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Abstract

We consider the problem of establishing a target inventory level in a manu-
facturing system where both production and demand are stochastic. Under the
assumption that “safety capacity” (i.e., overtime or a vendoring option) is avail-
able, we develop two models to address this problem. The first model assumes
that quota shortfalls cannot be carried over to the next regular time production
period and are made up with overtime/vendoring, which incurs fixed or fixed
plus variable costs. The second model assumes that shortages can be back-
loggéa to the next regular time production period at a cost. For this model, we
demonstrate the optimality of a (Q, s, S) policy, where Q represents the target
inventory for regular time production, s represents a safety capacity “trigger”

and 'S represents the safety capacity inventory target.



1 Introduction

The growing popularity of pull production systems has presented many manufac-
turing plants with a difficult inventory control dilemma. On one hand, the JIT
literature admonishes these plants to reduce inventory levels to expose problems
and engender continual improvements ([19], [20]). On the other hand, as JIT sup-
pliers to other plants, these plants are often expected to be able to fill orders rapidly
and in variable quantities. Striking an appropriate balance between low inventory
and high responsiveness requires a finely-tuned inventory control policy.

Further complicating the situation is the fact that a pull system is rate- driven
and hence requires some form of “safety capacity” to protect against variations
in the demand process or production rate [22]. This capacity can be provided
through scheduled preventive maintenance periods, which can be used for overtime
when necessary. It can also be provided by outside vendors, who agree to make
up deficiencies on short notice. In either case, the plant effectively uses higher cost
capacity to level out randomness in the system. How to use this capacity must be
an integral part of an effective inventory control policy.

Recently, researchers have begun to address the problems of establishing in-
ventory levels and production quotas in pull production systems. In pull systems,
inventory control is a matter of establishing appropriate card counts. (We speak as
if physical cards are indeed used, although in practice the signals may be electronic.)
The work on card count setting ([3], [4], [7], [23]) has not addressed the problem of
using safety capacity.

The safety capacity issue arises naturally in the context of setting production
quotas for pull production systems. Hopp, Spearman and Duenyas [15] address this
problem by assuming that regular time production is normally distributed with a
known mean and variance and that the company can sell everything it can possibly
make. At the end of regular-time production, overtime can be scheduled to catch

up. They develop four models to calculate production quotas and optimal overtime



policies. Duenyas, Hopp and Spearman (7] extend this approach to demonstrate
the relationship between the quota setting and the card count setting problems and
propose an algorithm to calculate card counts and optimal quota for a CONWIP
(constant-work-in-process) system.

The above quota-setting models avoid the issue of demand variability by assum-
ing that the plant can sell everything it makes. In the scenario we have outlined
above (i.e, where a JIT plant is also a JIT supplier to another plant), it is quite
likely that the plant faces uncertainity about demand as well as production. Hence,
we require a more sophisticated policy than that represented by a simple periodic

“order-up-to”

production quota. A reasonable class of policies to consider are the
policies that specify periodic target inventory levels. In fact, we will show that an
order-up-to policy is optimal under specific cost assumptions. Our goal, then, is
to simultaneously find the optimal order-up-to policy and the optimal scheduling
policy for safety capacity.

Our modeling approach is heavily influenced by our involvement with a circuit
board plant of a major computer manufacturer. The demand our plant “sees” in
a period is essentially the production of the downstream plants during that period.
Due to the usual contingencies (e.g., machine failures, process problems, staffing,
fluctuations in external demand, etc.) this production, and hence our demand pro-
cess, is stochastic. While some visibility to the downstream processes is possible,
the actual weekly demand for finished product is not precisely known until the end
of the week. To model this situation, we will assume throughout this paper that
demand in a period can be represented by a single random var’iable whose value is
realized at the end of the period. Also, in recognition of the fact that JIT is most
applicable to repetitive manufacturing systems (see, e.g., [22]), we will assume that
the demand process is time homogeneous. Finally, we assume that the planning
horizon is sufficiently long to justify use of an infinite horizon.

In our client’s circuit board plant and in all of our models, the variability in the

production process is due to processing time variability. That is, each operation



that a job has to go through takes a (random) amount of time. This can be due to
machine failures, differences in operator skill, shortages of supplies, etc. Given that
each operation takes a random amount of time, the amount of product that we can
produce in a fixed amount of time (e.g., during regularly scheduled production time)
is also random. Note that the type of randomness we are considering is very different
from randomness in production due to random yield. In random yield models (e.g.,
Henig and Gerchak, [11]), a certain amount of raw material is released into the
plant at the beginning of the period, and at the end of the period, a (random)
amount of good units are produced. In this situation, the number of good units
clearly depends on the number of units of raw materials released at the beginning
of the period. However, since we are modelling inventory control in a plant that
has implemented a pull system, such as CONWIP or kanban, we do not release a
certain quantity in the beginning of a period. Rather, work release is dictated by the
cards (kanbans). For example, in a CONWIP system, we release a new unit to the
first machine in the line whenever a unit has been finished at the last machine (or
a unit has been scrapped somewhere in the process), thus keeping the total Work-
In-Process Inventory in the line constant. Hence, the amount that can be produced
in a pull system depends on the WIP level in the system, but only depends on the
production target in that we stop if we meet this target during regular time. This
difference makes our model distinctly different from those used to study random
yield problems.

In our client’s plant, safety capacity consisted of overtime (i.e., production over
the weekend) and therefore was able to deliver products before the beginning of the
next regular time period. Throughout this paper, we have modeled safety capacity
under this type of rapid delivery assumption, making our models applicable to the
overtime case or the case where a vendor provides very quick turnaround. A vendor
might be able to do this by either essentially using overtime or by carrying inventory.
and of course, we would expect to pay a premium for this type of service. We do

not address the situation where vendored capacity requires significant delivery time.



This is a substantially different problem, which should be addressed at the planning
level (e.g., during development of a master production schedule) rather than at the
execution level.

The type of randomness we are considering in this paper has been addressed in
the literature. Duenyas et al. [7], Duenyas and Hopp [8], [9] have characterized the
output process from a tandem CONWIP line and have approximated the output
of CONWIP lines feeding an assembly operation under different processing time
distributions as a function of WIP level. Mitra and Mitrani [18] have developed
approximations for the throughput of exponential kanban systems. These approx-
imations can be used along with simulation to characterize the distribution of the
amount produced during regular time given the particular pull system implemented
in the plant.

There is a large literature on the problem of establishing inventory targets in
the face of stochastic demand (see e.g., [2, Chapter 4] for a survey). However, to
our knowledge, none of the above models have explicitly incorporated the issue of
using overtime/vendoring to supplement capacity in environments where regular-
time capacity is uncertain. In an early paper, Karlin {17] considered a single period
model where demand and amount produced are random, however his model does
not have safety capacity. Barankin [1] considered a single period model in which
a regular and an emergency order are placed simultaneously. The regular order
arrives one period later and the emergency order arrives simultaneously. However,
Barankin's model does not include uncertainty in production capacity (i.e., any
regular or emergency orders that are placed are delivered in full and on time) and
also there is no fixed cost of placing an emergency order. Daniel [5] generalizes
Barankin’s model to the multi-period case. Daniel’s model also does not include
production capacity uncertainty and fixed costs for emergency orders.

Perhaps the work closest in spirit to our work is a recent paper by Zheng [24]
which considered a single-item continuous-review system where demands form a

Poisson process. His model includes the usual backordering, holding and replenish-
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ment ordering costs, but goes beyond these by assuming that discount opportunities
are generated according to a Poisson process where the firm has the option to place
a special order with a discounted fixed cost of replenishment. Zheng proves the
optimality of an (s, ¢, S) policy for this problem where the firm places an order and
brings the inventory position up to S if (1) the inventory position is below s and
there is no discounting opportunity, or (2) the inventory position is below ¢ and there
is a discounting opportunity. Our models differ from this work in that (1) Zheng’s
model does not include replenishment uncertainty, (2) in our models discount op-
portunities occur regularly (i.e., producing during regular time is always cheaper
than producing during overtime), and (3) we do not assume Poisson demand.

In the following sections, we develop two models for addressing the problem of
setting target inventory levels in systems with stochastic production and demand.
We refer to these levels as “quotas” to emphasize their analogy with the production
quotas for pull systems. In Model 1, we assume that safety capacity must be used
whenever a quota shortfall occurs. In Model 2, we consider the case where the
decision-maker can choose whether or not to use safety capacity when quota is not
met and integrate the quota-setting problem with the safety capacity scheduling
problem. The models in this paper can be used in conjunction with results on the
output process from pull systems as well as part of a combined quota and WIP

setting procedure described in Duenyas et al. [7].

2 Model 1: Fixed Cost of Overtime

We begin by considering the case where we always use safety capacity if the quota
is not met during regular time. The marginal cost of producing a single unit during
regular time is given by cg. If the quota is not achieved, then we assume that
overtime must be used, and results in finished goods inventory being brought up
to the quota. We let Ii' denote the fixed cost of safety capacity. We denote the

variable cost of producing a unit during overtime by c¢g + ¢, so that ¢ represents



the unit penalty for using safety capacity. This penalty may be due to the workers
being paid a premium for overtime work, if safety capacity consists of overtime, or a
price differential for vendoring the product instead of producing it in-house, if safety
capacity is provided by a vendor. Similarly, the fixed cost of safety capacity may
represent the cost of a minimal overtime shift, in the case of overtime, or the fixed
cost of an emergency shipment, in the case of vendoring.

Although this quota/safety capacity protocol may seem simplistic, it is well
defined and easy to follow. For this reason, it is used in a fairly literal fashion in
some plants (e.g., Inman [16] gives a discussion of the use of this policy in automotive
manufacturing plants). Of course, in many situations this assumption will be too
strong — and we will relax it later — but its simplicity leads to clean insights and
intuition that will carry over to more realistic models, so we begin our analysis with
this case.

For modeling purposes, we assume that demand for the period is revealed after
the use of safety capacity. What we are really modeling here is the situation where
overtime commitments must be made before demandris fully known. We further
assume that if demand exceeds the quota, then sales are lost; if quota exceeds the
demand, then a holding cost is incurred. We let p represent the unit profit, h deﬁote
the holding cost, D represent the (random) amount demanded (with density func-
tion fp(z) and distribution function Fp(z)), and Y denote the (random) amount of
production during regular time (with density function fp(z) and distribution func-
tion Fp(z).) Note that Y denotes the (random) amount that could be produced
if production continued throughout the regular time period. However, production
is stopped if at any time the quota is reached. Therefore, Y denotes the (random)
production capacity during the regular time period. Finally, we let Q) be the produc-
tion quota (i.e., the decision variable) that maximizes the long-term average profit.
Since we are focusing on a multi-period problem with an average profit maximizing
objective, the amount of initial inventory does not affect the solution (we assume

that if the initial inventory is greater than @, no production takes place until the



inventory level is less than @)). We let g(@Q) represent the expected profit per period

with quota (), which can be expressed as follows:

9(Q) = pE(min(Q,D))~- crE[(min{(Q - D)* +Y,Q}) - (Q - D)*]
—Pr{(Q- D)t +Y < Q}K

~(cr+¢)E[Q - (min{(Q - D)* +Y,Q}] = hE(Q - D)*.  (2.1)

where

z ifz>0
et =

0 otherwise

The first term in (2.1) denotes the expected revenue per period. Each period inven-
tory is brought up to @, and if demand is D, then the minimum of D and ) units
are sold. The number of units left after demand is realized is (Q — D)*. Hence, the
amount of inventory carried over to the next period is (Q — D)%, and holding costs
are charged on that inventory. If the amount produced during regular time plus
the initial inventory is less than @, safety capacity has to be used, and the third
and fourth terms express the expected fixed and variable costs of safety capacity.
Finally, the second term of (2.1) gives the regular-time production costs.

We can simplify (2.1) to
9(Q) = (p= cr)E(min(Q, D)) - Pr{(Q - D)* +Y < Q}K

-cE[Q - (min{(Q - D)* +Y,Q}] - hE(Q - D)*. (2.2)
since min(@Q,D) = @ — (Q = D)*. Also min(Q,D) = D - (Q — D)*, so that
maximizing ¢(Q) is equivalent to minimizing w(Q) = —¢9(Q)+ (p— cr)E D since the

second term is a constant. We also let p; = p — cp and get

w(Q)=pE(D-Q)T+hE(Q-D)*+Pr{(Q-D)"+Y < Q}K

+cE[Q - (min{(@ - D)* +Y,Q}].  (23)

The first two terms of (2.3) are convex, but the last two terms are in general not

convex. Differentiation of (2.3) yields the following first-order condition:

(Kfp(Q)+ cFp(Q)—m)(1 - Fp(Q))+ h(1-P(D>Q))=0. (2.4)

o ¢]



which we can rewrite as

h
L ey 17 o) (29
Differentiating (2.5) yields the second-order condition
/ h
7(Q) > -2 (26)

((1-Fp(Q))?
where f,’;(Q) is the derivative of the density function of production.

Hence, we can set the quota by solving (2.5) for . Even though a closed-
form expression for @™ is not possible in general for all demand and production
distributions, solving for ) by convergence methods is simple. Note that in general
there may be more than one value of () that satisfies (2.5). Hence we need to
check whether (2.6) is satisfied to guarantee a local minimum. Notice that because
of the nonconvexity of the objective function we cannot guarantee that the local
minimum is a global minimum in the general case. However, we can use these
optimality conditions to examine the nature of the global optimum and, as we will
show below, there are conditions under which the solution to (2.5) and (2.6) is
unique and therefore globally optimal.

Implicit in this formulation is the assumption that any quota shortage is made
up with safety capacity. Obviously, if we choose quota to be very large, we will
typically miss quota by an amount that is too large to make up in a single overtime
period, or is beyond our vendor’s capabilities. This will invalidate the formulation.
Hence, if we let M be the maximum available safety capacity then, after computing

@™ we need to check the condition
Pr{Q*-((Q"-D)*+Y)> M) <a (2.7)

where a is some acceptably small value. If this condition is satisfied then the model
is reasonable. If not, then the costs are such that it is attractive to routinely use
safety capacity. In this case it may make sense to replace this model by one without

makeup periods (see Hopp, Spearman and Duenyas [15] for such a model).



Note that we are not considering randomness in safety capacity production. In
the case where this capacity is vendored, this is a reasonable assumption, since our
contract with the vendor will probably require such regularity. In the case where
this capacity represents overtime, this is only reasonable if M is set sufficiently below
actual maximum overtime capacity to enable it to be achieved consistently.

In addition to providing a computational tool for quota setting, the above model
can be used to gain insight into the effect of production and demand variance on
the optimal quota. To illustrate this, we make some additional mild assumptions
about our demand and production process. We assume that production capacity
during regular time has a continuous unimodal distribution. We also assume that the
distribution of demand is continuous and demand can be expressed as D = up+op X
where X is a random variable with mean 0 and variance 1. We also assume that
P(D > 0) = 1. We note that the assumption that production capacity during
regular time has a unimodal distribution is a natural assumption, since by the
central limit theorem, if the regular time duration is long enough, the distribution
will converge toward the normal distribution. In fact, Duenyas et al. observed that
for a CONWIP system with deterministic processing times and random failures
of machines, the output process seems to converge to normal rather rapidly. The
assumptions on demand are similarly rather mild. Under the above conditions, we

first characterize sufficient conditions under which a unique solution to (2.5) exists.

Lemma 1l Let a = p;/(py + h). Let Q= Fﬁl(a). Then, the optimal quota, Q*,
has the property that Q* < Q. If the support of Y is contained in (Q,oo), then
the optimal quota equals Q. If the distribution of production capacity during regular

time 1s unimodal with mode Mp and either one of these conditions hold;
1. Mp>Q

2. m< K/fp(Mp)

then there erists a unique solution to (2.5).
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Proof: The first part of the lemma is easily seen by noticing that if K = 0, and
c=0,then Q = F5'(p1/(p1+h)) minimizes w(Q). Since the third and fourth terms
on the right hand side of (2.3) are increasing in @, the quota that minimizes (2.3),
Q* < Q. Furthermore, if the support of Y is contained in (Q,oo), Q is the unique
solution that satisfies (2.5).

If Y is unimodal with mode Mp > Q, then fy(Q) is increasing in the region
[0,Q]. Note that in this region, the left-hand side of (2.5) is decreasing in Q, while
the right-hand side is increasing in Q. Therefore there is a unique solution in [0, Q].

Consider the case where h = 0, and ¢ = 0 in (2.3). Then, the first-order condi-

tion, (2.4) reduces to

Kfp(@1)-p =0 (2.8)

and the second-order condition is

Kfp(Q)>0 (2.9)

If p1 < K/fp(Mp), then there exists a solution to (2.8), @1, and (2.9) implies
that this (unique) solution must lie in [0, Mp]. Now, notice that the second and
fourth terms in (2.3) are increasing in @, therefore the quota that minimizes (2.3),
Q" < Q1 < Mp, and is unique. O.

Having derived sufficient conditions for a unique quota, we next explore how the

optimal quota is affected by changes in the problem parameters.

Theorem 1 Under the conditions of Lemma I, the optimal quota, Q*, is nonin-

creasing in I{, nonincreasing in h, nonincreasing in ¢, nondecreasing in p;.

Proof: We prove the monotonicity result for &', the proofs of the other results are

entirely similar. Let Q* be the optimal quota for a given set of problem parameters.

Then, by (2.5), we have P(D > Q) = p1+h—}\'fP}(1Q)—CFP(Q)' Now, if K is increased,

then the right hand side will be greater than the left hand side, i.e. for K’ > K, we

will have P(D > @) < p]+h—1\"’jp}EQ)-ch(Q)‘ Since decreasing Q will increase the
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left-hand side and will decrease the right-hand side, and equality will be achieved
by a lower quota. O.

Theorem 1 characterizes the behavior of the optimal quota with respect to
changes in the cost parameters. We next describe how the optimal quota is af-

fected by changes in demand, and production.

.Theorem 2 Under the conditions of Lemma 1, let Q7 be the optimal quota when
demand is a random variable Dy, and production during regular time is a random

variable Y7.

1. Let the optimal quota when demand equals Dy >4 Dy, be Q3. Then, Q3 > Q7.

2. Let the optimal quota for the case where production capacity equals Yo >4 Y)

be Q3. Then Q3 2 Q7 if K = 0.

Proof: Dy >4 D; implies

h
p+h=Kfp(Q]) - cFp(Q])

which implies Q3 > Q7. The proof of the second part is entirely analogous. O.

P(D;> Q%) > P(D1>Q7) =

(2.10)

Theorem 2 states that an increase in demand (in the stochastic sense) will cause
an increase in the optimal quota, and an increase in possible production during
regular time will also cause an increase in quota when K = 0. We are also interested
in how the optimal quota is affected by variability. The following theorems describe

the effect of demand variability on the optimal quota.

Theorem 3 Under the conditions of Lemma 1, and with demand equal to D =
iup +opX, where X is a random variable with mean 0 and variance 1, if Q" < up,

then @™ is nonincreasing in op. If Q* > pp, then Q* is nondecreasing in op.

Proof: If D = up +0opX, then we have P(D > Q*) = P(X > Q-.;':[-)E-D-). Notice that
when Q* < up, an increase in op will make (Q* — up)/(op) larger, and therefore

P(D > Q=) will become smaller. This means that the left hand side of (2.5) will
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become smaller than the right-hand side of (2.5). Under the conditions of Lemma
1, equality in (2.5) can only be achieved by decreasing @J*. The proof for the case

where D > pup is entirely analogous. O

One way to interpret the above result is that as the variance of demand increases,
the spread between the quota and the mean demand is increasing. This can be
observed in an easier way when both K" = 0, and ¢ = 0, since in this case |@* - pup| =
op|Fx'(p1/(p1 + h))|, where Fx(.) denotes the cumulative density function of X.

In general, if the marginal profit p is high enough, @* > pp holds. In that case,
the above theorem implies that as demand variability increases, it is optimal to
build up more inventory as a hedge against uncertain demand. However, if X and h
are high enough so that @ < up, then greater demand variability will cause higher
holding costs when demand is low, and hence the optimal policy is to decrease quota.
Interestingly, if we alter both the variance and the mean, but hold the coefficient
of variation constant, the optimal quota always increases as stated in the' following

theorem.

Theorem 4 Under the conditions of Lemma 1, and given D = pp + op X, where
X is a random variable with mean 0 and variance one, let ¢, = op/up. Q* is

nondecreasing in op for a fized c,.

Proof: Since P(D > Q") = P(X > %;— - £2), when op is increased while keeping
pup/op constant, the term ( % — £2) decreases, therefore P(D > Q) increases.

Therefore * must be increased to achieve equality in (2.5).

We end this section by noting two special cases of our model. First, if the
production capacity is very large compared to demand, (i.e., we can produce any
amount during regular time), then we are left with the same newsboy result as
when K = 0, and ¢ = 0, (i.e., the optimal quota equals F5'(p/(p+ h)). Similarly,
if demand is very large compared to production capacity (i.e., we can sell anything

we make), we get an upper bound on Q~, by Theorem 2.
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3 Model 2: A Model with Backlogging

The model in the previous section assumes that safety capacity is used whenever
quota is missed. Because decision-makers might reasonably choose not to use over-
time or a vendor if the shortage is very small, we now relax this assumption and
consider the case where the plant can opt to backlog a shortage and make it up
during the next regular time period. We assume that safety capacity cost has both
fixed and variable components. Further, we allow for a variable backordering cost,
b, to penalize units that are completed in periods following the one for which they
were scheduled.

Specifically, the system works like this. The plant tries to produce quota during
regular time so that demand is met with @ units on hand. We assume that quota is
rigidly observed so that when there are ) units on hand the plant stops producing.
We further assume that uncertainty in downstream requirements prevents demand
from being fully revealed to the plant until the end of regular time (i.e., at which
time, the downstream plant will have completed its regular time production and
made a decision about overtime, théreby solidifying demand on our plant). However,
unlike in Model 1, since backlogging shortages to the next period is an option, we
assume that the plant takes note of demand prior to making the decision of whether
or not to use overtime. If demand is less than (), a holding cost is incurred and
the excess units are carried over to the next period. If demand is more than @, the
plant can either backorder (i.e., carry the shortage to the next period) or use safety
capacity. If the plant uses safety capacity, it must also decide how many units to
order or produce.

Notice that we are assuming in our description that the decision-maker uses
an “order-up-to” policy during regular time. In the development that follows, we
initially make this assumption. However, in Section 3.3, we demonstrate that re-

stricting attention to “order-up-to” policies is without loss of optimality.
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3.1 Model Formulation

We model the problem of finding an optimal safety capacity scheduling poli‘cy as a
discrete time Markov decision process (MDP). We suppose that at the end of each
regular time period, the decision-maker observes the shortage (or excess) level and
decides whether or not to use safety capacity and, if it is used, how much to order or
produce. In MDP terminology, the stages are defined by epochs representing the end
of each regular time period, the state of the process is defined as the level of inventory
and the actions available in state z are given by defined as A, = {z,z+1,z+2,....Q}
where taking action z in state z means that we do not use safety capacity while
taking action a > z means that we use safety capacity and raise our net inventory
to a units.

Since p; includes variable production costs, the only costs we must consider are
fixed and variable overtime costs and backorder costs. These depend on the state

and action. If action a is used in state z then the one period cost is given by
c(z,a)= Ky +cla-2)+Gla) a2z

where

G(G,) = -bal{a<0} + haI{a)O}

and [ is the indicator function.

Finally, to specify transition probabilities, we discretize production and demand
into convenient units and let ¢; represent the probability of (potentially) completing :
units during regular time. Similarly, we let d; be the probability that demand equals
7 units. To ensure a finite state space, we approximate production and demand
distributions with a discrete distribution with finite support. Also, we assume that
the maximum possible production is greater than the minimum possible demand.
(Note that if this is not the case, then we have the “sell-all-you-can-make” situation
studied in Hopp, Spearman and Duenyas [15].) The amount we produce during

regular time depends on how many units we start the period with. Hence, we can



denote by Y (a) the number of units produced during regular time starting from an
inventory position of a units. Hence Y(a) = min{Y,Q - a}.
We next state the following purely technical lemma, which we will need later in

characterizing the optimal policy.
Lemma 2 EY(a) is concave in a.

Proof: The proof is omitted.

We can now formulate the dynamic programming problem. We first formulate
the finite horizon discounted case, then show that the infinite horizon problem is
well-defined, and finally develop the average cost case.

Letting z, and a, represent the inventory position and action in period n, and «
represent the discount factor, we can define K, ¢, and Gr(ay) as, respectively, the
present value of the fixed cost of safety capacity at period n, the present value of the
variable cost of safety capacity at period n and the present value of the inventory
charges at period n. Thatis, K, = a"I\', ¢, = a™¢, and G,(a,) = a"G(a,). Finally,
let ¢y 41 denote the salvage value of goods at period N + 1.

Starting with period 1, with an inventory position of z; before making the safety

capacity decision, we have the following recursion for z, and a,

Tp4l = 0p + Yn-H(an) = Dnp

Let B denote the present value at the beginning of period 1, of all costs that are

incurred during periods 1,..., N + 1. Then, we have

N
B = Z{]{nl{an>xn} + cnltn — 70) + Gr(an)] = CN+1TN+1-

n=1
Substituting the expression for z,, we get

N N
B = Z[I"nI{aorn} + Grlan) + (cn = ¢nt1)an = Cng1 Yos1(an)] — a1z + Z cn D,

n=1 n=1

Letting

Hn(“‘) = (Cn - Cn-H)a‘ + Gn(a) - Cn+1Eyn+l(a')

16



we have

N N
E(B) =) E[Knl{a,>z0} + Hn(az)] = 121+ D caE(Dn).
n=1 n=1

Since the second and third terms in the above equation are not affected by our
policy, we need only to minimize the first term, which is equivalent to solving the

following dynamic program:

fa(z) = minaeAz(KnI{a>x} + Jn(a))
(3.1)
Jn(a) = Hyp(a) + @E[for1(a + Yy(a) = Dy))
forn=1,2,3,...N with fy41(z) =0 for all z.

3.2 Structural Results for Safety Capacity Scheduling

The above MDP formulation provides a natural mechanism for examining the struc-
ture of the optimal safety capacity scheduling policy. We begin by treating the finite

horizon case and then extend our results to the infinite horizon average cost case.

Theorem 5 The optimal solution to (3.1) is an (s,S) policy.

Proof: The proof is exactly analogous to that of Theorem 7-1 in Heyman and Sobel

(14] and is therefore omitted. O

Although we have assumed stationary demand and cost functions, we note that
this is not necessary. Heyman and Sobel’s proof allows nonstationary demand, as
long as periodic demands are independent, and nonstationary costs, as long as fixed
costs are monotonically decreasing with the period index. An entirely analogous
proof can be used to extend the above theorem to the nonstationary case.

We can extend our structural results to the infinite horizon discounted case with

the following

Lemma 3 f,(z)— f(z) asn — o for all z.
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Proof: The proof is omitted.

Since the f(-) functions inherit the structure of the f,(-) functions, the optimal
policy in this infinite horizon case is also (s, 5).

We can also extend our results to the average cost case as follows. Letting w(z)
denote the relative value function (i.e., w(z) = lima—o f(z)), and ¢ denote the gain

rate, we can state the following

Lemma 4 There exist a bounded function w(z) and a constant g such that for all x
w(@)+ g = min (K 1oz + H(@) + Elwla+ Y(@ - D)} (32)

where H(a) = G(a) - cEY(a).

Proof: By Corollary 2.5 in Chapter V of Ross [21], it is enough to show that there
exists a state that is reachable from any other state. Let k = argmin{r; : r; > 0}.
That is, k£ is the minimum possible demand. Then, clearly the state ¢ — k can
be reached from any other state because of the assumption that maximum possible

production is greater than minimum possible demand. O

Therefore, the average cost case also inherits the (s,S5) structure and we have

proved the following:

Theorem 6 The optimal solution to (3.2) is an (s,S) policy.

3.3 Optimality of “Order-Up-To” Policies

In this section, we prove that the “order-up-to” policy assumed for regular time up
to this point is indeed optimal for the infinite horizon problem. To do this, we begin
by considering an N period problem. In each period there are two decisions to make;
first the decision maker must choose the quantity to produce in regular time, then,
after observing demand, he/she must decide whether or not to use safety capacity

and how much to produce/order.



We formalize our model by defining f,(z) to be the expected cost from the
beginning of regular time in period n through the end of period N discounted back
to period n, given that there are z units on-hand at the beginning of the period.
Similarly, we let 8,(z) be the expected discounted total cost from the end of regular
time in period n after demand has been realized and the net inventory position is

z. We can write

Ba(2) = Wit {Knl{a>) + cala = 2) + Gal0) + fri1(a)} (3.3)

Because we are not restricted to an order-up-to policy, the decision variable at
the beginning of regular time is the quantity we attempt to produce (note that we

may not achieve this target), which we denote by 2. Hence we can write

ful@) = min [ [ Buay-0)fp)duoluldut(1-Fo(2)) [ Bulatz-u)fp(u)du
(3.4)

Lemma 5 There exist numbers @, such that in period n, the optimal regular time

policy is to bring the inventory up to Q.

Proof: We proceed recursively on n, first showing that and (,(z) is K,-convex
(see [14] for a summary of the properties of I '-convex functions), then using this
to demonstrate the existence of @, and finally using @, to continue the recursion
by showing that f,(z) and Br-1(z) are K,_;-convex. We initiate the recursion by
letting fy4+1(z) = 0, which is obviously K'n4;-convex and, along with (3.3), implies
that Oy41(2) is K'n4q(z)-convex.

Now, suppose that f,(z) is K,-convex. Since a A'-convex function is continu-
ous and differentiable everywhere except at most a countable number of points (see
[14]), it follows that that the integral inside the minimization in (3.4) is differen-
tiable. Differentiating this expression with respect to z yields the following first

order optimality condition:
(1= Fp(z / Bulz + 2 = u)fp(u)du = 0 (3.5)
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There are two possibilities for satisfying (3.5). Either z = oo, so that 1 = Fp(z) = 0,

or

2 [ 8uta 2 - whiplwiu =0 (3.6)

So, either @, = oo, which is trivially order-up-to, or we choose @, such that it
satisfies £ [5° B.(Qn — u)fp(u)du = 0 and achieves the global minimum of the
function in (3.4). In this second case clear that 2* = @), — z, and hence the optimal
policy is to try to bring the inventory level up to @,, provided that z < @.

Now to continue the recursion, note that because f,(z) is K, convex and the
optimal policy is order-up-to, (3.4) implies f,(z) is K,-convex. Let J,_q(a) =
Gn-1(a) + fa(a) + cn-1(a). Then, we have §,_1(z) + ¢p—17 = mings{Kn-1le5z +
Jn-1(a)}. Since fn(a)is K,—convex, then J,_(a) is K';-convex, and hence K,_;-
convex, since K,_; > K,. Hence, by Lemma 7-2 of Heyman and Sobel, 8,_1(z) +
¢n-1z will be K,_;-convex, and hence f,_y(z) is /{,_;-convex. The result follows
by induction. O

Notice that the above lemma does not say anything about the optimal policy
for the case where z > @,. It is possible that the optimal policy would order
up to some other inventory level corresponding to a local minimum. However, the
following results allow us to conclude that, provided we start with a sufficiently
small initial inventory level, the optimal policy in the infinite horizon case will truly
be “order-up-to.” Of course, if we can discard inventory at no cost, then the finite-

horizon optimal policy will be “order-up-to” as well.

Theorem 7 The optimal policy is specified by numbers @, Sn, sn such that reqular
time production in period n attempts to bring inventory to Q,,, and safety capacity is
used to bring inventory up to S,, if after demand s revealed, the inventory position

is below s,. Furthermore, s, < S, < Qn41.

Proof: The regular time result follows directly from Lemma 5. The proof of the
(s,5) property is identical to that of Theorem 5. To prove that Qn > Sy, suppose

not, i.e., assume that for some n, S, > Q,4+1. When safety capacity is used at r,
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(i.e, when z < s,), we have 3,(z) = Ny +cn(Sn—2)+ Gn(Sn) + frs1(Sn). However,
if we compare this to the policy that brings inventory up to Q,4+; whenever excess
capacity is used, we find that the cost becomes ,@n(z) = Ky + cn(@Qnt1 — 2) +
Gn(@Qn+1) + fa+1(@ns1). Since Qn4y is the optimal order-up-to point for regular
time period n+1, fot1(Qn+1) < fat1(Sn). It is easy to show that foreach n, @, 2 0,
hence G, (S,) > Gn(Qns1). Finally we have ¢,Qny1 < €2Sn, 50 B.(z) < Bn(z). But

this is a contradiction; hence we have shown that s, < 5, < Qn41. O

In a similar fashion to that used to demonstrate Lemma 5 and Theorem 7, we can
derive results for the infinite-horizon and average-cost cases. The infinite-horizon
optimal policy inherits the structure of the finite horizon optimal strategy and hence

is also “order-up-to.” Specifically, this leads to the following

Theorem 8 The optimal policy to the infinite horizon average cost inventory con-
trol/safety capacity scheduling problem is specified by numbers Q, S, s such that
regular time production attempts to bring inventory up to @, and safety capacity is
used to bring inventory up to S if, after demand is revealed, inventory position is

below s. Furthermore, s < S < Q.

This Theorem implies that if z,, < @ (where z, represents the inventory level
in period n) then, since s < § < @, we are guaranteed that z,,; will be less than
Q. Hence, as long as z; < @, the optimal policy will be to order up to @ in period

n for all n.

3.4 Computational Issues

The above results imply that we can restrict attention to policies of the form R =
(@,s,5), where @, s, and S are defined in Theorem 8. To develop an expression for

computing the average cost of policy R, let

¢ = inventory at end of regular time after demand has been revealed

y = inventory after safety capacity has been used
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so that
S, ifz<s
y =
z,ifz>s
and let yr(z) represent the value of y specified by policy R.

Using our discrete approximations of production and demand distributions

Pr{regular time production capacity = i}

Di

d; Pr{demand = j}

we can define transition probabilities for an MDP whose decision epochs are at the

end of regular time as

gr(1,3) = Pr{z, = jlyn-1 =1}
Q-i o
= D pedigk; + ) pedg-;
k=0 k=Q-i+1
Notice that j can take on values {—o0,...,@}. In practice, of course, we would have

to truncate the state space at some minimum allowable inventory level. However,
we will ignore this implementation issue in order to keep our presentation simple.
We can now express the one-period cost of having z at the end of period n and

y at the beginning of period n + 1 as

‘)’(IL‘, y) = IfI{y)::} + C(y - .’L’) + G(y)

Letting
YR(z) = v(z, yr(2))

represent the one-period cost of using policy R in state z, can now write the recursion

to compute the average cost of using policy R. denoted by gg, as

QR
vr(#) = yR(z) = gr+ Y qrlyr(z),j)vr(j), z €1 (3.7)

)=—
where I denotes our state space (i.e., set of allowable inventory levels at the end of

regular time) and Qg denotes the quota under policy R. We also need a normalizing
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condition, such as

v(S5)=0 (3.8)

to give us a well-defined system of equations.
To implement a policy improvement algorithm we want to check whether there
exists some policy R’ such that

Qr
vr(z) - gr+ Y, qr(yr(z),5)vR(j) < vr() (3.9)

j=-o0
for some z € I, where vg and gg have been computed for some policy R using (3.7).
If this is the case, then policy R’ is better in state z than policy R.

The standard policy improvement algorithm for Markov decision processes does
not make use of the special structure of the optimal policy, and indeed is not even
guaranteed to terminate with a (@,s,S) policy. Our previous results guarantee
that there is an optimal (@, s, §) policy but not that all optimal policies are of this
form. Therefore, we would like to modify the policy improvement algorithm to only

consider (@, s, S) policies. To do this, we make the following observations:

(A) If we alter R by increasing (decreasing) s by one, then yr(z) and yr(z) change
only for z = s + 1 (z = s). This means that an increase (decrease) in s can
satisfy (3.9) only for state s+ 1 (s). If no improvement is possible in this state,
s is optimal for the current values of Q and S. (Note that if altering s to s+1
(s—1) results in the same value for state s+ 1 (s) as before, then we also need

to check the effect of changing s to s +2 (s — 2), and so on.)

(B) If we alter R by adding A (where A is positive or negative) to S, we do not
change yg(z) and vgr(z) for z > s. However, we change yr(z) and ygr(z) for
all z < s as follows:

yrlz) = S+6

Yri(z) = KN+c¢S+A-z)+G(S+4)
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Hence, for R’ to satisfy (3.9) in state z < s requires

Q Q :
YR(2)-gr+ Y qr(yr(2),i)vr(j) < 1R(z)-gr+ Y qr(yr(2),7)vR(5)

j=—oc0 j=—o00

Since we only altered S and did not alter @, gr/(.) = ¢r(.) and we have

K+ce(S+A-2)+G(S+A)-ygr
Q
+ ) r(S+A,5)r(j) < K+¢(§-2)+G(S)-gr

j==-00

Q
+ Y 4r(5,7)vR()-

jm—00
Since (3.10) does not depend on z (the cz terms on both sides cancel), if this
condition is satisfied for any r < s, then it is satisfied for all z < s. Hence,
we can determine whether S is optimal for the current values of s and @ by

checking (3.9) for a single value of z, say ¢ = s.

(C) It is straightforward to show (in a similar manner to Lemma 5) that given an
(s,S) policy is being used during overtime, the optimal policy during regular
time is an order-up-to policy. Hence, we can look for an improved policy, R,
by checking whether there exists a quota @’ that improves cost (i.e., satisfies
(3.9)) for all states z. If we alter R by changing Q to @', then the ggr(1, j) values
change, which affects the condition in (3.9). However, note that since s and S
are the same under R and R’, we have yp/(z) = ygr(2), and, yr/(z) = yr(z).

Hence, in this case condition (3.9) becomes

Q' Q
> ar(yr(2),J)vR() < Y. qr(yr(z),i)vR(s) (3.11)

j==0c J=-c

Note that for all z < s, (3.11) results in the same inequality since yp(z) =
yr(z) = S if ¢ < s. However, if r > s, then we obtain different equations for
each z value. Hence, we need to search over the set of all possible values for

the quota to find out if there exists a Q' that results in an improvement for
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each value of z > s, and a single value of z < s. If we can not find a value of

@' resulting in an improvement for all z, then the current @ is optimal.

Using the above observations, we can specify an algorithm as follows. Start with
an arbitrary (Q,s,5) policy. Use results (A) and (B) to modify s and S until they
are optimal for this value of . (Notice for a given @, we need only consider states
t = s and r = s + 1 to check the optimality of s and only a a single state, 2 when
checking the optimality of S.) Now look for a value of ) that improves the cost in
all states z. As we argued above, for any s and S, the optimal regular-time policy is
order-up-to, so it is not possible that a policy that uses different () values in different
states r can produce a lower average cost than one using the same () in every state.
If no better @ value can be found, then the current policy is optimal. If a better Q
is found, then change @ and continue the algorithm by finding the optimal s and
S values for the new @. Since this algorithm finds values of @ that reduce average
cost in each iteration, it is not possible to cycle. Therefore, provided the @ values
are restricted to a finite set (e.g., a grid consistent with the discretized distributions
for production and demand), this algorithm will terminate finitely.

The above outline of an algorithm is presented to illuminate the structure of
the computational problem, not as an efficient methodology. Clearly, because of the
requirement to evaluate (3.7) at each policy improvement iteration, the algorithm is
far less efficient than modern algorithms for computing (s, S) policies (e.g., [10] and
[25]). These algorithms use a renewal approach for computing the average cost of
an (s, ) policy, where renewals occur each time an order brings the inventory level
up to S. Because the inventory level only decreases between orders, the system of
equations that must be solved to compute average cost are triangular and can be
solved efficiently. In our problem, the inventory level can increase between decision
epochs even when safety capacity is not used, due to the intervening regular time
production period. Hence, a renewal approach to computing the cost of a (Q, 5, s)
policy does not result in a triangular system of equations and is therefore much more

expensive to solve. It remains to be seen whether an efficient renewal approach is
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possible for the situation treated in this paper.

3.5 State Dependent Demand

Up to this point, we have assumed that demand is independent of the net inventory
level. However, this may not be true in some realistic cases. If the plant has a
large positive inventory, for example, the sales department may increase its efforts
to increase the sales. Alternatively, in the case where the demand is generated by
a downstream plant, a poor production week may induce the downstream plant to
obtain more of its supply from other sources. In either case, it is reasonable to
assume a demand function D(a) such that ED(a) is increasing in a. In this case,

we can formulate the following dynamic problem to replace (3.1).

falz) = ggi/{lz{lfnf{an} + Hn(a) + E[fa1(a + Ya(a) = Dn(a))]} (3.12)

forn=1,2,3,....N with fy41(z) =0 for all z and

Hu(a) = (¢n = cnt1)a + Gr(a) = cat1 E[Yn(a)] + crs1 E[Dr(a)]

Theorem 9 If E[D(a)] is convez in a, then the optimal solution to (3.12) is an

(s,S) policy.

Proof: The proof is similar to the proof of Theorem 5.

3.6 A Special Case

Lastly, we consider a special case of the above model, where capacity is much higher
than demand so that for practical purposes, we can make any quota we set and

hence we make quota in every period. Then (3.2) becomes

; - fa=r1
w(z)4g= G(z)+ Fw(Q - D) fa=1z (3.13)
Gla)+ K +cla-z)+ Fw(@-D) ifa>z
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Now, clearly, we will not choose to use safety capacity when we have a positive
inventory since we make quota during regular time. Under these conditions, there
are two cases to consider, namely when b > ¢ and when b < c.

First, suppose b > ¢. Then, when we choose to use safety capacity, we will bring
the net inventory position up to 0, since the variable cost of producing a unit is less
than backlogging it once we use overtime and this has no effect on holding costs next
period. Hence overtime decision will be used when —bz > K - cz, or equivalently
when z < K/(c - b). The total cost due to this policy has three components. If
D < @, then we have holding costs, if Q < D < Q + 5—’_3:5, backorder costs are
incurred, and otherwise we have overtime costs. If we let 2(Q)) be the expected cost

of using @ as the quota and let ¢ = K/(b— ¢) then we can write:

2(Q) = [ h(Q - ) fp(z) + [§H bz - Q) fp(z) + K(1 - Fp(Q + @)+
o ez = Q) fp().

(3.14)

We can differentiate 2(Q) with respect to @) and set the result equal to 0 and solve
to get

(h+0)Fp(Q) + (¢ = b)Fp(Q + K/(b—-c)) = ¢ (3.15)

Solving (3.15) for @, we get the optimal quota.
If b < ¢, then we never use safety capacity. In this case, we get the familiar
result that

Fp(Q) = b/(b+h) (3.16)

which is the solution to the newsboy problem.
If up >> up, then this solution should provide a very good estimate of @*. If
Kp > Wp, this solution may still be close enough to serve as a starting point for the

original model (i.e., search over ) near the solution to (3.15) or (3.16)).



4 Conclusions

In this paper, we have formulated two models for determining an optimal inventory
control policy for production systems with stochastic production and demand and
have integrated this quota-setting problem with the problem of optimally using
safety capacity.

Under the assumption that safety capacity must be used when quota is not
achieved during regular time, we have derived simple expressions for the optimal
quota and have used these expressions to derive a variety of structural results,

including :
1. The optimal quota is decreasing in the fixed and variable safety capacity costs
and the inventory carrying cost and increasing in the unit profit.

2. The optimal quota increases as demand increases in the stochastic sense.

3. The optimal quota increases as production capacity increases in the stochastic

sense.

4. The optimal quota decreases with the variance of demand when the optimal
quota is greater than mean demand and increases with the variance of demand

when it is smaller than mean demand.

5. The optimal quota increases in the variance of demand when the coefficient of

variation of demand is held constant.

Under the assumption that quota shortfalls can be backlogged to the next regular
time period, we have shown that the optimal inventory control policy has an “order-
up-to” structure, and the optimal safety capacity scheduling policy has an (s, S)
structure, so that the overall policy is of a (@, s, S) type. We also gave the outline

of a policy improvement algorithm for computing the optimal (@, s, S) policy.
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