Define a time interval during which the server is not
busy serving customers at station 1 as a “vacation” from station 1. Note that this vacation includes the
setup time and any server idle time during which the server is physically at station 1, but it is not serving
any customers. Thus the PGF of the number of customers waiting at station 1 at the end of a randomly
selected vacation is F(z). If the service strategy is exhaustive, the Fuhrmann-Cooper [9] decomposition

for M/G/1 queues with vacations permits us to write (see, for example, Cooper [5, equation 18]):

1-F(1- S/A)} s(1-p1)
(s/A)F'(1) | s—X+ABj(s)’

where the term outside the square brackets is the well-known Pollaczek-Khintchine transform of the

wit)= | (4.5)

waiting-time distribution in the standard M /GT/ 1 queue. Also, the term F'(1) is the average queue
length at station 1 at the instant it is polled.

Similarly, if the service strategy is gated, the Fuhrmann-Cooper decomposition leads to the following
expression (see [31, equation 37] for details):

e [FUBIG) = FO = s/2)] _s(1=p1)
e N TV P vk 9

4.3 The Number of Customers at Polling Instants

;From (4.5) and (4.6) we observe that the LST of the waiting time at station 1 can be determined if we
can evaluate F(z). We shall show in Section 4.5 that the mean waiting time at other stations can be
found if we know E[W;]. In this section, we focus on the waiting time at station 1 and thus address the
problem of determining F(z). This is the PGF of the number of customers present at station 1 when the

server polls that station. Since F'(2) = f1(z,1,--+,1)/f1(1) we actually focus on evaluating f1(z,1,---, 1)

11



instead. Our approach is based on the concept of “descendant sets” and leads to a computationally
efficient algorithm. This technique has been used in several recent studies to analyze variants of polling
systems: Konheim, Levy and Srinivasan [21] analyze systems with a continuously roving server, Srinivasan
and Gupta [32] treat the case of a patient server, and Gupta and Srinivasan [10] consider a continuously

roving server with state-dependent setups.

4.3.1 The Descendant Sets Approach

Consider a randomly selected point in time at which the server polls station 1, and call this the reference
point. Let X; denote the number of customers present at station 1 at the reference point. Note that F(z)
is the PGF of X;. Define a cycle as the elapsed time between two successive polling epochs at station
1. Suppose C; is one of the customers present at polling station 4, c¢ cycles prior to the reference point,
where ¢ = 0, 1, ---. The reference point thus marks the beginning of a cycle with cycle index ¢ = —1.

We define the immediate “offspring” of a C; as the set of all customers arriving to the system during
the service of C; ¢, and the “descendant set” of C; is recursively defined to consist of C;, its offspring (if
any), and any descendants of its offspring. Let the random variable L; . denote the number of customers
present at station 1 at the reference point that are also in the descendant set of C;., and let Li,c(z)
denote its PGF. We will say that customer C;. “contributes” an amount distributed as L;. to X;. Our
procedure is based upon the fact that we can express Lj ., recursively, in terms of contributions to X;
made by customers who arrive during each C1¢’s service period.

Consider, for exainple, the exhaustive service strategy. All type 1 customers who arrive during the
service period of a C; . customer are served in the same cycle and so the PGF of their contribution is
L1¢(z). Each type 1 customer also contributes by giving birth to exactly one type 2 customer, who is

also served in the same cycle and contributes, in turn, Lo to X;. Putting it all together, we have,
Lie(2z) = B (A= AL1¢(2)) Lo¢(z), ¢ > 0. (4.7)

Next, a type j customer generates contributions in two ways. There are external arrivals to station 1 that
occur during its service period and are served in the next cycle. Then there are additional contributions
that come from the type (j+ 1) customer which it spawns. This latter arrival is served in the same cycle,

i.e., the cycle indexed c. From these arguments we get,

Lj,c(z) = B;(/\ - /\Ll,c_l(z))Lj.;_l,C(z), forallj =2,3,---,N - 1. (4.8)

12



At stage N, there is no further metamorphosis of the customer and therefore the above relationship is

modified as follows:
LNe(2) = By(A = AL1c-1(2)). (4.9)

The relations described in equations (4.7), (4.8), and (4.9) allow us to determine the PGF’s L; o(2)
recursively, by working backwards from the reference point. Because customers who arrive after the
reference point do not contribute to X, we have Lj—; = 0 for j > 1 and, furthermore, Lj. = 0 for
¢ < —1 and all j. This implies that L;_1(z) = 1 for j > 1, and Ljc(2) = 1 for all j, if ¢ < —1. On
the other hand, because each customer present at station 1 at the reference point contributes exactly
1 to X1, we have Ly _; = 1, and L; _i(z) = z. Thus, the recursion begins with the initial condition
(L1,-1(2), -+, Ln,-1(2)) = (2, 1,-++, 1).

Now let the random variable T; . denote the total contribution to X; made by all those customers who
arrive during a setup performed at station i+1, ¢ cycles prior to the reference point, and let T; o(z) denote
its PGF. Because the reference point occurs after server-arrival at station 1, T; . does not contribute to
X1 so long as ¢ < —1. Hence, T;c(z) =1, for all ¢, if ¢ < - 1.

Arguing along lines similar to those that have been used to obtain equations (4.7), (4.8), and (4.9),
we can write

Tic(z) =T (A =AL1c-1(2)), VYV 1<i<N, andc>0. (4.10)

We are now ready to evaluate fi(z,1,---,1). But before doing that, we present equivalent recursive

relationships for the gated service regime.

Lje(2) = Bj(A = AL1c-1(2) Ljs1e(2), forall j=1,2,---,N - 1. (4.11)
Lye(2) = B(A = AL1e-1(2)). (4.12)
Tie(z) = T} (A= Al1e1()), Y 1<5<N, ande20. (4.13)

The boundary values for the lA,i’c’s and f’i,c’s are the same as those for the L;.'s and T;’s.

4.3.2 Evaluating fi(z,1,---,1)

To see how the above discussion relates to evaluating fi(z,1,---, 1), we first note this term is the same
as f1(L1,-1(2), Lg,~1(2), -+, LN,~1(2)). Next we note that fi(L1,e(z), Loc(2), -+, Lnc(2)) denotes the

PGF of the sum of the contributions to X; made by all customers present in the system when the server
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polls station 1, ¢ cycles prior to the reference point. It will be notationally convenient to denote this PGF
By f1,(2), i.e., we define
A
fre(z) = fi(L1,e(2), Lae(2), -+ L ,e(2))- (4.14)

Similarly, we define g;¢(2) (hic(2)) as the PGF of the sum of contributions made to X; by the customers
present at the various stations at the server-departure epoch (server-arrival epoch) at station i, ¢ cycles

prior to the reference point. Thus, we have

gic(2) 2 gill1c-1(2),1,-++,1, Lip1e(),1,--+,1),  for all 4, and, (4.15)

A

hi,c(z) hi(Ll,c—l(z), 1,-‘-, l,Li,c(z),l,---, 1) fOI‘ _7 Z 2 (416)

The “1” in the argument on the right hand side of above relationships signifies empty queues, which

contribute nothing and therefore the GF of contributions is 1. Finally, for station 1 we define
A
hl,c(z) = hl(Ll,c(z), 1,---, 1). (4.17)

Now consider the customers present at the various stations at a server departure epoch from station
i, ¢ cycles prior to the reference point. At such an observation epoch, only stations 1 and i + 1 may have
some customers present, all other station queues must be empty. Those at station 1 will each contribute
to X, an amount with PGF L; _1(2) while those at station ¢ + 1 will each contribute an amount with
PGF Lit1(2). It is clear that a server arrival to station ¢ always follows the server-departure epoch from
station i — 1, foralli = 1, 2, ---, N. Thus, additional contributions to X; come from arrivals during the

setup time T, and

hic(2) = gic1,e(2)Tic1c(z) foralli=2,3.--, N, and

hl,c(z) = gN;c(Z)TN,c(Z)- (4.18)

At stations 2, 3, - -+, N, the contribution to X at a server-departure epoch remains exactly what it was
at the server-arrival epoch to that station, because the contribution from offspring of those which are

present at various queues at the server arrival instants is already accounted for. This implies,
9ic(2) = hic(z) foralli=2,3---  N. (4.19)

In contrast, at station 1, the polling instant starts a new cycle and occurs either immediately after the

server arrival to station 1 (this happens whenever station 1 queue is not empty) or as a result of an
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external arrival following a period of server idleness. If an external arrival causes the polling instant to

occur, then this arrival contributes L1 ._; to Xi, because it is served in the next cycle. Hence,

fr,e-1(2) = h1,e(2) = 11(0) + ~1(0) L1,c-1(2), (4.20)

where, by stationarity, the probability that the system is empty at a server-arrival epoch at station
1 is independent of the cycle being observed and we have written hj.(0) = hq(0). Finally, because
91,6(2) = fr,e(z) we get
91,e(2) = h1,e+1(2) = h1(0) + h1(0) L1 ¢(2). (4.21)
Because h; ¢(2) |;=1= hs(1), by putting z = 1 in equations (4.18), (4.19), and (4.21) and noting that
Tic(1) = 1 we see that h;(1) = h;_1(I). Similarly, from equations (4.19) and (4.21), we also see that
hi(1) = g;(1) and that g;(1) is independent of . Intuitively, this makes sense because there is exactly
one server-departure and server-arrival at each station during each cycle. Next, if we consider that

YN gi(1) = 1, it follows immediately that g;(1) = 1/N for any i and

A1) = g1(1) = /N. (4.22)

(From (4.18) and (4.19) we see that for i > 2, gi c(2) = gi—1,c(2)Ti-1,¢(2). Using this observation and

equations (4.18) and (4.21) we can write,

g1 c(z = g1 c+1 H T],C+1 hl O)JN c( ) (4'23)

where we define Jy ¢(z) = 1— L1 ¢(2). Starting with g; _;(z), writing it in terms of g1 o(z), and continuing

in this fashion for m times, we get:

m—-1 N m—1 c N
f1,-1(2) = 91,-1(2) = g1m-1(2) [[ J] Tic(2) = 11 0) Y Ine(e) [ T Tap(2)- (4.24)
c=0 i=1 c=-1 p=0k=1

In the limit, as ¢ — oo, it can be shown that L; . — 0 (i.e., the contribution to X; made by a customer
who is served c cycles ago tends to 0 as c tends to infinity) and therefore L;(z) — 1. This implies that

as ¢ = 00, g1,¢(z) — g1(1) = 1/N (from equation (4.22)). Hence, we have that

00 c N
fi(z,1,--+,1) = f1,21(2) = (1/N) HHTm - 91 Y, Ine(2) [] T] Trp(2)| » (4.25)
c=-1

c=0i=1 p=0 k=1

where

= h1(0)/g1(1) = Nh1(0), (4.26)
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represents the ratio of the number of empty server-arrival epochs registered by the server at station 1 for
every departure it makes from station 1 to station 2.

(From equation (4.25), it is clear that we can evaluate the PGF of X; if the unknown ¥; can be
determined. To find ¥;, we use equation (4.25) and the fact that f;(0, 1,’”"1) = 0, i.e., a station 1
polling instant does not occur if queue at station 1 is empty. This yields,

120 [T T:(0) v
22 1 INe(0) [T [T Thp(0) (4.27)

It is interesting to note that the expression for the PGF of the number of type 1 customers at a station

9 =

1 polling instant is exactly the same as given in equation (4.25) even for the gated service strategy.

4.4 Expected Waiting Time at Station 1

Differentiating equations (4.5) and (4.6) with respect to s and setting s = 0 yields the following expressions

for station 1 mean waiting time under exhaustive and gated regimes, respectively.

(1-p1)F"(1) + N2E[BF'(1)

B = P (428)
(L p)P)
EW,] = PP (4.29)

The terms F'(1) and F”(1) are found by successively differentiating equation (4.25). For the exhaus-

tive service regime, we obtain the following result after considerable simplification,

F'(1) = AE[C)(1 - pu), (4.30)

where E[C] = {E(XN, S;) +91/A}/(1 - p) denotes the expected cycle length. Similarly, for the gated
service regime

F'(1) = AE|C), (4.31)
where E[C] = {E(ZN., S;)+91/A}/(1-p). The equations for F"(1) are obtained in a similar fashion and

are more complicated. We report below, only the final outcome after substituting from these relationships

into the expression for the mean station waiting time and simplifying.

(1= p1) (X8, B(5:))* L= p{T (AE(B]] + Var(Sy)/ B[C])}

ol 2E(CN(1 - )2 2(1- )1 +p=201) (452)
+p1(p = p1)? + A SN pipiakl (1= p1)  01(1= p1) (o — p1) (XN, E(S5))
A1=p)(1+p—2p1) AEC)(1 = p)*(1 +p ~2p1)
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(1+ o) (CEL E(S))? | (L4 p) (TN (AE(B]] + Var(Si)/ EIC))}

EWy] = 2E10](1 - p)? 3= ) (4.33)
(14 p) (T T pipink)  d1p(1+ p)[EN E(S)]
A1 -p?) ME[C)(1-p)*(1+p)

Notice that the above expressions are explicit in input parameters except for the J; (151 for gated service)
term which needs to be found using the recursive relationship of equation (4.27). This simplification leads

to an extremely fast computer algorithm in each case.

4.5 Expected Waiting Times at Stations 2, 3, ---, N

During any given cycle, the number of customers served at stations 1, 2, ---, N is exactly the same.
Let the random variable Y (¥ for gated regime) denote this number and the function Y (z) denote the
corresponding PGF. Let A denote the size of the batch of customers which is generated by each type 1
customer at a station 1 polling instant under the exhaustive service regime. Notice that all A customers
are served in the same cycle. If A(z) denotes the PGF of A, then it follows from arguments similar to

those which led to equation (4.7), that
A(z) = zBf (A = MA(2)). (4.34)

Furthermore, it is now apparent that

Y (z) = F(A(2)). (4.35)

In contrast, when the service discipline is gated, only as many customers are served in each cycle as are

present at the corresponding station 1 polling instant. Thus, in that case
Y(z) = F(z2). (4.36)

Consider the total accrued waiting time at station j in a cycle in which exactly n customers are served.
The waiting time experienced by the (k + l)st customer is the time it takes to process the (n — k — 1)
customers behind it at station j — 1, plus the setup time at station j and the time taken to process the
k type j customers in front of it. Upon summing over & we find the conditional accrued waiting time,

TW;n, as follows:

n—1
TWin=nS;+ Y {(n—k—1)Bj_1+kBj;}, (4.37)
k=0
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First simplifying the above summation and then taking expectations on both sides yields

E[Y(Y - 1)]

5 [E(Bj-1) + E(Bj)]- (4.38)

E(TW;) = E(Y)E(S;) +

Next, we substitute for E(Y) and E[Y (Y — 1)], and then divide the expected accrued waiting time per
cycle with AE[C], the expected number of customers served per cycle, to obtain the following expression

for the expected waiting time of type j customers:

AE[W1] + py

E(Wj) = E(S;) + 1= [E(Bj-1) + E(Bj)). (4.39)
Using similar arguments we also obtain,
D) = B(S,) + T B(Bser) + E(B). (4.40)

5 Heuristic Solutions

The structure of the optimal policy is rather complex as the action that the server chooses when it is set
up for a given station depends on the number of jobs at other stations in complicated ways. Furthermore,
even a problem with only 4 stations will result in a dynamic program with over 50 million states if the
number of jobs at a station is truncated at 60. These considerations lead us to develop a simple heuristic
in this section.

Under our heuristic policy, the server serves queue 1 until the server has processed K jobs or queue
1 is empty, whichever occurs first. Thus our heuristic policy switches from queue 1 to queue 2 whenever
X1 =0and X9 > 0, or X9 = K. The server idles at queue 1 when Ef_’__l X; =0. As was shown in Section
3, the optimal policy for switching from queue 1 to queue 2 involves a more complicated switching curve.
However, as we will show in the next section, replacing the optimal switching curve by our much simpler
threshold does not affect performance significantly.

In a 2-station problem, stating a threshold K would completely specify the policy because once the
server switches to queue 2, using the insight gained from Section 3, we require the server to process all the
jobs in queue 2 and then to switch to queue 1 again. However, in a problem with more than 2 stations,
we have to specify what the server does next. In general, it might be optimal for the server to switch
back to queue 1 before completing all the jobs in queues 2,3,..., N. However, we will focus on policies
that never switch to queue 1 again until all jobs in queues 2,3,..., N have been served. The server will

only return to queue 1 again when Zyzg X; = 0. In fact, under our heuristic, the server does not return
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to a station until all jobs at stations with a higher index have cleared the system. When holding costs
are increasing downstream, as we assume in our model, the optimal policy rarely requires a switch to
station 1 before completing jobs at other stations. Furthermore, not permitting the server to return to
station 1 until all jobs at other stations have been completed allows us to state a very simple heuristic
policy because, once the server is at queue 2, the problem becomes one of deciding how to push the jobs
at queue 2 through stations 2,3,..., N. »

We note that the batch of size K (or less if the server switched to queue 2 before completing K jobs)
at queue 2 may be split further at queue 2 and at later stations. That is, the server may decide to split
the X9 jobs that it finds at queue 2 into yg batches. Once the first Xo/y2 jobs have been served, the
server will switch to queue 3. The server will not return to queue 2 until the first X9/y2 jobs have cleared
the system. However, these jobs may be further split in the stations ahead. Therefore, our policy is
completely specified by K and a description of the splitting procedure. Our heuristic chooses the “best”.
splitting procedure for each K and estimates its cost. The value of K with the lowest estimated cost is
selected.

We note that if we know how the original batch at queue 2 is split at station 2 and all other stations,
we can immediately compute how long the whole batch will take to go through the system. We let y;
equal the number of smaller batches that a batch arriving from the previous station will be split into at
station i. If a batch can not be split into equal sized groups, then it is divided as evenly as possible with
the extra customers spread out over the earlier batches.

Consecutive batches at a station therefore differ by no more than one customer and our policy is
completely described by K and the y; values. As an example, consider a 5-station problem with K = 12,
y2 = 2,y3 = 1, and y4 = 2. The server will switch from queue 1 either when it has processed 12 jobs or
when queue 1 is erhpty. Suppose the server brocesses 10 jobs at queue 1 and then has to switch to queue
2. At station 2, the server would process a batch of 5, then switch to queue 3, process 5 jobs at queue
3, switch to queue 4 and process 3 jobs, switch to queue 5, process the 3 jobs, switch back to queue 4
and process 2 jobs, switch to queue 5 and process 2 jobs and then switch back to queue 2 and push the
remaining 5 jobs there through stations 2 and 5 in the same way and then switch back to queue 1 again.
Table 1 graphically demonstrates the server actions in this case. The first row corresponds to the station
number being processed, the second to the number processed at that station, and the last 5 rows to the
number of jobs at each station when the current station is switched to.

We decide on the best values of y; by using a greedy heuristic. We first estimate the cost of processing
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Station Number 1 (2 (34545234545
Number Processed | 10 | 5 |5 |3 |3 |2 |2 |55 (3|3 |22
# at Station 1 10/,0(0(0j0(0|0j0O[0|0[0]0}0O
# at Station 2 0 |10(5|5|5|5|5|5(0{0({0]0]|0
# at Station 3 00 0/{0(0f{0|0}|5|0(0({0]0O0
4atStationd | 0|0 |0|5]2]2]0]0fo|s]2]2]0
#atStation5 | 0|0 |0|o[3]|0[2]|0of0]0]3|0]2

Table 1: Example of processing 10 jobs with yo = 2,y3 = 1, and y4 = 2.

batches of K jobs with no splits (i.e., y; = 1 for all i). Next, we conéider increasing only one of the y;
values (note that there are N — 2 candidates for an increase of one). We estimate the cost of the policy
for each of the N — 2 candidates. We choose the combination with the minimum cost (using the cost
approximation we describe below). We then repeat the process and decide which value of y; to increase
by 1 next. At each iteration, the cost is recorded, and we continue until no more splits are possible. The
splitting policy with the minimum estimated cost is chosen as the best policy for the given value of K.
(Note that this may be the policy that sends the batch of size K through the whole system.) In this
manner, we find the best splitting policy and estimated cost for K = 1,..., Kjnaz- (Kmaz can be set
arbitrarily large depending on how many values the policy maker wants to evaluate.) The minimal cost
K value and its associated splitting policy is adopted.

At each iteration of our procedure, we need to compute the expected cost of a policy specified by the
value of K and the vector y = (y2,¥3,.-..,y~n-1). The number of jebs at queue 2 when the server switches
to queue 2 ranges between 1 and K . We let n{f denote the number of batches processed at station : when
the server switches to station 2 after processing j jobs at station 1. For example, if K = 9 with yo = 2
and y3 = 3 in a 4-station problem, when a batch of 8 is processed through stations 2, 3, and 4, we will
have "8,8 =2, ng’B = "2,8 = 6.

In order to estimate the cost of a policy, we divide the cost into two components. One component
is the amount of cost that a job will incur waiting starting from the time it arrives to queue 1 until the
server starts processing the batch that this job is a part of at queue 1. The second cost is the amount of
cost that a job will incur from the time the server begins processing the batch that this job is a part of

until the job has cleared the system. We start by computing the second component.
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We let ¢;(K,y) denote the expected sum of the holding costs incurred by a batch of size j (from the
time the first unit in the batch is processed at queue 1 until the last unit is finished at queue N). This
cost can easily be computed exactly using a recursive procedure. The expected cost per job when a batch
of size j is processed is then given by c;(K,y)/j. Let p;(K,y) denote the probability that the server
processes a batch of size j at queue 1 before switching to queue 2 when using the policy defined by K
and y. Let w(K,y) denote the expected amount of time that a job waits at station 1 before the batch

that it belongs to starts being served. Then, our estimate of the average cost per job under policy (K, y)

is given by
K
cj(K,y
AC(K,y) = hiw(K,y) + > pij(K,y) J(j ) (5.41)
J=1

Therefore, we need to obtain estimates of p;(K,y) and w(K,y) in order to compute AC(K,y).

The estimate for w(K,y) is obtained by assuming that batches of size K get processed each time. In
fact, we replace the original system with one where jobs arrive only in batches of K. Using our splitting
procedure, the amount of time that the server would spend on processing a batch of j through all the

stages has mean
N

mj =Y (nfssi + jbi), (5.42)
i=1
and variance N
vj = Z(ngVar[Si] + jVar[By)). (5.43)
i=1

Hence, the system where jobs arrive in batches of K and are served in batches of K is a GI/G/1 queue
with processing time (for a whole batch) with mean m g and variance vg. Because in the original system,
the interarrival time is assumed to be exponential with rate ), in this system the interarrival time of a
batch of size K is Erlang-K. Let px = Amg/K, CZK =1/K, and ch = vK/mQK. Then using the waiting

time approximation for a GI/G/1 queue (see Whitt [35]) our estimate for the waiting time is

’ 2(1-pk) '

It remains to approximate the p;(K,y). Our estimate, denoted by p;-(l(, y), is first calculated as the
steady-state probability of there being j customers in an M/M /1 queue with arrival rate A and mean
service time m g /K. (Notice that because setup initiations at queue 2 do not occur according to a Poisson
process this is only an approximation.) We use probabilities for the M/M /1 queue because steady-state

probabilities are not easily obtainable for GI/G/1 queues. Therefore, the initial approximation for the
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probability of processing j jobs is:

(1-px)(1+pk) = 5=1

pi(K.y) =1 (1- k)i D 1<j<K (5.45)
p_,}f, . j=K
Here the probability of processing one job is approximated by the sum of the M/M/1 steady-state
probabilities of there being zero or one job, and the probability of processing K jobs is approximated by
the M/M/1 steady-étate probability of there being K or more jobs.

However, in the real system, the server often processes fewer than K jobs at queue 1 before switching
to queue 2 and hence the expected service time per job will not be mg/K. It can be easily seen
that m;/j > mg/K for j < K and so the percentage of time the server is busy will be greater than
px = Amg /K. In fact, it will be equal to

K

P =AY pi(K,y)m;/i. (5.46)
=1

Therefore (5.46) above can be further substituted into (5.45) to yield the following system of simultaneous

equations:
! K !
b = A p;(K,y)m;/i.
i=1
1-p)+pg) : =1
p;(K,y) = (1- le)pIIJ; D 1<ji<K
pllff 1 j=K
This yields
, , K K1,
p = M (L=pR)ma+ Y pgmjfi— Y pik 'mi/i (5.47)
Jj=2 Jj=2
K 1 mn m.
= Imi+ )\Zp;{ (—J - - 1_1) (5.48)
s S

It is clear that (5.48) has a unique solution between 0 and 1 and therefore can be easily solved using
standard numerical methods such as bisection. The solution to these equations is then substituted into
(5.41) which yields an estimate of the cost of the policy.

Finally, we note that our heuristic is guaranteed not to result in the queue sizes growing to infinity.

First, note that under the heuristic policy, the only queue that might have more than K jobs is queue
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1 as all other queues have at most K jobs at any time. Whenever there are K or more jobs in queue
1, the server will always serve a batch of jobs at queue 1 and then push these K jobs through the other
nodes. Now because w(K,y) needs to be finite (otherwise AC(K,y) would be infinite), the y values are
always chosen such that the expected sum of the processing and setup times for K jobs through the whole
system is less than K times the expected interarrival time. Therefore, whenever there are more than K
jobs, the “effective” service rate is greater than the “effective” arrival rate and queue 1 is. guar‘anteed to

eventually have less than K jobs.

6 A Simulation Study

We conducted a simulation study to test the performance of our heuristic. Because systems with more
than 3 operations become extremely difficult to solve optimally (as we noted in Section 5, an MDP
formulation of a problem with 4 operations can easily require over 60 million states) the heuristic was
tested against the optimal policy only for problems with three operations. We also compared our heuristic
to cyclic serve-to-exhaustion and gated service for systems with five operations. The simulation was run
for 5,000,000 hours and the method of batch-means was used to calculate performance statistics. The
confidence intervals for the simulation estimates had a width of about 3% of the mean values.

In Table 2 we present the results comparing the heuristic, exhaustive and gated service to the optimal
solution for systems with three stations. The holding costs for all three station examples were 10 at
station 1, 20 at station 2, and 30 at station 3. In this case, we considered three cases for the mean
service time values. In case 1, the mean service times were completely identical. In case 2, the mean
service times were increasing in station index, and in the last case they were decreasing in station index.
We considered 7 different mean setup time combinations for each processing time case, resulting in 21
different cases. The heuristic performed very well with an average percentage suboptimality of 2.4% and
a maximum suboptimality of 4.6%. In contrast, the exhaustive polling policy’s average suboptimality
was 44.9% and the gated had an average percentage suboptimality of 26.1%.

In general, we found that the heuristic produced results that were consistent with our intuition. For
example, in cases 2, 9 and 16 when setup times are zero the heuristic gives a maximum batch size of
one. This is the optimal method of scheduling these types of system.‘ Also, when setup times dropped
from one station to the next the heuristic was more likely to form a split at the low setup station. For
example, in case 5 in Table 2 the heuristic yields K = 5 and yg = 5.

Table 3 compares the heuristic to the exhaustive and gated service disciplines for systems with five
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Case | p | by |bo|b3| sy | s2 | s3 | heur. (%sub.) | exhaustive (% sub.) | gated (% sub.) | Opt.
T (081 ] 1|11 1] 1] 149.03240) | 160.58 (9.68) | 156.40 (6.82) | 146.41
2 |08 |1 [1]1]0] 00/ 37.4202) 77.75(108.29) 62.62(67.74) | 37.33
3 081 |1|1]05]05]|0.5]| 100.20 (2.24) 117.43 (19.81) 108.23 (10.43) | 98.01
4 |08 1| 1] 1] 2] 2| 2] 24618(@a53) | 24691 (4.83) | 252.19 (7.08) | 235.52
5 108|111 [16] 00| 79.07463) | 112.86 (49.35) | 103.49 (36.95) | 75.57
6 081110 15| 0 | 103.22(2.22) - 120.86 (19.69) 111.49 (10.41) | 100.98
7 108 1] 11] 0|0 |L5]107.02(312) | 124.86(20.32) | 115.49 (11.28) | 103.78
8 07|12 4] 1] 1] 1] 57.83170) 64.18(12.93) 62.51(10.00) | 56.83
9 107]1]2|4]0] 0] 0] 28900.79) 43.87(53.01) 41.02(43.08) | 28.67
10 (07| 1] 24050505 4443(2.3) 53.57(23.37) 51.32(18.20) | 43.42
11 07|1]2[4] 2|22 8.21(39%) 86.78(5.89) 86.14(5.11) | 81.95
2 (07]1]2|4]15] 0] 0 3871(230) 51.36(35.74) 49.12(20.81) | 37.84
13 10712 4]0 |15] 0] 4504195 54.36(23.05) 52.12(17.97) | 44.18
14 |07]112]4] 00|15 46.582.70) 55.86(23.15) 53.62(18.21) | 45.36
5 055 32| 1|11 1851(L61) 94.36(33.60) 90.67(13.46) | 18.22
16 105]5(3]2]0]0] 0] 1.960.11) 19.69(64.73) 14.94(25.02) | 11.95
17 [05] 53 |2]05]05|05]| 1479(0.08) 91.91(48.26) 17.70(19.78) | 14.78
18 105|503 2] 2] 2|2/ 2554059 29.80(17.38) 27.11(6.77) | 25.39
19 1055 13]2]15]0] 0] 13.580.19) 20.72(52.92) 16.51(21.85) | 13.55
20 [05|5]3]2]0 |15] 0] 1508(0.08) 92.22(47.45) 18.01(19.51) | 15.07
21 (055 (320 0 | 1.5 | 15.84(0.12) 22.97(45.20) 18.76(18.58) 15.82

Table 2: Results for 3 Operations Cases, h; = 10, hg

20, h3 = 30

stations. In addition, to observe how much the “batch splitting” procedure in the heuristic is contributing
to the overall performance, we report the results for the best “K-limited” policy found using simulation.
Under the K-limited policy, the server processes at most K jobs in queue 1 and then~switc.hes to queue
2 (If queue 1 is exhausted before K jobs are processed, the server still switches to queue 2). The batch
is never split in stations 2,3,...., N. In cases where the percentage difference is zero the heuristic has no
splitting and finds the same K as the optimal K found using simulation.

We chose three different scenarios for the mean service times. In the first case, they were identical for
all stations. In the second, they were increasing in station index while in the third they were decreasing
in station index. We also looked at six scenarios for setup times. These ranged from the case where all

setup times were equal to 0, to the case where they were decreasing in station index and the case where

they were increasing in station index. This resulted in 18 different cases. The holding costs in all 18 cases
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were taken to be 10 at station 1, 20 at station 2, 30 at station 3, 40 at station 4, and 50 at station 5.

p | by, b, b, bs, bs | s1, s2, 3, S4, s5 | heur. | exhaustive (% dif.) | gated (% dif.) | K-limited (% dif.)
08| 11,111 0,0,0,0,0 | 43.36 | 97.17(124.12) | 84.16(94.11) 43.36(0.00)
0.8 ,1,1,1,1 0.5,0.5,0,0,0 | 71.95 118.62 (64.62) 107.20 (48.77) 80.11(10:18)"
0.8 1,1,1,1,1 1,1,1,1,1 207.38 226.89 (9.41) 1220.55 (6.35) 206.79 (-0.28)
08| 1,1,1,1,1 9,2,05, 0,0 |159.40 | 204.32 (28.20) | 197.22 (23.75) | 182.57 (12.69)
08| 1,1,1,1,1 |0 02505 0.751 | 137.44 | 165.28 (20.26) | 155.96 (13.48) | 137.44 (0.00)
08| 1,1,1,1,1 1,05,0,0,0 | 80.65 | 129.48 (60.37) | 118.78 (47.12) |  95.73(15.75)
091 1,15 2,25,3 0,0,0,0,0 81.03 218.55 (169.71) 203.32 (150.90) 81.03(0.00)
091,152,253 | 05,050,0,0 |124.90 247.26 (98.63) 232.94 (87.13) 146.02 (14.46)
091 1,15, 2,2.5,3 1,1, 14, 1,1 316.52 374.88 (18.44) 363.91 (14.97) 311.70 (-1.54)
09| 1,152 253 | 220500 |240.00| 353.72 (46.80) | 342.30 (42.06) | 287.97 (16.66)
09| 1,1.5,2 25 3 |0,0.250.5, 0.75,1 | 218.33 298.37 (36.66) 285.37 (30.71) 218.33 (0.00)
091152253 | 105000 |13805| 261.62(9L11) | 247.75 (80.98) | 171.30 (19.41)
07| 4,32 1,1 0,0,0,0,0 | 2627 | 56.28(114.29) 43.07(63.99) 26.27(0.00)
07| 4,32 1,1 | 0505000 | 31.81 |  60.27(90.54) 47.81(51.16) 31.81(0.00)
0.7 43,211 1,1,1,1,1 | 6635 | 84.06(22.26) 74.36(3.16) 66.35(0.00)
07| 4,32 1,1 9,2,050,0 | 5527 |  76.98(34.56) 66.92(16.98) 58.85(6.08)
07| 4,3,2 1,1 |0, 02505 0.751 ] 49.76 |  71.49(32.65) 60.12(11.56) 49.76(0.00)
0.7 4,32 1,1 1,0.5,0,0, 0 35.58 62.09(75.30) 50.00(41.16) 35.58(0.00)

Table 3: Results for 5 Operation Cases, h; = 10, ho = 20, hg = 30, hqy = 40, h5 = 50

The percentage difference between the heuristic suggested and the exhaustive, gated and K-limited

policies is given for each example in Table 3. The results in Table 3 clearly show that the heuristic

dramatically outperforms the exhaustive and gated policies. The average percentage difference between

the heuristic and the exhaustive polling policy was 63% while the average difference between the heuristic

and the gated policy was 46%. Table 3 also shows that the heuristic can significantly outperform the

K-limited policy. Although on average the percentage difference between the heuristic and the K-limited

policy was only 5.2%, this is because for many of the examples there was no advantage to splitting

the original batch in stations 2,..., N. However, the examples in Table 3 show that when splitting is

beneficial, the difference can be high.

Notice also that, in all but two cases, when splitting did not occur the heuristic chose the optimal

value of K for the K-limited policy. In the two cases where the optimal value of K is different from

the heuristic’s value the difference is less than the percentage error in the simulation. Also, finding K

through our heuristic takes only a few seconds whereas finding K through simulation can be very tedious.
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In many manufacturing applications there is one production step that adds significant value to the
product. Table 4 shows examples where such a jump in holding costs is present. It also investigates the
splitting procedure further and leads to added insight on our heuristic. We use a five station model with
p=0.8 and all service times equal to 1. Here we only compare the heuristic to the optimal K-limited
policy. In all cases the heuristic did the same or better than the K-limited policy so it would clearly also
outperform exhaustive and gated service. Also shown in the table are the values of K and y (splitting

procedure) found by the heuristic.

h1, ho, hs, hyg, hs $1, 89, S3, S4, S5 heur. | K | y2,y3,y4 | K-limited (% dif.)
1 1, 1.2, 1.4, 1.6, 10.8 1,1,1,1,1 20.71 | 10 1,1,2 21.81(5.03)
2 1, 1.2, 1.4, 1.6, 20.8 1,1,1, 1,1 2882 | 9 1,1,2 32.59(11.57)
3 1, 1.2, 1.4, 1.6, 50.8 1,1,1,1,1 48.65 | 12 | 1,14 62.61(22.29)
4 1, 1.2, 1.4, 10.6, 10.8 ,1,1,1,1 29.73 | 10 1,2,1 31.50(5.62)
5 | 1, 1.2, 10.4, 10.6, 10.8 1,1,1,1,1 40.17 | 10 2,1,1 40.62(1.11)
6 | 1,10.2,10.4, 10.6, 10.8 1,1, 1, 1,1 49.63 | 6 1,1,1 49.63(0.00)
7 1, 1.2, 1.4, 10.6, 10.8 1,1,1,01,0.1 1743 | 8 1,3,1 21.35(18.37)
8 1, 1.2, 1.4, 10.6, 10.8 1, 1, 0.1, 0.1, 0.1 11112 | 6 1,6,1 17.39(36.06)
9 1, 1.2, 1.4, 10.6, 10.8 1,0.1,01,01,01 | 935 | 5 2,3,1 10.93(14.49)
10| 1, 1.2, 1.4, 10.6,10.8 |0.1,0.1,0.1,0.1,0.1 | 816 | 1 1,1,1 8.16 (0.00)

Table 4: Results for 5 Operation Cases, by =1, bo =1, b3 =1, by = 1, b5 = 1, and p=0.8

Examples 1-3 show the effect of an increase in the cost at the expensive step. Clearly, the benefits
obtained from splitting become greater and the difference between the heuristic and K-limited increases
with the increase in cost. Notice also that the amount of splitting increases with cost. Examples 1, 4,
5 and 6 show the effect of moving the expensive step towards the front of the line. The point at which
a batch is split is moved forward until, in the final example, whole batches are sent through. Examples
7-10 show the effect of a decrease in setup time on the system. As would be expected, the system is
more likely to split when setup time goes down. Also, as the point where the setup time decrease occurs
moves towards the front of the line, so does the point at which splitting occurs. Example 9 is particularly
noteworthy because here the splitting procedure causes a batch to be split once when setup time decreases

and again when holding costs increase.

26



7 Conclusions and Further Research

In this paper, we presented the problem of scheduling a tandem queueing system with setups and a single-
server. We partially characterized the optimal policy and provided a performance analysis of exhaustive
and gated polling policies for such systems. We also developed an effective heuristic. Further research
should focus on more complicated systems than the one we considered here (e.g., multiple servers, or

more complex routing schemes).
Acknowledgments:

The authors are very grateful to the area editor, Professor Larry Wein, and to an anonymous associate
editor and two anonymous referees whose insightful comments greatly improved the paper. Izak Duenyas
has been supported in part by NSF Grants, DMI-9308290 and DMI-9424596 and a grant from the Center
for Display Manufacturing. Diwakar Gupta has been supported in part by the Natural Sciences and
Engineering Research Council of Canada through research grant number OGP0045904. The authors are
grateful to Mr. Yavuz Gunalay, a Ph. D. candidate at McMaster University, for his help in computer

implementation of algorithms based on the analysis of exhaustive and gated polling policies.
Appendix: Proof of Theorem 2

Using the data transformation suggested in Tijms [34], (page 209-210), the Semi-Markov decision model
(3.4) can be converted into a discrete time Markov decision policy such that for each stationary policy,
the average costs per unit time are the same in both models. This enables us to use a value iteration
algorithm to solve the original Semi-Markov decision model. We let ¢ = max{v1, 2, A, ﬁ1,ﬁ2} and we

get the following recursive equation for the value iteration algorithm.

Hy (X1, X2) + ELEVL(X) + A1(B1) — 1, X2 + 1,1 + (1 - EL)Vi(X), X2, 1) }for o
Ha(X1, X2) + Y2 EVi(X1 + A1(S2), X2,2)] + (1 - 2)Vi(X), X2,1) b=
Vigr(X1, X2,2) = Hy(X1, X2) + 2 BV (X1 + A1(B2), X2 = 1,2)) + (1 - B2)Vie(Xy, X2,2) for Xp > 1.

(h2X2) + 2 Vi(1, X2, 1)} + (1 = 2)Vi(0, X2, 1)
2B [ b1 (A1 () + ha Xaldt] + $2 EVL(A1(S2), X2,2) + (1 = L)Vi (0, X, 1) }

Vi+1(X1, X2, 1) = min {

(7.49)
Vi+1(0, X2,1) = min

V(X1,0,2) = w1 B( [} (b (X1 + A1 (0)dt] + L2 BV (X1 + A1(51), 0, D] + (1 = L)V(X1,0,2)
where Hi(X1,X2) = B1E[[P [hi(X1 + A1(t) + hoXaldt], Ha(X1,Xa) = voE[f2[h1(X1 + A1 (2)) +
hoXoldt), and Ha(X1, X2) = voE[[P2[h1(X1+A1(t))+hoXa]dt] with Vo(X1, X2,1) = 0, and Vo(X1, X2,2) =
0 for all X; and Xo.
Now, in order to prove Theorem 2, it is sufficient to show that at each iteration of this value iteration

algorithm, the following conditions hold true:
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C1) Zk(X1, X2) = BEV(Xi+A1(B1) -1, Xo+1, 1)+ LBy (X1, Xp, 1) - R EVi(X1+ 41(S2), X2,2)

is increasing in X9 and decreasing in Xj.
C2) Gr(X2) = %Vk(l,Xz, 1)+ MJ—A)Vk(O,Xz, 1) - 3%EV/C(A1(SQ),X2,2) is increasing in Xo.

To see this, note for example that if at a given iteration, in a given state (X1, Xo,1), the optimal choice
is to switch to queue 2 (rather than serve another unit from queue 1) then by the first equation in (7.49),
this implies that

H1(X1, X2) — Ho(X1, X2) + Zk(X1, X2) > 0. (7.50)

Now note that the difference between the first two terms of (7.50) is a constant in X; and Xg. Therefore,
if Z, is increasing in X9, this would imply that in state (X1, X2+ 1,1), it would also be optimal to switch
to queue 2. Similarly, if in state (X7, Xg,1), it isloptimal to serve queue 1, it will also be optimal to serve
queue 1 in state (X; + 1, Xo,1). The explanation for why monotonicity of Gi(X2) is required is similar.

We will now show by induction the monotonicity properties of Zj (the proof of the monotonicity of
G is entirely similar and omitted). In addition, we will also need the following condition (which we will

also prove),

C3) Wi(X1, X2) = BEV(X1+A41(B1)~1, Xo+1,2)~ 2 EVi(X1+ A1 (B), Xo-1,2)+ BBV (X1, X5,2)

is increasing in X9 and decreasing in Xj.

Now, we first note that condition (C1) on Zj and condition (C3) on Wy hold trivially when k = 0.
Assume they hold for arbitrary k. Also let (X1, X9)T = (X1 4 A1(B;) — 1, X2 + 1). Then for the k + 1%

iteration, after a lot of algebra, we can write,

Zie1 (X1, X2) = BZEWi(X1 + A1(S2), X2)] + 52 E[min{0, Hy(Xy, X2)T = Ha(X1, X2)T + Z(X1, X2)T})
+127:£LE[min{0- H1(Xy, X2) = Ha(X1, X2) + Zi(X1, X2)} + (1 - %?‘)(Zk(xln X2) + Hy (X1, X2) — Ha(X1, X2))
+(1 = ¥2/9)(H2(X1, X2) = H1(X1, X2)) + (B1/ ) EH2(X1, X2)T + !2—;—51112(/\'1,)(2) - (¥2/9)EH3(X1 + A1(S2), X2)
(7.51)

The first term in the first line of (7.51) is increasing in X9 and decreasing in X; by the induction
assumption (C3) on the W terms. The second term on the first line is increasing in X9 and decreasing
in X by the induction assumption (C1) on the Z terms. Similarly, the sum of the terms in the second
line is increasing in X7 and decreasing in X by the induction assumption (C1) on the Z terms. Finally,
the sum of the terms in the third line are constant in X; and X9 from the definition of H;, Hy and Hs.

We have therefore shown that Zj41(X1, X2) is also increasing in X2 and decreasing in X;.
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Similarly, after some algebra, for Xo > 1, we can write,

Wit1(X1, X2) =  (¥2/0)EWr(X1 + A1(Ba), X2 — 1) + (1 — ¥2/0)Wi(X1, X2)

+E BHy(X1, X2)T — ZEHg(Xy + A1(S2) + A1(B2), X2 — 1) + (ﬂz_;ﬁleHii(Xl + A1(S2), X2)
(7.52)

The terms in the first line of (7.52) are increasing in Xo and decreasing in X1 by. the induction

assumption (C3) on the W terms, while the sum of the terms in the second line are constant in X; and

Xo.

The boundary case with X = 1 is similar.

We have therefore shown that the properties of the value function that are required for the result hold

true through every iteration of the value iteration algorithm. Since Vi (X1, X9) — V (X1, X2) as k — oo,

Zr(X1, X9) — Z(X1,X2) and Gg(X1,Xg) — G(X1, X2) and therefore the properties hold true for the

optimality equation for the average cost case, and we have therefore shown the result. O.
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