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Abstract. Recurrent events are frequently observed in biomedical studies, and often more than one type of
event is of interest. Follow-up time may be censored due to loss to follow-up or administrative censoring.
We propose a class of semi-parametric marginal means/rates models, with a general relative risk form, for
assessing the effect of covariates on the censored event processes of interest. We formulate estimating
equations for the model parameters, and examine asymptotic properties of the parameter estimators.
Finite sample properties of the regression coefficients are examined through simulations. The proposed
methods are applied to a retrospective cohort study of risk factors for preschool asthma.
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1. Introduction

In many biomedical studies, subjects may experience the outcome of interest more
than once; outcomes of this sort have been termed recurrent events. For example,
patients with cerebrovascular disease may experience repeated transient ischemic
attacks (Hobson et al., 1993), and HIV patients may experience recurrent oppor-
tunistic infections (Li and Lagakos, 1997). Other examples of recurrent events
include infections, myocardial infarctions, tumor metastases, and disease relapses/
remissions. The structure of recurrent events is that of naturally ordered multivariate
failure time data since different events ‘within’ an individual are correlated.

Often, because subjects’ health is assessed in several ways, more than one type of
recurrent event may be of interest. For example, in a study of infections following
bone marrow transplantation, it is of interest to study different types of recurrent
infections simultaneously (e.g., bacterial, fungal and viral infections). Similarly, in a
clinical trial regarding the efficacy of nutritional supplement of selenium in rela-
tionship to preventing skin cancer (Abu-Libdeh, Turnbull and Clark, 1990), it is of
interest to study the recurrence of several types of skin cancer.

As another example, consider a retrospective birth cohort study of childhood
asthma outcomes conducted by merging birth information and health administrative
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records. The recurrent events of interest are (i) hospitalizations and (ii) physician
office visits attributable to asthma. Although both event types relate to the same
disease, each has much different implications with respect to disease severity and
health care cost. Of interest is the relationship between birth characteristics (e.g.,
gender, low birth weight, various respiratory disorders) and the mean number of
hospitalizations and office visits attributable to preschool asthma.

For single-type recurrent events, there are several estimating procedures proposed in
the survival analysis literature. Conditional models (e.g., Prentice, Williams and
Peterson, 1981) and marginal models (e.g., Wei, Lin and Weissfeld, 1989) have been
proposed to analyze data with a single type of recurrent event. Following the tradi-
tional development of survival analysis, these methods are based on modeling the
hazard function. Because the mean number of events is a more interpretable quantity
than the hazard in the context of recurrent event data, some authors have proposed to
model the mean function (e.g., Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin
et al., 2000). Pepe and Cai (1993) proposed semi-parametric procedures for making
inferences about the mean function without the Poisson-type assumption. Lawless and
Nadeau (1995) have proposed a class of marginal means models for recurrent event
data. Lin et al. (2000) studied the theoretical aspects of these robust procedures.

Despite the progress in methodology of analyzing single-type recurrent event data,
methods for the analysis of data involving multiple-type recurrent events are limited.
Abu-Libdeh, Turnbull and Clark (1990) considered nonhomogeneous Poisson
processes with random and fixed effects, with inference based on maximum likeli-
hood. Such parametric approaches require correct specification of the underlying
within-subject correlation structure, which could be difficult to achieve with multi-
ple-type recurrent event data. Semi-parametric robust procedures would be desirable
if the underlying correlation structure is not of primary interest. The marginal mixed
baseline hazard model independently studied by Spiekerman and Lin (1998) and
Clegg, Cai and Sen (1999) could potentially be extended to accommodate multiple
event types if one is interested in the Cox (1972) type relative risk function. However,
the recurrent event mean/rate is often of more interest to investigators compared to
the hazard function. In this article, we formulate a class of semi-parametric marginal
means/rates regression models for analyzing multiple-type recurrent events data and
propose a method of inference for the mean/rate ratio parameters.

The remainder of the article is organized as follows. In Section 2, we introduce
notation, formulate the model and propose an estimating procedure for the model
parameters. In Section 3, we study the asymptotic properties of the proposed esti-
mators. We conduct simulation studies to evaluate the proposed method in finite
samples in Section 4. We illustrate the method in Section 5 by applying it to a
preschool asthma study. Finally, we provide some concluding remarks in Section 6.

2. Model and Methods

Suppose that a total of n subjects are observed over time. There are K different types
of events of interest, each potentially recurrent and subject to right censoring. We
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assume throughout that censoring occurs independently of the event processes under
consideration. Let N} ( fo dN7.(s) represent the number of events of type k at
time ¢ for subject i. Let Cy and Y,k( ) = I(Cy > s5) denote the event-type-specific
censoring time and at-risk function, respectively, where I(-) denotes the indicator
function. In practice, censoring times for different event types are usually the same
for a subject, i.e., Cy = C;, although this might not always be the case. For example,
in record linkage studies, censoring times for different event types may be different
since information sources are usually not equally up to date. The observed event
processes are denoted by Ny (¢ fo i ($)dNy (s). Let Zi(t) be a p x 1 covariate
vector, which may contain external time-dependent covariates; i.e., time-dependent
covariates which are not directly involved with the failure mechanism (Kalbfleisch
and Prentice, 2002). We model the event-type k£ mean and rate semi-parametrically
by

EIN;(0)|Zi] =g(Bo Zix) orc (1), ()
and

E[dN;.(1)|Zi(1)] = (ﬁ()TZik([))d:uOk([)7 2
respectively, where g, (¢ fo duy(s) is an unspecified baseline mean function and

By is a p x 1 vector of parameters of interest. The link function, g: # — %, with
g(+) > 0, is pre-specified and assumed to be continuous almost everywhere and twice
differentiable. Examples of possible link functions include g(x) =1 + x, g(x) = e*
and g(x) =log(l + ¢¥). Selection of an appropriate link function may be based on
prior data or the resulting interpretation of the regression parameters. Note that the
incorporation of event-type-specific parameters can be accomplished through
appropriate specification of the covariate vectors. The baseline mean functions are
allowed to be different for each event type. Since model (1) is a special case of (2), we
focus on model (2) hereafter.

Let S (s; ) = ™' S0, Yia(5)Zit (5)“'D (BT Zy (5)) for d = 0,1,2 and S (s; p) =

n YL Yi(9)Zi(5) 2V (BT Zik(s))* /2 (BT Zi(s)), where g (x) = g(x), ¢"(x) =
d'g(x)/dx" for r = 1,2, and, for a vector a, a®* = 1, a®! = a, and a®? = aa’. Also,
define Ex(s: ) = S (s: $)/S;” (5: B) and Vi(s: B) = S (s ,m/sf (5:8) —Ex(s:$)™.
The limiting values of S,(C (83 B), Ex(s; B) and Vi(s; B) are given by sk ( i B), ex(s; B) and
vk (s; B), respectively.

Analogous to generalized estimating equation methods for other types of

response data (Liang and Zeger, 1986), we specify the following estimating
equations

n K T
z—l:kz:/ zk ;I;,Z—Zklk{lek l/c( ) (ﬁ Z,k( ))d'u(]k(s)} = 0,41,
3)

where P(Yy(t)=1) >0, fork=1,...,K, and
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3 [ (M) = Y82 )} =0 n

This is in line with the estimating equations of Pepe and Cai (1993) and Lin et al.
(2000) for univariate recurrent event processes. Under the model and assuming
independent censoring, the left sides of (3) and (4) each have expectation 0. Based on
(4), we can express fiy(f) in terms of f through duy(s; ) = dN - (s )/nS ( B,
where dN - (s) = Y%, dNi(s). Substituting this expression back into (3) yields an
estimating equation for B, which is free of {,LLOk(-)},IfZI

BZus) o\
Ul k/{ /:Tzk<>> "<’”)}dN’k<)"*" ©)

The Newton—Raphson iterative procedure can be used for solving (5). For a single-
type recurrent event process with only unit increments, (5) reduces to the estimating
equation examined in Prentice and Self (1983) for the proportional intensity model.
Note that the model we propose, like that of Lin et al. (2000), can accommodate
increments of any positive size, as would occur in cost data.

Let B, denote the solution to (5). We propose to estimate p(¢) by the following
Breslow—Aalen type estimator based on the kth type event:

i) = [ AN - (5)/nS (52 B,) ®)

for k=1,...,Kand 0 <7 < 7. The mean number of type k events by time 7 for a
subject with covariate pattern Zy(-) = z(-) is estimated by [} g(B! zi(s))dfioy (s; B,)-

3. Asymptotic Properties

We assume throughout that the following set of conditions holds:
(@) {Nuk(), Yu(:), Zik(~)},{,<:1 are independent and identically distributed for
i=1,...,n
(b) P(Yi(r) =1) > 0.
(©) |Zie(0)| + [|dZie(s)| < ¢z < oo almost surely, for £ =1,...,p.
0 T
(d) Positive-definiteness of the matrix A(By) = S5, [ vi(s; Bo) s(o) (5 Bo)dptgs (s).

0
(e) Ni(7) is bounded by a constant almost surely fori=1,....,n, k=1,... K.
(f) For B € %y, where %4, is a small neighborhood about [30, ([i Z,k( ) is locally
bounded away from O

(2) sk ( ; B) and rk ( ;B), ford=0,1,2,3 and r =0, 1,2, are continuous functions
of B € %y uniformly in s € [0, 7] and are bounded on %, x [0, 7], with

(])(;ﬁ)*é‘wﬁo)(vﬁ)/é‘ﬂ, s (5: B) = “°><s;/:>/aﬁa/fﬁ
v (s; ) = 0" (s; 8) /0B, v (s;B) = ") (s; B)/OBOBT.
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where r,(:) (s; B) is defined below. Conditions (a) and (c) imply the following as n — oo

for pe %y, d=0,1,2,3and r=0,1,2:

sup [|S{”(s: B) — s (s: B)||
t€[0,7)
sup || Ry (s; B) —x(s: B) =0,
t€[0,7)
where || a || = (a”a)"/? and
=3 Yl log{gﬁ T 8;} (B1Z4 ()
0 ik
R gV (B Zi(s)) ‘
( 7ﬁ) ﬁ IZ Ylk mg(ﬁgzlk(s))a
R o .
(s:B) = a/:a/;T (51 B)

=n! Z Yi(s)Z
=1

y {gm(ﬁTz,-k(s)) B {g“)(lflfk“))r}g(ﬁg Zik(s)).

g(B"Zik(s)) g(B"Zik(s))

We summarize the asymptotic properties of ﬁn and iy (¢ ﬁn) in the following the-
orems.

THEOREM 1 ﬁn is a consistent estimator of B, (i.e., ﬁn ﬂ>ﬁ0), and \/ﬁ(ﬁn—

Bo) = Np(Opu1. S (Bo)). where S(B) = A(B)"'B(BA(B)". with A(B) defined by

condition (d) and B(p) = E{(lej1 Ulﬂk(ﬂ)) , where
[, (8B Za(s) e
Ualh) = [ {20 £ e it 1) )

with dMg(s; B) = dNi(s) = Yie(s)g(B" Zic (s))dptoi (5)-
Consistency follows from the fact that n~'{X,(B) — X,(By)} converges to a con-

cave function with unique maximizer ﬁ,,, where 0X,,(B)/0p = U,(B). Asymptotically,

1/2(ﬁ — PB,) behaves as a scaled normalized sum of independent and identically
distributed random vectors. An outline of a proof of Theorem 1 is provided in the
Appendix. Consistent estimators of A(f,) and B(f,) are given by

K T R
AB) =Y [ Vit av - () ®)
k=1
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and

®2
ﬁ sz( )) i S_A 72 S,’\
B, ﬁn = (Z/ { Tsz( ) E( 7ﬂn)}dMlk( ’ﬁn)) >

where dMy(s; B) = dNu(s) — Yik(s)gngZik(S))dﬁOk(s§ B) and fiy(#; ) is given as in
(6).The consistency of A, (B,) and B,(B,) can be shown using repeated applications of
the Strong Law of Large Numbers and Lemma 1 from Lin et al. (2000).

We now consider the limiting properties of i (Z; /fn) and W, ( ) = [Wha(2),. ..,
Wiea(1)]", where Wkn() f(.“ok(l B.) — bor(t )) for k=1,...,K. Set W(1) =
[(W1(1),..., Wg(1)]". To begin, we define an appfopriate metric on the pertinent
function space. Let fi(7) € DJ0, 7], where DJ0, 7] is the space of cadlag functions such
that fi.(-) : [0,7] — 2. Set £(¢) = [fi(¢), ... ,/x(1)]" such that f(-) : [0, 7] — #X. Define
D[O,‘L’]K to be the space consisting of such functions and, following the approach
of Spickerman and Lin (1998), equip DJ0, r]K with the metric, p(p,q) =

K
max{suple[o‘ﬂ |pr(t) — qk(t)|}k:1 for p(),q(-) € D[0,7]*. Having defined an appro-

priate metric space with respect to which convergence can be discussed, we state the
following results regarding the baseline mean estimators.

THEOREM 2 Jig(1; B,) converges almost surely to py (1) uniformly in t € [0,7], and
W.,.(1) converges weakly to a zero-mean Gaussian field in D[0,7]~, with covariance

Sunction Cov(Wi(s), Wy(t)) given by cre(s, t; By) = E[Cix(s; By) Cre(t; Bo)], with

[d ik S
c,-k(z;/;)z/o W—Fhk (; B)A ZU,g )

si (s3B)
and by (t; B) = — [;ex(s; B) o (s).
The covariance function can be consistently estimated by replacing limiting
quantities with their respective sample counterparts; i.e., c(s,#; By) can be consis-

tently estimated by its emplrlcal counterpart Cuels, 6 B,) —n’l S 1C,k( s; B,)
Ci(t;B,), where for i=1,....nand k= 1,.

Sl szk(? ﬁn) -
C,k(l, ﬁn) _/0 Sk ( 7ﬁn) Z ﬂ11 ﬁn ; (1())

where Hy(t; [f,, = fo Ex( ,ﬁn)dllOk( ﬁn)a

Oulh= | {Z”‘() Bz ”)}dM”‘( o

dMi(s; B,) = dNi(s) — Yi(5)g(By Zix(5))dtioy (5: B,), and Tigy (1; B,,) s given as in (6).
The proof of Theorem 2 proceeds by representing Wy.,(¢) as a normalized average
of independent and identically distributed random variates, applying the Cramer-
Wold Theorem (Sen and Singer, 1993), and then applying results from empirical
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processes (van der Vaart and Wellner, 1996). An outline of the proof is provided in
the Appendix.

4. Simulation Studies

Simulation studies were conducted to examine the finite sample properties of the
proposed estimators. Specifically, we simulated multiple event times for two event
types with 7 = 30,50,100 or 200 subjects. Event times were generated from the
following mixed effects marginal rates model: E[dN; (5)|Zx(s), Q] =
Qug(BeZu(s))dug(s) for i=1,....,n and k=1,2. We considered the cases:
dpgi (1) = dptgye, With gy (1) = 0.25¢ and gy (1) = 0.501, Qi = Q; ~ I'(05”, 05°),
2Bl Zi(s)) =M%, with Z; =0 and Z; = 1 for n/2 subjects each. We considered
By =0 and f, = log(2). With respect to the kth event type, the above-listed pro-
portional means model corresponds to the mixed Poisson model: ( fol dN;(5)|0;) ~
Poisson(Q;tefZiduy,); i.e., a homogeneous Poisson process (Chiang, 1980) for each
subject 7, given Q;. Employing the probability integral transform (Casella and
Berger, 1990; p. 52-54), the (¢ + 1)th type k event time for subject i is given by
Tiker1 = Tige —10g(Uiger1){Qief%dug ™', where Uiy~ Uniform(0,1) with
Tiro = 0. The study duration 7 = 5 was employed, with censoring times for each
subject generated as Cy = C; ~ Uniform(0, 7), and generated independently of both
event processes. The expected number of events per subject ranged from
1.25(Z;=0)t0 2.5 (Z;=1) for k=1, and 2.5 (Z; =0) to 5.0 (Z; = 1) for k = 2.
The random effect, Q;, for which E[Q;] =1 and V[Q/] = O'ZQ, induces positive cor-
relation among within-subject event times, with larger 62, corresponding to higher
correlation. Values of 02Q employed were 0, 0.5, 1.0, and 2.0. Note that when 02Q =0,
i.e., Q; = 1 for all i, intra-subject event times are independent.

As suggested by a referee, we also empirically assessed the efficiency of our pro-
posed semi-parametric method relative to a fully parametric approach. We estimated
the parameters 0 = 672, A1 = dugy;, 42 = djiyy, and f through maximum likelihood.
Using the multiple event-type analog of the approach described in Cook and Lawless
(2002), the likelihood contribution of subject i is given by:

o0

2 0—1,—q0n0
H SN / D aCewlpz i 40
r'(0) ’

- 0

where N;(1) = N;;(t) + Ni(2) is the total number of events for subject i up to time z.
The log-likelihood contribution for the ith individual is given by:

£ =logI'(N:(C;) + 6) —logI'(6) + ZN”‘ ) log Ay

+ BZiNi(Ci) — Ni(C;)log 0
— {N{(Cy) + 0} log{0~ ' Ciel% 0y + 20) + 1}.
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The score equations were solved using the Newton—Raphson method. The efficiency
of the proposed estimator was estimated as the ratio of the mean square error for
PmLg to that of §,.

For each parameter combination, we ran R = 2500 simulations. The degree of bias
was assessed by comparing the average value of f8, across all simulated replicates,
p,=R"! 25:1 E,[ﬂ, with the true value, f,, where /[},[1’] is the estimate of f, based on
the rth simulation (r=1,..., R). The appropriateness of the asymptotic approxi-
mation of the distribution of En was assessed by comparing the average large-sample
robust standard error estimate, SE(EW) =R ISR SE(E)L"], to the1 2ample standard

deviation of the R estimates, o(f3,) = L(R -1 Zfil(//?,[ﬂ - ﬁn)z} . The accuracy
of the normal approximation was also assessed by comparing empirical 95%

Table 1. Summary statistics for simulation studies.

ﬂO n U%J ﬁn G(ﬁn) SE(ﬂn) CPn(ﬁO) EFF(ﬂn : ﬁl\ILE)
0 30 0 0.005 0.292 0.258 0.919 0.98
0.5 -0.006 0.423 0.372 0.910 0.88
1 0.003 0.525 0.448 0.902 0.86
2 0.005 0.712 0.557 0.877 0.85
50 0 0.000 0.219 0.202 0.928 0.97
0.5 0.002 0.323 0.294 0.924 0.92
1 -0.005 0.391 0.359 0.928 0.89
2 0.009 0.538 0.455 0.896 0.81
100 0 0.002 0.144 0.145 0.954 1.00
0.5 —-0.004 0.219 0.213 0.943 0.94
1 -0.007 0.279 0.264 0.931 0.89
2 0.004 0.368 0.337 0.923 0.86
200 0 -0.003 0.103 0.103 0.948 1.00
0.5 0.008 0.155 0.153 0.941 0.97
1 0.004 0.197 0.190 0.942 0.91
2 0.006 0.254 0.246 0.941 0.84
0.693 30 0 0.704 0.243 0.224 0.921 0.98
0.5 0.700 0.399 0.346 0.907 0.83
1 0.699 0.505 0.427 0.891 0.86
2 0.692 0.677 0.537 0.872 0.86
50 0 0.692 0.182 0.176 0.934 0.99
0.5 0.697 0.309 0.277 0914 0.90
1 0.700 0.379 0.347 0.918 0.86
2 0.693 0.515 0.441 0.897 0.86
100 0 0.698 0.127 0.125 0.943 1.00
0.5 0.684 0.210 0.201 0.933 0.95
1 0.692 0.274 0.253 0.924 0.89
2 0.699 0.349 0.330 0.930 0.83
200 0 0.693 0.090 0.089 0.951 1.00
0.5 0.696 0.146 0.144 0.944 0.91
1 0.695 0.186 0.183 0.944 0.88
2 0.698 0.250 0.240 0.939 0.85
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confidence interval coverage rate, CP,(fy) = RS 1(B" —1.96 SE(B)!) <
By < B" +1.96 SE()!"), with the nominal value of 0.95. ~

Results of the simulations are presented in Table 1. For all trials, f, was
approximately unbiased for f, even for n = 30. When the sample size is small, for
example, n =30 or 50, the accuracy with which SE(f,) approximated o(f,)
decreased as the intra-subject event time correlation increased, and consequently the
95% confidence interval coverage rate also decreased as event time correlation
increased. The 95% confidence interval coverage rate increased notably when going
from n = 50 to n = 100. For a given n and ¢?, coverage probability was similar for
f =0 and f =log(2). The efficiency of the proposed regression parameter estimator
relative to the MLE ranged from 0.81 to 1.00. Generally, for fixed n, efficiency
decreased as within-subject correlation increased.

5. Application: Risk Factors for Preschool Asthma

Data used in this analysis were obtained from Manitoba Health, a provincial health
administration organization in Canada. The purpose of the investigation was to
quantify birth conditions as risk factors associated with asthma during the 04 age
interval. Details regarding data collection are available in the original article
(Schaubel et al., 1996). Briefly, a birth cohort of children born in the 1984/85 fiscal
year (April 1, 1984 to March 31, 1985) was assembled by combining three admin-
istrative databases: a birth information file, hospital separation records, and physi-
cian claims records. The birth file contained information on several factors
previously suspected of being associated with childhood asthma, including low birth
weight, prematurity, and various neonatal respiratory disorders. Dates of hospital-
izations and physician office visits for asthma were extracted, and linked with the
birth file based on a unique personal health identification number assigned to each
child at birth. Children were followed retrospectively from birth, and each was
censored some time between the attainment of ages 4 and 5.

In this study, there are two event processes of interest: (i) physician office visits
and (ii) hospitalizations attributable to asthma. Although both types of events are
related to the same underlying disease, the two processes have much different
implications in terms of implied disease severity and associated heath care costs.
Risk factors of interest include low (<2500 g) birth weight (LBW), respiratory
distress syndrome (RDS), transient tachypnea of the newborn (TTN), mild-
to-moderate birth asphyxia (ASPH-M), severe birth asphyxia (ASPH-S) and male
gender (SEX = M).

A total of 5907 physician office visits and 376 hospitalizations for asthma were
observed from the birth cohort (n = 16,207). There were 1472 children with at least 1
office visit and 207 children with at least 1 hospitalization. The number of office visits
(hospitalizations) among the children with at least 1 office visit (hospitalization)
ranged from 1(1) to 51(13). Among the adverse birth conditions studied, the most
common was ASPH-M (5.7% of children), followed by low birth weight (4.3%).
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Table 2. Risk factors for preschool asthma: physician office visits and hospitalizations.

Factors Coefficient SEy SEr Mean ratio (95% CI)
Birth weight (low(<2.5kg) = 1, normal = 0)

Office visits 0.447 0.055  0.151 1.56 (1.16, 2.10)

Hospitalizations 0.764 0.191 0.265 2.15(1.28, 3.61)
Respiratory distress syndrome (yes = 1, no = 0)

Office visits 0.982 0.068  0.204 2.67 (1.79, 3.98)

Hospitalizations 1.320 0.225 0.316 3.74 (2.02, 6.95)
Transient tachypnea (yes = 1, no = 0) 0.266 0.074 0.248 1.31 (0.80, 2.12)
Mild-to-moderate birth asphyxia (yes = 1,no = 0) 0.244 0.049  0.178 1.28 (0.90, 1.81)
Severe birth asphyxia (yes = 1, no=0) 0.664 0.064 0.243 1.94 (1.21, 3.13)
Gender (male = 1, female = 0) 0.682 0.027 0.090 1.98 (1.66, 2.36)

Transient tachypnea was experienced by 2.0% of the cohort, while severe birth
asphyxia was experienced by 1.9%. The least frequent condition was respiratory
distress syndrome, observed in 1.5% of the cohort.

A marginal means model was fitted to the above-described data using a log-linear
link function, i.e., E[N% (1)|Zu] = poe(¢)eP Z#. Covariates included in the model were
indicators for LBW, RDS, TTN, ASPH-S, ASPH-M and male gender. A model was
first fitted with distinct coefficients for each event type. The final model contained
event-specific parameters for a covariate only when the coefficient estimates were
significantly different for physician office visits and hospitalizations based on the
results of the first model. The final model contained separate coefficients for LBW
and RDS.

Mean ratios (MR = ¢#) based on the model are listed in Table 2. Both “naive”
and robust standard errors (denoted by SE, and SE,, respectively) are presented,
where the former do not account for the correlation among events for the same
subject. ASPH-S (MR = 1.94), male gender (MR = 1.98), LBW and RDS were
each associated with significantly increased mean number of asthma-attributable
physician office visits and hospitalizations. For both LBW and RDS, the effect on
mean number of hospitalizations was notably greater (LBW: MR = 2.15;
RDS: MR = 3.74) than that for office visits (LBW: MR = 1.56; RDS: MR =
2.67). The within-subject event time correlations were extremely high, as reflected by
the ratio of robust to naive standard errors, which ranged from 1.39 for LBW
(hospitalization) to 3.77 for ASPH-S. R

A smoothed estimate (loess) of the baseline rate function based on diy,(t; ) for
each event type is displayed in Figure 1. The frequency of the physician visits
increases steadily from birth, reaches a maximum at approximately age 3, and
decreases thereafter. The frequency for hospitalizations increases sharply during the
0 — 2 age interval, reaches a maximum during age 2, and decreases steadily thereafter.
The estimated baseline mean number of asthma-related physician visits and hospi-
talizations per 1000 children and the corresponding 95% confidence intervals are
plotted in Figure 2.
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Baseline rate: physician visits per 1,000 children per year
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Figure 1. Smoothed estimate of baseline rates of physician office visits and hospitalizations per 1000
children per year.

6. Discussion

We have proposed a semi-parametric marginal means/rates model for the analysis
of recurrent event data when events of multiple types are of interest. Estimating
equations for the model parameters have been proposed. Parameter estimates
were shown to be consistent and asymptotically normally distributed, with
covariance matrices which can be estimated consistently. Simulation results indi-
cate that large sample approximations to the distribution of the regression
parameter estimator are reasonable for moderate and, in some cases, very small
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Figure 2. Estimated baseline mean number of physician office visits and hospitalizations per 1000 children
with 95% confidence limits.

sample sizes. We applied a special case of the proposed model to a retrospective
cohort study, and found that several neonatal characteristics were significantly
associated with increased mean number of physician visits and hospitalizations for
preschool asthma.

The proposed model is semi-parametric in the sense that the form of the
baseline mean function is unspecified while the functional form which relates the
covariate vector to the mean is specified. An alternative would be a fully para-
metric model, as discussed in Lawless and Nadeau (1995) and Cook and Lawless
(2002). A semi-parametric model would be preferable if the investigators are
uncertain about the form of the mean function for the baseline group. Our
simulation results indicate that, when the parametric model is correctly specified,
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efficiency loss under a semi-parametric model is modest. Often in practice, it is
unlikely that the analyst would have sufficient knowledge of the event process
under study to correctly specify a parametric model, provided such a model even
exists.

The link function in the proposed model is not restricted to be in the exponential
form. Although it is widely applied, mostly due to familiarity and the availability of
statistical software, the exponential form may not accurately describe the relation-
ship between covariates and the mean. Although formal methods of comparing link
functions are not yet available, it would be possible to compare the appropriateness
of various link functions through metrics based on the error terms, Muy(z;B,),
examples of which include > Zle Mik(r;ﬁn)z and  SUPg<,<; D iy Z,Ile
’Mik(l;ﬁn)"

Our simulation results indicate that the normal approximation to the sampling
distribution of the regression parameter estimator is appropriate for moderate
sample sizes. In very small samples, the robust variance estimator for the regression
coeflicients in the proposed model is much smaller than the sampling variability and
correspondingly the 95% confidence interval coverage rate is much smaller than the
nominal value. The degree to which asymptotic approximations are appropriate in
finite samples depends on the sample size and the strength of dependence among
events within subjects. When the sample size is too small and the asymptotic
approximation does not work well, a bootstrap method (Efron, 1981) could be an
alternative.

Our proposed method assumes that the censoring and event processes are
independent. For the retrospective cohort study described in Section 4, this
assumption is reasonable, since, despite their debilitating effect and associated
health care costs, asthma episodes among children rarely result in death. How-
ever, in many other studies, this independent censoring assumption might not
hold, especially when one of the events under consideration is terminal in nature,
i.e., its occurrence precludes subsequent events. For example, if the events of
interest are hospitalizations for various diseases and if death probability increases
with the number of hospitalizations, then the estimates of regression coefficients
based on the assumption of independent censoring could be biased. As discussed
by Lawless (1995), one way to correct the problem is to explicitly model the
censoring mechanism. For single event-type, various approaches have been sug-
gested by Cook and Lawless (1997). Ghosh and Lin (2000) have considered the
non-parametric case, while Wang, Qin and Chiang (2001) have developed meth-
ods for informative censoring.
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Appendix
Proof of Theorem 1:

‘Lft )((,1513) = (21%751}25_] Z{logg(/fTZ,-k(s)) —1og(ns,£°)(s; ﬁ))}dNik(s) and A,() =
X,
note that U, (,8)0 0X,(B)/0B. We can write A,(B) = Ar..(B) + Asz.u(B), where

_ 2B Zi(s)\ (S (s:B) "
Aln - - 1 £ / { ( ﬁgZ,k( ))> 10g <S§(0)(S7 ﬁ0)> }dM[k(A 7ﬁ0)7

[ ()

Given conditions (a), (¢) and (e), by the Strong Law of Large Numbers,
Arn(B) =5 0, while

&K T;’(0>S' — log (s:#) s) =
Ar.n(B) ;/0 { i (s B) —1 (Sk ( 7/30)) ( J‘o)}dﬂok( ) = A(B).

Therefore, as n — 00, A,(B) —> A(B), which has first and second derivatives:

Kt
-2 {80 01) = et B 5 o) ).
s, (5: ) @2 ) (0))
aﬁaﬁ Z/{ (SEO)(S;ﬁ)_e"(S’I;) se (83 Bo) ¢ epor(s).

Now, evaluated at g = B, IA(B)/OB = 0,1, while —9*A(B)/0BOB" = A(B,), which
is positive-definite by condition (d). Therefore, A(B) has a local maximum at = B,.
Set Bs ={p:|| B— By ||< d} for arbitrary 6 > 0. Thus, A(B,) > A(B) for € %s,
A(By) > A(B) for p € 0A;s, where 0%Bs = {B:|| B— By ||= 6}. Using the SLLN and
continuity arguments,

| Au(B) = Au(Bo) =11 AGB) — A(Bo) |l -

Therefore, A,(By) > Au(B) for all B € &5, with A,(B,) > A,(B) when B € 0%5. Thus,
A,(B) has a maximum which is not on the boundary, implying that there is an
1nter10r point of #; which corresponds to a local maximum of A,(B). But,
A, (B)/OB = 0,51 at f = ﬁ”, meaning that ﬁ,, 1s the local maximum. Since o was
arbltrary, letting 6 — 0 demonstrates that ﬂn i Bo-_
By the consistency of ﬁ", Taylor expansion of U, (ﬁn) at = B, gives

U,(B,) = Us(B) + ﬁ A(B)l (B — Bo).

where f, lies between [3,1 and B, in #”. Since Un(ﬁn) =0, we have
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-1
B 80 = {5 V(B | VB

Setting 1,(B,) = —0U,(B)/0B" |, . and A,(B) = n~'1,(B), we have

VB, — Bo) = {Au(B.)} 'n2UL(By). (A.1)

Using arguments illustrated in the Appendix of Lin et al. (2000), it can be shown
that

sup
t€0,7]

,171/22:/0 {Ex(s; By) — ex(s; Bo) ydM (55 By)|| — O
i1

Hence, U,(f,) is asymptotically equivalent to ZkK:l Uin(By), where

n( s
Ui(Bo) = Zl / { ﬂ?)T'E()))—ek(S;ﬁo)}de(S;ﬁo)-

Since Zi (s) and g (B Z;(s)) are locally bounded for r = 0, 1,2 and Uy, (B,) is a
sum of independent and identically distributed random vectors with
E[Uk.n(Py)] = 0,x1, by the Multivariate Central Limit Theorem,

72U, (By) == Np(0p1, B(Bo)), (A2)

where
®2
o] (& fro St -wenanen) |
k=1

Set Au(B) = i) Axn(B), where Ay, (B) = 0, Axen(B), with

Akln 712/ lk
i=1

X{ (B Zu(s)) ( ‘(IfTsz(S))> }dM;k( iBo):

2(B"Za(s)) (B"Zi(s))
i e [P Z) (B0’
AAZn ZA { TZ;k( )) ( ( lk( )) ) }

X Yik (S)g(ﬁoTsz( ))dﬂOk(S)

n 1 (Q@/..
Ak3:n(ﬁ) :nflz\/o {Sk)(sa )_
i=1

S (s: B)

x(5; B)°% 2 dMy (s; By),
) (

23 Ya(s)g BLZi(s))dugr(s).

(s;B
- (S0 B)
Ak4:n(ﬁ) =n Z/O ) —Ek(S'ﬁ
i=1

SV (s; )
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By repeated applications of the Strong Law of Large Numbers and Lemma 1 of
Lin et al. (2000), Agi.,(B) and Ays.,(B) converge in probability to 0,,, while

Airn(B) = / R (s; B)diugre(s) — / v (s; B)dugy (5)

and

(@
Ath) = | {j’&» E ﬁ; ~ (s m@z}sﬁf’) (5: B (5.
K s

Now, since B, = By, and since ||B. — Bol| < [IB, — Boll.

s s:80)) " | o
Ak n ﬁ* —)/ { 5 /}0 (S/(;O) (S; ﬂZ) Sko (S; ﬁo)dﬂOk(S)

- / )(5: Bo) e (5)

[ B (1) ®2
_ Sk (55 Bo) Sk (s: Bo) ), d
/0 {S](CO)(S; ﬁO) (S](CO) (S; ﬁ0)> }Sk (Sv ﬂO) #Ok(s)

- /0r Vi (55 ﬁo)sz(co) (53 Bo)dptor () = Ax(Bo)-

Thus,

Au(B) ) Ak(Bo) = AlBy). (A3)

k=1

By the results in (A.1), (A. g) and (A.3), applying Slutsky’s Theorem (Sen and

Singer, 1993), n'/2(B, = By) = Ny(0p1, Z(By)) where Z(8) = A(B) 'B(BIA(B) .
Proof of Theorem 2: Applying a linear Taylor series expansion, followed by the

triangle inequality:
dM i (s; By)
71 Z/ lk G\, Po)
85 ﬁ()

‘ﬁ()k (4 B,) — tor (2

-1 [SI(:
n szk(s ﬁ )(ﬂn ﬂ )
Z/ S;(O 0 0

IS(O) : S(l) s B, T ~
n /0 k (s; Bo) k (s; B.) dpoi () (B, — Bo) |-

SV (s; B,)°

By the Uniform Strong Law of Large Numbers (USLLN; Pollard, 1990) and
Lemma 1 of Lin et al. (2000), the first term converges almost surely to 0 uniformly
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in t. Regarding the second and third terms, the integrals are bounded asymptotically,
as the integrands are bounded almost surely under conditions (c), (e), (f) and (g).
This, combined with the strong consistency result from Theorem 1, implies that the
second and third terms converge to 0 almost surely as n — oo. Therefore,
Tiow(1: B,) =2 11, (1) uniformly in 7. Additionally,

Wk:n([) :\/E(ﬁok([; /ﬁn) - MOk(l))
_I/ZZ/ dMl]‘ (s /30 +n1/2Hk(1§ ﬁo)T(ﬁn - ﬁo) +0p(1)

:n“/zz_:/ dMl]‘ :ﬂlzo +Hi(1; Bo) "A(Bo) ' PUL(By) + 0p(1)

=n"12 2”: Ci(t; By) + 0p(1),

i=1

where Hy(#; B) = — fo E. (s; B)diiy (s; B) and Cy(t; By) is as defined in (9). The last
equality was derived through repeated applications of the USLLN and Lemma 1 of Lin
et al. (2000). Since Wj.,(¢) behaves asymptotically as a scaled average of independent
and identically distributed random variables, convergence in finite-dimensional dis-
tributions follows from the Multivariate Central Limit Theorem, while convergence in
finite dimensional distributions of W, (-) follows from the Cramer-Wold Theorem (Sen
and Singer, 1993). Tightness of W,,(-) follows the theorem used in Example 2.11.16 of
van der Vaart and Wellner (1996) due to the boundedness of Ny (¢) for 7 € [0, 7]; hence
W.,(+) converges weakly to a zero-mean Gaussian process with covariance function

cre(s,t; Bo)- O
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