DYNAMIC TYPE MATING

Izak Duenyas
Matthew F. Keblis
and
Stephen M. Pollock
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117

Technical Report 94-17

June 1994
Revised October 1995

DYNAMIC TYPE MATING

IZAK DUENYAS, STEPHEN M. POLLOCK and MATTHEW F. KEBLIS
Department of Industrial and Operations Engineering

University of Michigan, Ann Arbor, MI, 48109

Abstract

We address an assembly problem, motivated by flat panel display manufacturing,
where the quality (or performance) of the final product depends upon characteristics of
the components to be assembled, which are not constant from component to component.
We analyze the tradeoff between the increase in the potential value of products gained
by putting off the “mating” of components exhibiting various characteristic “types”,
and the inventory costs caused by this delay in mating. We formulate this dynamic
type mating problem as a Markov Decision Process and characterize the structure of
the optimal policy for special cases. We then present a heuristic policy for a more
general case and compare its performance against the optimal policy. Computational

results indicate that the heuristic is effective for a wide variety of cases.

1 Introduction

A common feature of many manufacturing processes is the mating of two (or more) compo-
nents to produce a final product. If the performance (or quality) of the final product depends
upon certain characteristics not necessarily constant from component to component, then
it is often desirable to put off the mating operation until a “match” of components with
congruent characteristics becomes possible. Although the resulting delay in the mating of
components potentially increases the value of the (eventually) mated final products, it also

leads to a larger inventory of unmated components. Balancing the costs associated with

carrying inventory against the value of the final products presents a classical challenge to
production managers, yet the literature is surprisingly silent about this problem. In the

industries of which we are aware that have this mating problem, the policies and procedures

” or, at

for choosing when (and how) to mate components are a matter of “rule of thum
best, explored by simulation analyses of “reasonable policies” (Iyama et al., 1992).

A typical example of the dynamic mating probiem arises in flat panel display manufac-
turing where the two components are “active” and “passive” layers of an electronic display
" produced by separate machines. Because of technical constraints, it is only after two such
layers are mated that the resulting electronic “sandwich” can be cut into smaller pieces to
produce final products (i.e., “displays”). The final product is defective if either the active
or passive layer has a defect. Since the location of defects on each layer is known after an
inspection stage which occurs before the mating of the layers, each layer can be identified
as being one of a set of possible “types”, each containing defects in specific locations. The
problem is to decide which active and passive layers (if any) to mate, given the location of
known defects.

A similar problem arises in the manufacturing of ball bearings where an inner race and
outer race are assembled (along with a set of balls) to produce a ball bearing (Iyama et al.,
1992). Each produced race is accurately measured and classified into one of three size ranges
(hence “types”). High quality bearings are then produced by mating (i.e., assembling), if
possible, inner and outer races in the same size range.

Despite the importance of “type mating” in many manufacturing environments, there
are very few analytical models that address this problem. The analysis of assembly queues
(e.g., Ammar, 1980, Bhat, 1986, Bonomi, 1987, Duenyas 1994, Duenyas and Hopp, (1992,
1993), Duenyas and Keblis, 1995, Gershwin, 1991, Hopp and Simon 1989, Lipper and
Sengupta, 1987, Lee and Pollock, 1989, Saboo and Wilhelm, 1986) generally ignores the
mating problem. A common assumption in all of these analyses is that the only uncertainty
in the system is about the time when the next component will be produced; there is no

uncertainty associated with the type of component to be produced.

To our knowledge, the only analysis of the dynamic mating problem is by Iyama et
al. (1992) who investigate the effects of an ad-hoc mating strategy (waiting for a perfect
. match) on buffers and machine blocking. They do not consider other mating strategies, or

address generalizations beyond the content of ball bearing race mating.

Our approach is heavily influenced by our involvement with a. display manufacturer
where “active” and “passive” layers of a display are to be mated. In this environment
there is uncertainty with respect to the location (and number) of defects on each layer
However, there is a reasonable certainty with respect to processing times and we therefore
assume that the “active” and “passive” layers are produced deterministically at the same
rate. (Incorporating uncertainty with respect to production time as well as “type” of each

component is the subject of ongoing research).

2 Problem Formulation and Notation

We restrict ourselves to the case where two components are produced, and combined to form
a final product. For convenience, we refer to these as “left” and “right” halves, respectively.
The act of combining halves is called “mating”. We assume that both a right half and a
left half are produced simultaneously (every unit time).

When a left half is produced, it exhibits a “type” t € {1,2,...T'}, with probability I;;
type u right halves are produced with probability r,, where E?:l ly=1, and Ele ry = L
The probability that a right-half (left-half) is of a certain type is independent of the type of
previously produced left-halves and right-halves. With these assumptions, the probability of
seeing a particular “half production” output {¢,u} is l4r,. In order to measure the negative
effect of holding inventory and long cycle times, we assume that each half kept in inventory
for one time period has a cost h.

When a right half of type u is mated with a left half of type ¢, the resulting product has

a value or “improvement in quality/performance” Vy,, where

Vtu 2 0 (21)
Vit > Vi for t#u and Vi > Vi for t#£u (2.2)

Inequality (2.1) implies that all matings have some value; (2.2) shows that mating left
and right halves of the same type produces a maximum value. (For convenience, we define
a “match” to be the mating of two halves of the same type.)

When there are three or more types, we will also assume the V3, satisfy the additional
inequality

Vit + Vaz 2 Ve + Vi forall z#u,u#t,z#t (2.3)

This inequality ensures that immediately matching two halves of the same “type” is optimal.
To see this, suppose that two halves of the same type ¢ were held in inventory without being
matched. This would imply that they would eventually be mated with some other halves
(e.g., with a left half of type u and a right half of type z). However, by (2.3) this mating
would result in no greater value than matching the two halves of type ¢t and mating the
two other halves of types u and 2. Since there is a cost associated with holding inventory,
it would be better to match the two halves of type ¢t as soon as possible rather than hold
them.

Although inequalities (2.1) through (2.3) rule out some possible value matrices, they are
reasonable for a wide variety of situations including the problem that motivated this study.
In flat panel display manufacturing, the highest value is obtained when layers that have
defects at the same locations are mated. This is because once mated, a location is defective
if it has defects on either layer and the display corresponding to that location will have
to be discarded. For example, suppose each layer is to be divided into N=4 pieces. The
left ('active’) layer can be represented by a vector z of four ones or zeros denoting whether
each location is defective or not. For example z = (1,1,0, 1), represents a layer with a
defect only in the third location. The unique type number ¢(z) can then be represented as

t(z) = N, 2iz;. Conversely, given type number t, the vector z(t) is uniquely defined to be

a binary representation of t. We can similarly represent the right layer by a vector y, with
type u(y). The value of mating/matching a left half of type ¢ with a right half of type u is
then given by Vi = r1(z(t) -y(u)) + r2(N = (z(t) - y(u))), where 71 is the revenue associated
with a good display, ro is the salvage value of a defective display and (z(t) - y(u)) is the
inner-product of vectors z(t) and y(u). It is straightforward to check that when r; > rothis
value function satisfies all three inequalities.A

Other practical situations satisfying all three inequalities include those where the value
of a mated product is equal to the value of the least valuable part in the product or those
situations where parts with closer tolerances result in better fit and higher value (e.g.,
Vi = c|t — ul), where c is a constant).

Since an optimal policy immediately matches left-halves and the right-halves of the
same type, if the number of left-halves of a certain type is non-zero, then the number of
right-halves must be zero. Therefore, for each type, we only need to keep track of the
difference between the number of left-halves and the number of right-halves. This allows a
representation of the system as being in some state: a T — 1 vector, {n1,...,nr_1}, where
nt is the difference between the number of left halves of type ¢ and right halves of type t.
Since arrivals of left and right-halves occur at the same time, 23;1 n¢ = 0 and therefore np
can always be computed from the values of n; through np_;. The fundamental problem
is to determine for any given state vector (ni,no,...,nr_1), which pair (if any) of types

should be mated in order to maximize net value per unit time.

3 Optimal Policy for Two Types

In this section, we characterize the optimal policy for T = 2 (i.e., both left and right sides
exhibit only two types). The results derived in this section are used to develop a heuristic
for the case with T types in Section 5.

The problem of maximizing long-run average profits (equivalently, minimizing average

negative profits) is formulated as a Markov-Decision Process. From the argument above,

the state of the system can be represented by a T — 1 = 1 vector, i.e., a scalar. Let
g = the minimum long-run cost per period

i = the state of the system (the difference between the number of left-halves of type

1 and right-halves of type 1).
fi = the relative cost of being in state : and following the optimal policy.

To write the MDP formulation, we need to consider the case where ¢ > 1. The underlying

recursive equation is:

2h|i| + e (= Va1 + fi) + lara(=Vao + fi) + lirafis1 + lar1(=Va1 — Voo + fio1);

gt fi=ming —Vig+2hli — 1|+ liri(=Vir + fio1) + lora(=Vaz + fic1) + lirafit
lor1(=V11 — Va2 + fi-2)

In (3.4), the choice is between waiting for production of another left and right-half before
making a mating decision (the upper line on the r.h.s), or mating one left half of type 1
and one right half of type 2 (the lower line). In both cases:

a) When new parts arrive, if they are of the same type, they are matched and the
inventory level remains unchanged;

b) If the left-half is type 1 and the right-half type 2 then the state becomes i + 1;

c) If the left-half is type 2 and the right-half is type 1, then two matches are possible

(left 1 and right 1, left 2 and right 2) and the state becomes i — 1.

Letting
w(i) = hrifi +lorofi + lirofir1 + lor1 fia (3.5)
P* (i) = 2hli| — lir1 Vi1 — loraVag — lor1 (Vi1 + Vao) (3.6)
and
P~ (3) = 2hi| = ly71V1q — loreVag — l17o(V11 + Vi) (3.7)

allows (3.4) to be rewritten as

g+ fi=P*(i) + min{w(i);—Vig - 2h + w(i — 1)} fori > 1 (3.8)

(3.4)

Similarly, the equations for the cases wherei < —1,i=1,i= —1 and ¢ = 0 are:

g+ fi= P (i) + min{w(i); = Vo1 —2h + w(i + 1)} fori< -1 (3.9)
g+ f1=PT(1) + min{w(1); =Vi2 — 2h + w(0) + lor1 (V11 + Va2)} (3.10)
9+ f-1 =P~ (1) + min{w(-1); Va1 = 2h + w(0) + lyr2(V11 + Va2)} (3.11)

g+ fo=P7(0) + w(0) + lgr1 (Vi1 + Vao) = P7(0) + w(0) + lyra(Viy + Vo) (3.12)

Since the f; are the relative costs of being in state i, we can arbitrarily set fo = 0.
Equations (3.8) through (3.12) completely define the MDP formulation for the 2-type

problem. The structural form of the optimal policy is described by:

Theorem 1 The optimal policy for the 2-type mating problem is a control-limit policy re-
quiring only the state 1 and two numbers i1 > 0 and ig < 0. That is, the optimal policy is

to:
a) mate a left half of type 1 with a right-half of type 2 if i > 41;
b) to mate a left-half of type 2 with a right-half of type 1 if i < ig;
¢) wait for the next produced halves if io <1 < i5.

Proof: The proof is given in Appendix A.

It is not necessary to solve a dynamic program to obtain the optimal threshold values
i1 and i9. Since we know the structural form is a control-limit policy, it is straightforward
to derive the average cost for a given set of values of i; and i9, and to solve for the optimal
values of these thresholds by numerical methods. In particular, in the special case where
li, = r1 = p, (i.e, the “type” probabilities are the same for both sides), a closed-form

solution can be obtained for the threshold values as stated in the following theorem:

Theorem 2 Assume that ly = r1 = p. Then the optimal threshold values are given by

i =—ig= \/21)(1 —p)(V11 + Vag = Va1 = Vig) /h. (3.13)

Proof: The proof, as well as the cost resulting for a given set of thresholds is given in

Appendix B.

4 Three and More Types

In this section, we characterize the optimal policy for the case where there are three types
of left and right halves. The techniques used to prove the structure of the optimal policy
for this case is then used to characterize the optimal policy structure for more than three
types.

With three types of left and right halves, the state of the system can be represented by
n = {n1,n2, n3}, where n; again equals the difference between the number of left and right-
halves of type t. The vector n contains either one non-positive number and two non-negative
numbers or one non-negative and two non-positive numbers. Letting + denote a non-
negative, and — denote a non-positive number, there are six different situations of interest
for n, namely, {+, +,-}, {+,—,+}, {-,+ +}, {-,— +}, {= +, =}, and {+,—,-}.

For brevity, we write the MDP formulation for the first situation (the formulation for
the others is similar). Since ng = —(n; + n2), we need only represent the state in terms of

n; and ng. When ny > 0 and ng > 0,

P(n1,n9) + w(ny,no)
g+ f(n1,n2) = min P(nl - 1,n2) - Vis+ w(n1 - 1,n2) (4°14)

P(n1,ng — 1) = Vog + w(ni,ng — 1)

and g + f(0,0) = P(0,0) + w(0,0),

where

w(ny, ng) = (lir1 + lorg + l373) f (n1, n2) + liraf(ny + 1,n2) + loraf(n1, ne + 1)

+irof(n1 + 1,ne = 1) + lor1 f(n1 — 1,n2+ 1) + lar1f(n1 — 1, ng) + lgraf(n1,no — 1)
(4.15)

3
P(ni,ng) = 2h|ng+ng|+ (Y —lrsVie) — liraVao — lar1 Vi
t=1

1-Do not mate 2-Mate 1 and 3 3-Mate 2 and 3
Figure 1: The structure of the optimal policy for three types

—l3r1(V11 + Vag) — larg(Vog + Vag) forny > 0,n0 > 0 (4.16)
3
P(0,n2) = 2hlng|+ (Z—ltrtVtt) — liroVog — 13r1Vaz — larg(Vog + Va3) (4.17)
t=1

3
P(nl, 0) = 2h|n1| + (E—lt'l‘tVu) - 127‘1V11 - l37‘1(V11 + V33) - l37‘2V33 (418)
t=1

3
P(0,0) Y -tV (4.19)
t=1

Equations (4.14) through (4.19) completely describe the MDP formulation for the situ-
ation where n; > 0,19 > 0.

We now describe the optimal policy for n; > 0,n9 > 0. The structure of the optimal
policy for the other 5 situations is the same. To see this, consider n; < 0,n0 > 0,n3 < 0.
If we interchange the definition of types 2 and 3, and interchange the definition of left and
right, we arrive at the situation where ny > 0,n9 > 0. Thus, defining the structure of the
optimal policy for only one of the six situations is sufficient to define the structure for all
of them. (The details of the policies, however, are clearly not the same, since the values of
Viu might differ for each situation).

Theorem 3 below states that in each quadrant the optimal policy involves three regions

separated by two monotonic functions:

Theorem 3 The optimal policy divides the quadrant ny > 0,no > 0 into three distinct
regions defined by two functions hi(n1) and ho(ni). For any (n1,n2), if ng < hi(n1) then
the optimal policy is not to mate but to wait for the next right and left halves. Ifng > hi(n1)
and ng > ho(n1), then the policy is to mate a type 2 left-half with a type 3 right-half. Finally,
if ng > hi(n1) and ng < ho(ny), then the policy is to mate a type 1 left half with a type 3

right-half. Furthermore, hi(n1) is nonincreasing in nq and ho(ny) is nondecreasing in nj.

Proof: The proof is in Appendix C.

Figure 1 is a sketch of the structure of the optimal policy. The two monotonic functions
separate the plane into three inventory regions:

where it is optimal not to mate (Region 1); where it is optimal to mate a left half of
type 1 with a right half of type 3 (Region 2); where it is optimal to mate a left half of type
2 with a right half of type 3 (Region 3). We note that in practice, the only “reachable”
inventory positions will be either in Region 1, or on the surface of the curve separating this
region from the other two regions. This is because mating will prevent inventory from ever
reaching Regions 2 and 3.

Similar structural results can be obtained for more than 3 types. For example, consider
4 types, where all the left-sides are of types 1, 2 and 3 while the right-sides are of type 4.
The optimal policy can be shown to be a 4-region policy where the 4-regions correspond
to decisions: do nothing, mate 1 and 4, mate 2 and 4, and mate 3 and 4. Monotonicity
properties can also be obtained for the functions that separate these four regions. As
the number of types increases, the number of equations in the associated DP formulation
grows exponentially. Therefore such structural results are of limited help in obtaining
efficient solutions. In the next section, we focus on efficient heuristic solutions and test

their performance by comparison to the optimal solution.

10

5 A Heuristic Solution

The MDP formulation of the dynamic type matching problem quickly suffers from the
“curse-of-dimensionality” as the number of types increases. For example, when there are 5
types, formulating an MDP where the number of left or right sides of a certain type is at
most 40 requires over 40,000,000 states. Therefore, for realistically sized problems, solving
the MDP is not a practical solution. This leads us to consider two heuristic solutions.

The first heuristic was actually being used by our client plant at the time we became
aware of the type mating problem. The policy was to wait until the sum of the left and
right halves reach a predetermined inventory level, and then solve a transportation problem
to decide how to mate all of the available halves. The optimal inventory level at which
all halves were mated was determined by a simulation study. A small predetermined level
leads to many unprofitable matings whereas a large level produces large holding costs. One
disadvantage of this policy is that even if “matches” were available before the predetermined
inventory level was reached, the policy did not allow matching those halves. A variation
of this heuristic where halves of the same type are matched as soon as they are available
is referred to as heuristic HI. The main drawback of H1 is that it requires simulation to
decide when halves will be mated, and then solving a transportation problem every time
the parts have to be mated.

A second heuristic, H2, assigns threshold values ay, for mating each left side of type ¢
with right side of type u. If both the number of left sides of type ¢ and right sides of type u
are greater than or equal to ay,, then a left side of type ¢ is mated with a right side of type
u. This heuristic replaces the curves defining the regions of the optimal policy by simple
rectangular regions. Figure 2 shows the decision regions for both the optimal policy and
H2 for a 3-type problem. Note that for a 2-type problem, H2 is optimal.

To compute the thresholds ayy, a 2-type mating problem is solved for all possible com-
binations, t,u = 1,...,T,t # u. That is, the heuristic ignores all part types except ¢t and

u when computing ag,. To do this, the production probabilities are first conditioned on

11

mate 13

\ l e

13

do not mate

=
n
a 23 2
Figure 2: The structures of the optimal policy and heuristic H2 for three types
producing only ¢ and u:
' l /
I, = Pr{left type t produced | only left ¢t or u produced } =] —:l =1-1, (5.20)
t u
r, = Pr{ right type t produced | only right ¢ or u produced } = :_t =1-r, (521)
Tt ru

The holding costs also must be re-scaled. In a 2-type mating problem, a new left and
right half arrives every time unit, and h is the cost that each unit incurs until the arrival
of another half of either type. With more than 2 types, the expected time until the arrival
of another left half of type t or u equals 1/(l; +). Thus, each left half of type ¢ or u in
inventory incurs an expected holding cost of h/(l; + l,,) until the arrival of the next left
half of either type. Similarly, each right side of type t or u incurs expected cost h/(r¢ + ry,)

until the next arrival of either type. The rescaled holding cost is arbitrarily assigned to be

the average of these values: b/ = 20‘:’_1“) + 2(”’4'_7“). Given the conditional probabilities,
l;, r;, l;, r;, the rescaled holding cost h’, and the original values Viy, Vut, Vit, Vi, a 2-type
problem is solved to obtain the thresholds as, and ayt.

The implementation of the heuristic is straightforward. Every time a new left half and
right half is produced, left and right halves (if any) of the same type are matched. For any

t=1,...,T,and u=1,...,T, if there are at least ay, left halves of type ¢ and right halves

12

of type u, then a left side of type t is mated with a right side of type u.

H2 is at least as simple to implement in practice as H1, and the thresholds can be
computed very quickly. For problems with as many as 16 types, the computation of all of
the thresholds (which have to be computed only once) takes less than a minute on a 486
machine using a fairly unsophisticated code. Checking to see if the inventory of any type of
part has exceeded the threshold is also very simple, especially in computerized electronics

manufacturing environments.

6 Computational Results

A simulation study was conducted to test the performance of the two heuristics. Since prob-
lems with more than 4 types become extremely difficult to solve optimally, the two heuristics
were tested against the optimal policy only for problems with 4 types. We also compared
the two heuristics for typical 16-type problems arising in flat panel display manufacturing.

To test the performance of the heuristic, we chose three scenarios for the value functions,
four scenarios for the left and right side probabilities, and three scenarios for holding costs.
We tested both heuristics on all 36 combinations of scenarios.

Value Function Scenarios

Cases 1-12 represent situations where the value of the mated part gets lower as the
“difference” between the halves increases (e.g., different types correspond to different tol-
erances, and the halves with the same tolerances have the best fit). Cases 13-24 represent
situations where there are diﬁerént qualities associated with each type, and an assembled
component is only worth as much as its lowest quality part. Finally, Cases 25-36 represent
a type mating problem where “passive” and “active” plates are cut into two after being
mated. In this case, since each piece could have defects in two different locations, there are
four possible types of plates. A type 1 plate has no defects, a type 4 plate has defects on
both display locations. Similarly, a type 2 (type 3) plate is one that has a defect on its first

(second) display location. Each good display is assumed to bring in a revenue of $10, while

13

Case i, ..., V14; Vo1, ..., Vau l,l2,13,l4 h H1 H2 Optimal
V31, ooy Vaa; Va1, .0, Vag T1,72,T3,T4 (% subopt.) | (% subopt.)
1 10,8,6,4; 8,10,8,6; 0.25,0.25,0.25,0.25;
6,8,10,8; 4,6,8,10 0.25,0.25,0.25,0.25 | 0.02 9.47 (1.3) 9.57 (0.2) 9.59
2 10,8,6,4; 8,10,8,6; 0.25,0.25,0.25,0.25;
6,8,10,8; 4,6,8,10 0.25,0.25,0.25,0.25 | 0.05 9.17 (2.0) 9.31 (0.5) 9.36
3 10,8,6,4; 8,10,8,6; 0.25,0.25,0.25,0.25;
6,8,10,8; 4,6,8,10 0.25,0.25,0.25,0.25 | 0.10 8.83 (3.0) 9.05 (0.5) 9.10
4 10,8,6,4; 8,10,8,6; 0.30,0.30,0.30,0.10;
6,8,10,8; 4,6,8,10 0.10,0.30,0.30,0.30 | 0.02 8.63 (1.5) 8.74 (0.2) 8.76
5 10,8,6,4; 8,10,8,6; 0.30,0.30,0.30,0.10;
6,8,10,8; 4,6,8,10 0.10,0.30,0.30,0.30 | 0.05 8.46 (2.6) 8.66 (0.3) 8.69
6 10,8,6,4; 8,10,8,6; 0.30,0.30,0.30,0.10;
6,8,10,8; 4,6,8,10 0.10,0.30,0.30,0.30 | 0.10 8.28 (3.6) 8.52 (0.8) 8.59
7 10,8,6,4; 8,10,8,6; 0.40,0.20,0.20,0.20;
6,8,10,8; 4,6,8,10 0.40,0.20,0.20,0.20 | 0.02 9.47 (1.3) 9.57 (0.2) 9.59
8 10,8,6,4; 8,10,8,6; 0.40,0.20,0.20,0.20; :
6,8,10,8; 4,6,8,10 0.40,0.20,0.20,0.20 | 0.05 9.18 (1.9) 9.32 (0.4) 9.36
9 10,8,6,4; 8,10,8,6; 0.40,0.20,0.20,0.20;
6,8,10,8; 4,6,8,10 0.40,0.20,0.20,0.20 | 0.10 8.84 (2.9) 9.06 (0.4) 9.10
10 10,8,6,4; 8,10,8,6; 0.22,0.32,0.12,0.34;
6,8,10,8; 4,6,8,10 0.19,0.11,0.40,0.30 | 0.02 8.92 (3.0) 8.77 (4.7) 9.20
11 10,8,6,4; 8,10,8,6; 0.22,0.32,0.12,0.34;
6,8,10,8; 4,6,8,10 0.19,0.11,0.40,0.30 | 0.05 8.69 (3.8) 8.69 (3.8) 9.03
12 10,8,6,4; 8,10,8,6; 0.22,0.32,0.12,0.34;
6,8,10,8; 4,6,8,10 0.19,0.11,0.40,0.30 | 0.10 8.43 (4.6) 8.56 (3.2) 8.84
13 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.25,0.25,0.25,0.25;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.25,0.25,0.25,0.25 | 0.02 5.83 (1.7) 5.91 (0.3) 5.93
14 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.25,0.25,0.25,0.25;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.25,0.25,0.25,0.25 | 0.05 5.59 (2.6) 5.72 (0.3) 5.74
15 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.25,0.25,0.25,0.25;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.25,0.25,0.25,0.25 | 0.10 5.34 (3.6) 5.49 (0.9) 5.54
16 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.30,0.30,0.30,0.10;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.10,0.30,0.30,0.30 | 0.02 5.35 (2.0) 5.45 (0.1) 5.46
17 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.30,0.30,0.30,0.10;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.10,0.30,0.30,0.30 | 0.05 5.22 (3.2) 5.35 (0.7) 5.39
18 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.30,0.30,0.30,0.10;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.10,0.30,0.30,0.30 | 0.10 5.07 (4.2) 5.25 (0.8) 5.29
19 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.40,0.20,0.20,0.20;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.40,0.20,0.20,0.20 | 0.02 6.58 (1.5) 6.67 (0.1) 6.68
20 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.40,0.20,0.20,0.20;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.40,0.20,0.20,0.20 | 0.05 6.35 (2.3) 6.48 (0.3) 6.50
21 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.40,0.20,0.20,0.20;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.40,0.20,0.20,0.20 | 0.10 6.11 (3.0) 6.24 (1.0) 6.30
22 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.22,0.32,0.12,0.34;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.19,0.11,0.40,0.30 | 0.02 5.02 (3.6) 4.94 (5.2) 5.21
23 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.22,0.32,0.12,0.34;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.19,0.11,0.40,0.30 | 0.05 4.84 (4.7) 4.88 (3.9) 5.08
24 10,7.5,5,2.5; 7.5,7.5,5,2.5; | 0.22,0.32,0.12,0.34;
5,5,5,2.5; 2.5,2.5,2.5,2.5 0.19,0.11,0.40,0.30 | 0.10 4.65 (5.7) 4.77 (3.2) 4,93

Table 1: Results for 4-type Cases

14

Case | V11,...,V14; V21, ..., Vou l,lg, 13,14 h H1 H2 Optimal
V31, ...y Vag; Va1, .0, Vaa T1,72,73,T4 (% subopt.) | (% subopt.)
25 20,12,12,4; 12,12,4,4; 0.25,0.25,0.25,0.25;
12,4,12/4; 4,4,4,4 0.25,0.25,0.25,0.25 | 0.02 | 11.35 (1.0) 11.46 (0.0) 11.47
26 20,12,12,4; 12,12,4,4; 0.25,0.25,0.25,0.25;
12,4,12/4; 4,44,4 0.25,0.25,0.25,0.25 | 0.05 | 10.95 (2.0) 11.13 (0.3) 11.17
27 20,12,12,4; 12,12,4,4; 0.25,0.25,0.25,0.25;
12,4,12/4; 444,4 0.25,0.25,0.25,0.25 | 0.10 | 10.52 (2.9) 10.78 (0.5) 10.83
28 20,12,12,4; 12,12,4 ,4; 0.30,0.30,0.30,0.10;
12,4,12/4; 4444 0.10,0.30,0.30,0.30 | 0.02 | 10.16 (1.8) 10.35 (0.0) 10.35
29 20,12,12,4; 12,12,4/4; 0.30,0.30,0.30,0.10;
12,4,12/4; 4,444 0.10,0.30,0.30,0.30 | 0.05 9.94 (3.2) 10.25 (0.2) 10.27
30 20,12,12,4; 12,12,4,4; 0.30,0.30,0.30,0.10;
12,4,12/4; 4,4,4,4 0.10,0.30,0.30,0.30 | 0.10 9.68 (4.4) 10.10 (0.3) 10.13
31 20,12,12,4; 12,124 ,4; 0.40,0.20,0.20,0.20;
12,4,12/4; 4,444 0.40,0.20,0.20,0.20 | 0.02 | 12.96 (1.0) 13.06 (0.2) 13.09
32 20,12,12,4; 12,12,4,4; 0.40,0.20,0.20,0.20;
12,4,12/4; 4444 0.40,0.20,0.20,0.20 | 0.05 | 12.57 (1.7) 12.76 (0.2) 12.79
33 20,12,12,4; 12,12,4,4; 0.40,0.20,0.20,0.20;
12,4,12/4; 4444 0.40,0.20,0.20,0.20 | 0.10 | 12.16 (2.4) 12.39 (0.6) 12.46
34 20,12,12,4; 12,12,4,4; 0.22,0.32,0.12,0.34;
12,4,12/4; 4,44,4 0.19,0.11,0.40,0.30 | 0.02 8.93 (1.7) 9.08 (0.0) 9.08
35 20,12,12,4; 12,12,4,4; 0.22,0.32,0.12,0.34;
12,4,12/4; 4444 0.19,0.11,0.40,0.30 | 0.05 8.73 (3.1) 9.01 (0.0) 9.01
36 20,12,12,4; 12,12,4 4; 0.22,0.32,0.12,0.34;
12/4,12/4; 4,44,4 0.19,0.11,0.40,0.30 | 0.10 8.48 (4.8) 8.91 (0.0) 8.91

Table 2: Results for 4-type Cases

15

each defective one has a salvage value of $2.

Type Probability Scenarios

We consider four different scenarios for the type probabilities. They range from com-
pletely balanced situations where the probability for each type is equal to 0.25 for the left
and right sides, to more unbalanced cases where the left and right side probabilities are not
equal for any of the types.

Holding Cost Scenarios

We also consider three different holding costs ranging from a low of 0.02 to a high of

0.10.

Heuristic Performance for 36 Combinations of Scenarios

Tables 1 and 2 show that both heuristics perform well for the 36 cases. The average
suboptimality of H2 was under 1 % over the 36 cases, while the average suboptimality of
H1 was 2.8 %. The fact that H2 works so well is encouraging since it is much easier to
compute the parameters of H2: the thresholds required to implement H2 were calculated in
several seconds. By comparison, the simulation runs needed for H1 (required to compute
the inventory level at which parts are mated) took as long as 15 minutes on a 486 machine.

Interestingly, the V for which H2 performed best was for Cases 25-36 (flat panel display
problems with two displays per plate). The reason for this is the very sharp drop in value
associated with mating plates that include defects in either location. This sharp drop in
value creates an incentive to keep high inventories of active (passive) plates of a given
type in the hope that the same type of passive (active) plate will eventually be produced.
The thresholds for mating are therefore high, and a small error in estimating these high
threshold has little effect on performance. In Cases 1-24, both H1 and H2 performed worse
on average when the left and right side probabilities were different than when they were the
same. These preliminary results indicate that the performance of the heuristics depends on
both the value function and the probability vector used (with better performance when the
probabilities are balanced, and the thresholds for mating are not very low). The holding

cost does not have an appreciable effect on performance of the heuristic.

16

27 \ LS L L LA LS LE Ll
4 \
28.5 *H1® —o— -
\\ "H2" ——-
g \\\
-~ 5
E 28 \\ -
= ™~
=2 .,
o \\
& ~
[S~
& 26.6 | pa N -
o \“\
a *‘_\
~—
~—o_
x,\..
‘~‘
2+ N 4
‘\‘\.
24.5 A ' i A 1 . — ' 1
0.01 0.02 0.03 0.04 0.07 0.08 0.09 0.1

0.06 0.06
HOLDING COST

Figure 3: Performance of H1 and H2 for 16-type problem

Heuristic Performance for a Practical Example

Finally, the two heuristics were compared on a typical problem from flat panel display
manufacturing, (The example given here is very similar to ones observed in practice, al-
though the actual data was changed for reasons of confidentiality). We use N=4 displays,
which results in T=16 possible types of halves. The probability of defect in any location is
0.3, independent of defects at other locations. A display is worth $10 if it has no defects
on either of its halves. Therefore mating defect-free “passive” and “active” halves is worth
$40. On the other hand, mating an active plate that has a defect in the location of the
third display with a passive plate that has defects in the location of the second and fourth
displays will result in production of only one nondefective display (in the location of the
first display) and the total mate is worth only $10.

Since this problem has 16 types, it cannot be solved to optimality using dynamic pro-
gramming. Even if the maximum inventory of a given type were limited to be at most
40, there would be over 10%® states in the MDP. Figure 3 shows the performance of H2
and H1 as a function of h. For all of the holding cost values displayed, H2 outperforms H1.

Before implementing a variation of H1 our client plant had considered mating plates as they

17

became available, and not holding any in inventory. For this example problem this policy
would result in an average profit of $19.6 per unit time, which is roughly 30 % below the
profit that H2 achieves, and 25 % below the profit achieved by H1. The actual improvement

observed by our client plant when they used H1 was similar.

7 Conclusions and Further Research .

In this paper, we formulated a dynamic type mating problem that arises in many manu-
facturing environments including flat panel display manufacturing. We provided structural
results and presented two effective heuristics for this previously unaddressed problem. The
first heuristic (H1) has already been implemented in practice. However, the second heuristic
(H2) is simpler to implement and initial results indicate that it is potentially more effective
than H1. Further research is needed to test the effectiveness of these and other heuristics
on larger scale problems.

Further research is needed to derive structural results and heuristics for more general
value functions than those considered here. When matching parts of the same type imme-
diately is no longer optimal, the problem becomes much more difficult, and does not seem
to have an easily identifiable structure. It is possible to implement a version of H1 in this
case which would wait until N halves are produced, and once again use the transportation
algorithm to decide how parts will be mated. In this case, matching would not be allowed
(until all N parts are produced). The performance of this and other possible heuristics
needs to be investigated.

Further research should also address the case where there is uncertainty with respect
to the time of arrival as well as the type of the next subassembly. This is a more difficult
problem than that addressed here and the structure of the optimal policy seems to be very

complicated even in the case of only two types.

Appendix A:

To prove Theorem 1, we first present the following lemmas:

18

Lemma 1 If the following three conditions hold:
1a) w(i+1) = 2w(@) +w(@i—1) >0 for alli>1,i < -1
1b) w(2) - 2w(1) +w(0) > ~lor1 (V11 + Vao)
Ic) w(=2) = 2w(-1) + w(0) = —hro(Vi1 + Va2),
the optimal policy for the 2-type matching problem is the “control-limit” policy:
a) mate a left half of type 1 with a right-half of type 2 if i > iy > 0,
b) mate a left-half of type 2 with a right-half of type 1 if i < iy <0, and

¢) wait for the next produced halves if i9 < i < 4;.

Proof: Suppose that, for some finite : > 1, the optimal decision is to mate a left-half of
type 1 and a right-half of type 2. Note that such a finite : will exist, since otherwise f; = oo
Vi, which contradicts optimality of f; compared to any arbitrary finite-i matching policy.

Then, by (3.8),

w(i) > -Vig—2h+w(i—1) (A1)
Rewriting condition (1a) as w(i +1) —w(i) > w(i) —w(: — 1), and adding this to (A1) gives
w(i + 1) > =Vio — 2h + w(i). By (3.8), this implies that the decision is to mate in state
i + 1. The proof for the case where ¢ < —1 is analogous.

Suppose that the decision is to mate in state i = 1. Then, by (3.10), w(1) > —Vi2—2h+
lor1(V11+ Vag) +w(0). Writing condition (1b) as w(2)—w(1) > w(1) —w(0)—lor1 (V11 + Vae),
and adding these two inequalities results in w(2) > —Vi9—2h+w(1). By (3.8), the optimal
decision is to mate also in state 2. The argument for states i = —1 and ¢ = 0 is the same.

a

Lemma 2 If and only if the w(i) satisfy (1a), (1b), and (Ic), the following relations hold

Qa) fir1—2fi+ fic120 foralli>0andi<0

19

2b) f1—2fo+ f-12>—-Vi1— Voo

Proof: We first prove that inequalities (2a) and (2b) imply (1a)-(1c)..
Consider i > 1 or i < —1. If condition (2a) holds, then condition (1a) follows immedi-

ately from (3.5). To show (1b) when (2a) and (2b) hold, we write, using (3.5)

w(2) = 2w(l) +w(0) = (I17r1 + lare)(fo — 2f1 + fo) + lira(f3 — 2f2 + f1)+
lor1(f1 — 2fo + f-1)

—lor1(Vi1 + Vo)

v

The proof that (1c) holds is similar.
To prove that the inequalities (1a-1c) imply (2a-2b), first note that we can rewrite (3.8)

as

g+ fi=PT(i) = Vig — 2h + w(i — 1) + min{w(i) — w(i — 1) + Vi + 2h; 0}
This implies that

firi—fi = PT(i+1)=P7(i)+w(i) —w(i — 1) + min{w(i + 1) — w(i) + V12 + 2h; 0}

—min{w(i) — w(i — 1) + V1o + 2h;0}.

For i > 1, P*(i + 1) — P*(i) = 2h, and we can rewrite the above expression as
fi+1 — fi = 2h + min{w(i + 1) — w(i) + Va2 + 2h, 0} + max{—Vig — 2h;w(i) — w(i — 1)}

By assumption (1a), w(i) —w(i — 1) is increasing for all i > 1 which proves that fi11—2f;+
fi—1 > 0 for all i > 1. The proofs for the other cases are similar. 0.

Theorem 1 is now proved by using those lemmas.

Proof of Theorem 1: The proof is by convergence. Consider an iterative procedure for

solving equations (3.8) through (3.12) rewritten for k¥ > 0 as

g+ fF=P*() + min{w®(); - Vig = 20 + wF(Ei - 1)} fori>1 (A2)

g+ ¥ =P (i) + min{w®(); —Va — 2h + wh(i+ 1)} fori < -1 (A3)

20

g+ ff = P+(1) + min{wk(l); —Vig—2h + wk(O) + lor1 (V11 + Vao) (A4)

g+ f¥, = P7(=1) + min{w*(-1); = Va1 — 2h + w®(0) + lyr2(V11 + Va2) (A5)

g+ f& = PT(0) + wF(0) + lor (Vi1 + Vag) = P(0) + wF(0) + liro(Viy + Vo) (46)

In addition, we write (3.5) as

wh(i) = e fF + lorof F 4 lirofE + lor FET (A7)

Begin by setting w(i) = 0 for all i. In géneral, f¥, can be computed from w*(i) through
the use of equations (A2) through (A6), and w¥ (i) can in turn be computed from f¥=! by
using (A7). Since w’(i) = 0 satisfies the condition of Lemma 1, we are guaranteed that
at each iteration the f and w values will satisfy the conditions of Lemmas 1 and 2. By

Theorem 2.2 of Hernandez-Lerma (1989), w*(i) — w(3), and f¥ — f;. The proof therefore

follows from convergence and Lemma 1. O.

Appendix B:

In this appendix, we compute the average return of the policy that mates halves when-
ever there are i; units of type 1 left and type 2 right sides or whenever there are i5 units of
type 2 left and type 1 right sides. For ease of notation, let £ = i; and y = —ig

Using these thresholds z and y, the system can be represented by a Markov chain with
z+y— 1states {-y+1,...,0,...,z — 1}. A transition from any state j to j + 1 occurs
if a left type 1 and a right type 2 is produced, an event that has probability a = lyre. A
transition from state j to j — 1 has by a similar argument, probability b = lor;. With
probability lyr; + loro, the next arriving parts will be of the same type and the system

remains in state j.

21

It is straightforward to compute 7, the long-run probability that this chain is in state

T = 1_1—(;/(5%1-(a/b)k+y—1 ifa#b (B1)

me=1/(z+y—-1) ifa=b (B2)

Since in state k there are |2k| units of inventory on hand, the average inventory in the

system, I(z,y) is:

z—1
Iay)= Y [2kl. (B3)
k=1-y

To compute the expected revenue per period, we note that in each state revenue of V13
will be earned with probability l1r1,‘ and a revenue of Voo will be earned with probability
lorg. In addition, in states k > 0, (i.e., when there are k type 1 left sides and type 2 right
sides) Vi + Vo will also be earned when the next arrivals are a left side of type 2 and
right side of type 1 (which occurs with probability b = l372). Similarly, in states k¥ < 0,
V11 + Voo will be earned with probability a. Finally, in state z — 1(—y + 1), mating will
be required with probability a(b) resulting in a reward of Vig(Va;). Therefore, the total

expected revenue per period is:

-1 z—1
V(z,y) = hriViHoroVaot(Vin+Vag) (@ Y mietb Y mi)+aVigme 1 +bVorm_ys1. (B4)
k=—y+1 k=1

The total expected return per unit time including inventory cost can then be expressed as

9(z,y) =V (z,y) — hi(z,y) (B5)

Numerical methods can be used to compute z and y.
In the special case when l; = r; = p, the Markov chain is doubly stochastic, so that
m, = 1/(z +y — 1) for all k. Equation (B3) becomes

z(z—1)+yly—1)
z+y-—1

I(z,y) =

22

and (B4) is

(Vi1 + Vao)(z +y — 2) + Va1 + Va2
r+y—1

V(z,y) = p*Vi1 + (1 — p)2Vag + p(1 — p)

Since both I(z,y) and V(z,y) are completely symmetric with respect to z and y, at the
optimal profit-maximizing value we can set x = y. Therefore, the total return as a function

of z is

(Vi1 + Voo (2z — 1) + Vo1 + Vi) 9 z(z - 1)
—2h
2¢ — 1 2z — 1

9(z) = p*Vi1 + (1 = p)*Vae + p(1 - p)

Since g is concave in x, the maximizing value can be found by differentiating with respect
to z, setting equal to 0, and taking the appropriate closest integer, the result of which is

given in (3.13).

Appendix C:

To prove Theorem 3, we first prove the following technical lemmas:

Lemma 3 The optimal policy for the 3-type matching problem is a three region policy for
each quadrant if the following conditions for the case (ny > 0,n2 > 0), and analogous

conditions for the other 5 cases, hold:
1a) w(ni + 1,n2) — w(ny,ng) > w(ny,no) —w(ny — 1,ng) forny >2.
1b) w(2,n2) — w(l,n2) 2 w(l,ng) = w(0,ng) = lor1Viy — lar1Vi1 forng > 0
Ic) w(2,0) — w(1,0) > w(1,0) — w(0,0) — r1(l2 + l3) Vi1 — l3(r1 + 7o) Va3
2a) w(ny,ng+ 1) — w(ny,ne) > w(ny,ng) — w(ny,no—1) forng >2
2b) w(ny,2) — w(ny, 1) 2 w(ny, 1) = w(ny,0) — lirgVoo — lgroVoe for ny >0
2¢) w(0,2) —w(0,1) 2 w(0,1) — w(0,0) — ro(ly + I3)Vag — I3(r1 + r2) Va3
8a) w(ny + 1,ng — 1) —w(ny,ne — 1) > w(ny,ng) —w(ny — 1,ng) forn; > 1,n9 >1
3b) w(2,ne — 1) —w(l,ng — 1) > w(l,ng) — w(0,ng) — lor1 Vi1 — lar1Vy1 for ng > 1.

23

4a) w(n; — L,no+1) —w(ny — 1,n9) > w(ny,ng) —w(ny,no—1) forny >1,ng>1
4b) w(ni —1,2) — w(n; — 1,1) > w(ni,1) — w(ny,0) — lireVag — laroVag for ny > 1
5a) w(ni,ng2+ 1) — w(ny,no) > w(ny — 1,no+ 1) —w(ny — 1,n2) forny > 1,no > 1

5b) w(1,1) —w(1,0) > w(0,1) — w(0,0) — l3r;Vaz — laraVa3

Proof: The three feasible decisions available when n; > 0,n2 > 0 are a) mating a left
half of type 1 with a right half of type 3, denoted (M13); b) mating a left half of type 2
with a right-half of type 3 (M23); and c) not-mating this period (NM). Conditions (1a-1c)
ensure that if M13 is preferable to NM in state (nj,ng), then it is also preferable in state
(n1+ 1,n2). Similarly, conditions (2a-2c) ensure that if M23 is preferable to NM in state
(n1,n2), then it is also preferable in state (n1,ng + 1). Conditions (3a) and (3b) guarantee
that if M13 is preferable to M23 in state (n1,ng), it is also preferable in state (ny + 1, ng),
while conditions (4a) and (4b) ensure that if M23 is preferable to M13 in state (n1,ns),
it is also preferable in state (ni,ng + 1). Finally, conditions (5a) and (5b) ensure that if
NM is not optimal in state (n1,ng) that it also can not be optimal in either (n; + 1,7n9) or
(n1,n2 +1).

By an argument similar to that in the proof of Lemma 1, conditions (3a-3b) and (4a-4b)
are sufficient to guarantee the existence and monotonicity of hg(.), while conditions (1a-1c),

(2a-2c) and (5a-5b) are sufficient to guarantee the existence and monotonicity of h1(.). O.

Lemma 4 Conditions (1a-5b) of Lemma 3, and the equivalent conditions for the other 5

cases, hold if and only if the following conditions hold:
1a) f(n1+1,n2) = f(n1,n2) 2 f(n1,n9) = f(n1— L,ng) forny 21,
16) f(1,n2— f(0,ng) > £(0,n9) — f(=1,ng) = Vi1 forng >0
Ic) £(1,0) = £(0,0) > £(0,0) - £(~1,0) — V11 — Va3
2a) f(n1,ng+1) = f(n1,n2) 2 f(n1,ng) = f(n1,n2—1) forng>1

24

2b) f(n1,1) = f(n1,0) 2 £(n1,0) = f(n1,-1) = Va2 forn1 20

2c) £(0,1) = £(0,0) > £(0,0) — £(0,=1) — Va2 — Va3

8a) f(n1+1,n2 —1) — f(n1,n2 — 1) > f(n1,n2) — f(n1 — 1),ng) forny > 0,ng > 1
) f(1,n2—1) = f(0,ng = 1) > f(0,n2) - f(~1,n2) = Vi1 forng 21

4a) f(n1—1,n2+1) = f(n1— 1,n2) > f(n1,n2) — f(n1,n2—1) forn; >1,n2>0
4b) f(m1=1,1) = f(n1 = 1,0) > f(n1,0) = f(n1,=1) = Vag forny > 1

5a) f(n1,n2+1) = f(n1,n2) > f(n1—1Lne+1) = f(n1 — L,ng) forny >1,ne >0
5b) £(0,1) = £(0,0) > f(=1,1) - f(=1,0) - Va3

50) f(lvO) - f(l’ _1) Z f(OvO) - f(O, _1) - V33

Proof: That if conditions (1a-5¢) for f imply the conditions (1a-5c) for w in Lemma 3 is
easily verified by using (4.15).

To prove that the conditions for w imply the conditions for f, we need to prove each
case individually. For example, to prove that condition (1a) for w implies condition (1a)

for f, we rewrite (4.14) as

g+ f(ni,n2) = P(n1,n2)+ min{w(ny,ng); =2k — Vi3 + w(ni — 1,n2); 1)

—2h = Va3 + w(ny,n2 — 1)}

since for n1 > 2,n9 > 2, P(n1,ng) — P(n1 — 1,ng2) = 2h. We can rewrite (C1) as

g+ f(n1,n2) = P(n1,n0)+ min{-2h — Vi3 + w(ny — 1,n2); =2~ — Vo3 + w(nq,ng — 1)

+ min{0, w(n1,ng) + 2h + Vo3 — w(n1,no — 1)}}
(C2)

g + f(n1,n2) = P(n1,ng) — 2h — Vi3 + w(n; — 1,n2) + ¢(n1, no) (C3)

25

where

¢(n1,n2) = min{0;-Vo3 + Vi3 + w(n1,n2 — 1) — w(n1 — 1,n2) 1)
+ min{0; w(n1, n2) + 2h + Vo3 — w(n1,ng — 1)}}.

Therefore, using (C3), we can write
f(n1,n9) = f(n1—1,n9) = w(ni — 1,ng) — w(ny — 2,n2) + ¢(n1,n2) — p(n1—1,n9) (7.22)

The term ¢(n1, ng) is increasing in n; since by assumption (5a) for w, w(n1,ng) —w(ny, no—
1) is increasing in ny, and by assumption (3a), w(ny,ng — 1) — w(ny — 1,n9) is increasing
in n1, and the minimum of increasing functions is increasing. Therefore, we only need to
show that

Z(n1,n2) = w(n; — 1,n2) — w(ny — 2,n2) — p(n1 — 1,n9)

is increasing in n1. We can rewrite Z(n1,n2) as

Z(n1,n2) = max{w(n; — 1,n2) — w(ny — 2, ng); max{Vag — Vi3 + w(ni — 1, n2) — w(n; — 1,n9 — 1);

—2h — V13}}.

The function Z(n1,n9) is increasing in n; since w(ni —1,n9) —w(ny —2, ng) is increasing
in n; by assumption (la) for w, and w(n; — 1,n2) — w(n; — 1,ny — 1) is increasing by
assumption (5a) for w. Therefore f(n1,n2) — f(n1 — 1,n2) is increasing in ny, and we have
shown that conditions (1a-5b) for w imply condition (1a) for f. The proof for the other
cases is similar. O.

We can then use Lemmas 3 and 4 in a recursive manner similar to that in the proof of

Theorem 1 to obtain a convergence argument that proves Theorem 3.

Acknowledgements:
We are grateful to Professor Hau Lee and two anonymous referees for their comments
which greatly improved the paper. We would also like to thank Professor Yavuz Bozer for

his many suggestions. This work was supported in part by Grant No: DDM-9308290 from

26

the National Science Foundation and a grant from the Center for Display Technology and

Manufacturing at the University of Michigan.

Bibliography

1]

2]

3]

5]

[6]

7]

8]

[9]

[10]

1)

[12]

[13]

(14]

Ammar, M.H., 1980. “Modelling and Analysis of Unreliable Manufacturing Assembly Networks
with Finite Storage,” MIT Laboratory for Information and Decision Sciences, Report, LIDS-
TH-1004.

Bhat, U.N., 1986. “Finite Capacity Assembly-like Queues,” Queueing Systems, Theory and
Applications, 1, 85.

Bonomi, F. 1987. “An Approximate Analysis for a Class of Assembly-like Queues,” Queueing
Systems: Theory and Applications, 1, 289.

Duenyas, I, 1994. “Estimating the Throughput of a Cyclic Assembly System,” International
Journal of Production Research 32, 1403.

Duenyas, 1. and W.J. Hopp, 1992. “CONWIP Assembly with Deterministic Processing and
Random Outages,” IIE Transactions, 24, 97.

Duenyas, 1. and W.J. Hopp, 1993. “Estimating the Throughput of an Exponential CONWIP
Assembly System,” Queueing Systems: Theory and Applications 14, 135.

Duenyas, 1. and M.F. Keblis, 1995, “Release Policies for Assembly Systems,” IIE Transactions,
27, 507.

Gershwin, S.B., 1991, “Assembly/disassembly systems: an efficient decomposition algorithm
for tree structured networks,” IIE Transactions, 23, 302.

Hopp, W.J., and J.T. Simon, 1989. “Bounds and Heuristics for Assembly-Like Queues,” Queue-
ing Systems: Theory and Applications, 4, 137.

Hernandez-Lerma, O. 1989. Adaptive Markov Control Processes, Springer-Verlag, New York.

Iyama, T., Masahiro, M., Goto, S. and Koga, T., 1992. ”A Race Matching Method for Ball
Bearing Manufacture”, Department of Mechanical Engineering, Iwate University, 4-3-5, Ueda,
Morioka 020 Japan.

Lee, H.S., and S.M. Pollock, 1989. “Approximate analysis for the merge configuration of an
open queueing network with blocking,” IIE Transactions, 21, 122.

Lipper, E.H., and B. Sengupta, 1986. “Assembly-like queues with finite capacity: bounds,
asymptotics and approximations,” Queueing Systems: Theory and Applications 1, 67.

Saboo, S., and W.E. Wilhelm, 1986. “An approach for modeling small-lot assembly networks,”
IIE Transactions, 18, 322.

27

