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Abstract. In biomedical studies, the event of interest is often recurrent and within-subject events cannot

usually be assumed independent. In addition, individuals within a cluster might not be independent; for

example, in multi-center or familial studies, subjects from the same center or family might be correlated.

We propose methods of estimating parameters in two semi-parametric proportional rates/means models

for clustered recurrent event data. The first model contains a baseline rate function which is common

across clusters, while the second model features cluster-specific baseline rates. Dependence structures for

patients-within-cluster and events-within-patient are both unspecified. Estimating equations are derived

for the regression parameters. For the common baseline model, an estimator of the baseline mean function

is proposed. The asymptotic distributions of the model parameters are derived, while finite-sample

properties are assessed through a simulation study. Using data from a national organ failure registry, the

proposed methods are applied to the analysis of technique failures among Canadian dialysis patients.

Keywords: clustered failure time data, marginal model, ordered event times, proportional rates, robust

variance

1. Introduction

In many clinical and epidemiologic studies, the event of interest may occur more
than once per subject; such outcomes have been termed recurrent events. Examples
include hospitalizations, infections, acute myocardial infarctions, and tumor metas-
tases. Since such studies are of fixed length, the experience of each subject is subject
to right censoring. Events within a subject cannot usually be assumed to be indepen-
dent. Therefore, recurrent event data represent a form of multivariate failure time
data where the event times are ordered. Moreover, in many biomedical studies, the
experience of subjects may be correlated, resulting in clustered data. For example, in
familial studies, individuals within a family may be correlated due to shared genetic
factors; in a childhood school asthma study, children from the same neighborhood
may share certain environmental risk factors (e.g., air particulate levels); or, in a
multi-center study of technique failures among patients on dialysis, patients from
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the same center may be correlated due to center-specific characteristics with respect
to practice patterns. Factors through which patients may be clustered are often
unmeasured and usually not of direct interest to the investigators.
The investigation which motivated this example is a retrospective cohort study of

technique failures (TF) among patients receiving peritoneal dialysis. Patients who
reach end-stage renal disease must either receive a kidney transplant or dialysis in
order to remain alive. Due to an increasing shortfall of donor organs, many patients
receive dialysis for the rest of their lives. Of the two main dialytic therapies, of which
the other is hemodialysis, peritoneal dialysis is less costly and associated with better
quality of life. Since funding models for renal centers differ by region, it is of great
interest to compare outcomes, such as TF, across regions. Naturally, the analysis
must account for the correlation among technique failures within the same patient.
It is likely that patients treated at the same renal center are correlated, due to
similarities in practice patterns among clinicians from the same center. In addition,
patients receiving care at the same center are likely to be from the same catchment
area, and hence more likely to share unmeasured socio-economic and clinical
characteristics. The research question regards only differences in TF rates among
regions, and does not involve the dependence structures, either within-patients or
between-patient-within-center; although, not accounting for such dependencies
could result in biased variance estimation and hence lead to erroneous conclusions.
Many methods exist for the analysis of multivariate failure times. Methods for

(i) single events for clustered subjects and (ii) repeated events among individuals
have been broadly grouped under the umbrella of multivariate survival analysis.
However, the statistical considerations for these two settings are quite different.
Within ‘multivariate survival’, many available methods can be generally classified
as ‘conditional’ or ‘marginal’. Conditional methods (e.g., the frailty model) require
correctly specifying the dependence structure and are appealing when the depen-
dence structure is of interest. Marginal models do not incorporate the correlation
structure for the purposes of parameter estimation, but account for the depen-
dence in the covariance estimation. The marginal approach is appealing for clus-
tered failure time data when the dependence structure represents a nuisance
parameter. Many such existing methods are based on modelling the hazard func-
tion (e.g., Wei, Lin and Weissfeld, 1989; Lee, Wei and Amato, 1992; Spiekerman
and Lin, 1998; Clegg, Cai and Sen, 1999). For recurrent event data, the mean and
rate function are better intuited than the hazard (intensity) function. Moreover, as
described, for example, by Lin, Wei, Yang and Ying (2000), the intensity function
requires accurately modelling the event history, which could be very complicated.
Pepe and Cai (1993) developed semiparametric methods for modelling the rate
function, with possibly distinct event number-specific baseline rates. Lawless and
Nadeau (1995) considered modelling the mean number of events, and developed
the theory for the discrete-time case. Subsequently, Lin, Wei, Yang and Ying
(2000) developed the asymptotic theory for the continuous time setting. A detailed
review of available methods for recurrent event data is provided by Cook
and Lawless (2002). Cai, Wei and Wilcox (2000) developed a class of linear
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transformation models for clustered failure time data. Glidden and Vittinghoff
(2004) examined marginal and conditional methods for correlated failure time
data, where the failure time is univariate and patients are clustered within center.
To the best of our knowledge, all existing marginal methods for the analysis of

recurrent event data assume independence among individuals, and, therefore, can-
not be directly applied to studies with clustered subjects. In this article, we pro-
pose two methods for fitting proportional rates models to recurrent event data
wherein study subjects are clustered. The proposed models are semi-parametric in
that a functional form is assumed for multiplicative covariate effects, although the
baseline rates are left unspecified, as are the dependence structures among corre-
lated events. The first model contains a baseline rate that is common across all
clusters, while the second model features cluster-specific baseline rates.
The remainder of this article is organized as follows. In Section 2, we introduce

the models and methods for estimating their parameters. Asymptotic results are
provided in Section 3, with proofs outlined in the Appendix. Since the estimation
procedures do not emit Martingale structures, results from the modern theory of
empirical processes are employed. A simulation study is described in Section 4, to
study finite-sample properties of the proposed regression parameter estimators. In
Section 5, we present an analysis of the above-described retrospective renal failure
cohort study. We compare results based on the proposed method with those from
methods which incorrectly assume various levels of independence. Concluding re-
marks are given in Section 6.

2. Models and Methods

We now set up the requisite notation. The number of independent clusters is de-
noted by n, while the number of subjects in the jth cluster is denoted by nj. For
the ith subject from the jth cluster, the cumulative number of events, as of time t,
is represented by Nij

*(t). The pertinent intensity function is given by
E½dN�ijðsÞjF ijðtÞ�, where F ij(t) is a filtration containing the event history on the
interval [0,t), F ij(t)={Nij(s);s2[0,t)}. In the context of recurrent event data, meth-
ods for analyzing the intensity function have been proposed by several previous
authors; e.g., Andersen & Gill (1982) and Lawless (1987). We consider the rate
function, E½dN�ijðtÞ�, a marginal quantity, which can be connected to the intensity
function through the relation,

E½dN�ijðtÞ� ¼ E½E½dN�ijðtÞjF ijðtÞ��:

That is, the rate function can be considered an expectation across all possible
event histories. Specifically, we propose the following proportional rates models:

E½dN�ijðsÞjZijðsÞ� ¼ expfbT
0ZijðsÞgdl0jðsÞ; ð1Þ
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E½dN�ijðsÞjZijðsÞ� ¼ expfbT
0ZijðsÞgdl0ðsÞ; ð2Þ

where dl0j(s) and dl0(s) are unspecified baseline rate functions, b0 is an unknown
parameter vector and Zij(s) is the corresponding vector covariates. Presumably,
chief interest lies in b0, with the baseline rate(s) being of secondary or no interest. As
implied, time-dependent covariates are permitted, although, in keeping with the
spirit of marginal modelling, functions of the event history would not be considered.
Lin et al. (2000) studied the independent subjects analog of (2), termed the
proportional rates model. The quantity E½N�ijðtÞjZijðsÞ; s 2 ½0; t�� always represents a
cumulative rate function. If Zij(s)=Zij, then E½N�ijðtÞjZij� is the mean function. It is
also the mean function if all time-dependent covariates are ‘external’ in the sense of
Kalbfleisch and Prentice (2002; pp. 196–200); i.e., have paths which are known at
time 0.
Events are assumed to be subject to independent right censoring and the

censoring time is denoted by Cij. Then, the observed number of events for subject
i from cluster j is given by NijðtÞ ¼ N�ijðt ^ CijÞ. It is assumed that each subjects’s
censoring time is conditionally independent of the recurrent event process given
the covariate vector, in that:

E½dN�ijðsÞjZijðsÞ;Cij > s� ¼ E½dN�ijðsÞjZijðsÞ�: ð3Þ

Although censoring is assumed to be independent of the events, censoring times
for individuals within a cluster need not be independent.
We now describe the methods for parameter estimation, beginning with model (1).

Under the set-up under consideration, clusters, not subjects, are the independent
units. It is not possible to estimate l0j(t) consistently since each cluster consists of
one independent unit. As such, for model (1), we focus on estimating the regression
parameter. In practice, whether the common or cluster-specific baseline rate model
is assumed, the regression parameter will be of primary interest. Given the condi-
tionally independent censoring described by (3), straightforward conditional expec-
tation arguments can be used to show that the following function has mean zero,

Xn

j¼1

Xnj

i¼1

Z s

0

ZijðsÞ � Zjðs; b0Þ
� �

dMd
ijðs; b0Þ; ð4Þ

where Zjðs; bÞ ¼ S
ð1Þ
j ðs; bÞ=S

ð0Þ
j ðs; bÞ, with S

ðdÞ
j ðs; bÞ ¼ n�1j

Pnj
i¼1 IðCij > sÞZijðsÞ�d

expfbTZijðsÞg for d=0,1,2, I(A) takes the value 1 when A occurs and 0 otherwise,
a�0 ¼ 1, a�1 ¼ a, a�2 ¼ aaT, for a vector a, and Md

ijðt; bÞ ¼ NijðtÞ �
R t
0 IðCij > sÞ

expfbTZijðsÞgdl0jðsÞ. We can simplify (4) such that under model (1), b0 can be
estimated by bbd, the solution to UdðbÞ ¼ 0, where:

UdðbÞ ¼
Xn

j¼1

Xnj

i¼1

Z s

0

ZijðsÞ � Zjðs; bÞ
� �

dNijðsÞ; ð5Þ

which is free of the infinite-dimensional baseline rates.
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At this point, it is worth noting that we are departing from the traditional use
of stratification. For example, Glidden and Vittinghoff (2004) give a detailed
examination of methods for the analysis of clustered failure time data. Under the
stratified-baseline marginal hazard model they consider, subjects within-cluster are
assumed independent, given that allowance is made for cluster-(in this case,
center-)specific baselines. On the other hand, we use stratification only to allow
for differences in the baseline rates; not to explain the dependence among subjects
within a cluster. In practice, suppose there are unmeasured covariates, (say, Zj)
which are either cluster-specific or correlated within cluster, but which are inde-
pendent of the measured covariates, Zij. Since Zj and Zij are independent, the
parameter corresponding to Zij, namely b0, can be estimated consistently even
though Zj is not included in the model. However, although the independence of
Zij and Zj remedies concerns with respect to bias, subjects are still not indepen-
dent within a cluster and such dependence must be captured for the covariance
estimator to be consistent. This is a fact we demonstrate in our simulation study
in Section 4 and also observe in our real-data analysis in Section 5.
Under model (2), using arguments analogous to those used to derive (5), b0 can

be estimated by bbc, the solution to UcðbÞ ¼ 0, where:

UcðbÞ ¼
Xn

j¼1

Xnj

i¼1

Z s

0

ZijðsÞ � Zðs; bÞ
� �

dNijðsÞ; ð6Þ

with Zðs; bÞ ¼ Sð1Þðs; bÞ=Sð0Þðs; bÞ and SðdÞðs; bÞ ¼ n�1
Pn

j¼1
Pnj

i¼1 IðCij > sÞZijðsÞ�d
expfbTZijðsÞg for d=0,1,2. With respect to the baseline mean, using the fact that
E½dMc

ijðt; b0ÞjZijðtÞ� ¼ 0, where Mc
ijðt; bÞ ¼ NijðtÞ �

R t
0 IðCij > sÞ expfbTZijðsÞgdl0ðsÞ

a Breslow–Aalen-type estimator (Breslow, 1972; Aalen, 1978) of l0(t) is given by:
bl0ðt; bbcÞ, where

bl0ðt; bÞ ¼ n�1
Xn

j¼1

Xnj

i¼1

Z t

0

Sð0Þðs; bÞ�1dNijðsÞ: ð7Þ

3. Asymptotic Properties

We now describe the large-sample properties of the parameter estimators for mod-
els (1) and (2), in that order, beginning with the regularity conditions for model
(1):

(a) P(Cij ‡ s)> 0, for some constant, s>0
(b) Nij(s)<g<¥ almost surely, for j=1,...,n and i=1,...,nj
(c) |Zijk(0)|+�0s|dZijk(s)| < cZ < ¥ almost surely
(d) Positive-definiteness of the matrix, Xdðb0Þ, where:
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XdðbÞ ¼ lim
n!1

bXdðbÞ

bXdðbÞ ¼ n�1
Xn

j¼1

Xnj

i¼1

Z s

0

Vjðs; b0ÞS
ð0Þ
j ðs; b0Þ

�1
dNijðsÞ;

ð8Þ

with Vjðs; bÞ ¼ S
ð2Þ
j ðs; bÞS

ð0Þ
j ðs; bÞ

�1 � Zjðs; bÞ�2.
(e) nj<j<¥.
(f) Lindeberg Condition:

n�1
Xn

j¼1
E Wd

j ðb0Þ�2IðkWd
j ðb0Þk > n1=2�Þ

h i
! 0;

for all �>0, where:

Wd
j ðbÞ ¼

Xnj

i¼1

Z s

0

ZijðsÞ � Zjðs; bÞ
� �

dMd
ijðs; bÞ: ð9Þ

Assumption (a) is a standard identifiability condition. The boundedness of the
event and covariate processes for an individual in conditions (b) and (c), respec-
tively, is necessary to bound several integrals involved in the consistency and
asymptotic normality proofs for bbd. The positive-definiteness of the second deriva-
tive matrix in condition (d) is used in the consistency proof for bbd to demonstrate
concavity of the function whose derivative generates the estimating equation for
bbd. Bounded cluster sizes in condition (e) are out of convenience, to simplify the
asymptotics. In practice, this assumption is realistic and does not pose a major
constraint. For example, in a multi-center study across several medical centers, the
number of patients each unit accepts is either implicitly or explicitly bounded due
to equipment and resource limitations. Finally, the Lindeberg-type condition, (f),
ensures that no single cluster dominates the parameter estimation.
The asymptotic behavior of the regression parameter estimator in model (1) is

summarized by the following theorem.

THEOREM 1 Under conditions (a) to (f), bbd converges to b0 almost surely, and
n1=2ðbbd � b0Þ converges in distribution to a mean-zero normal random vector with
covariance Xdðb0Þ�1Rdðb0ÞXdðb0Þ�1, with XdðbÞ defined in (8) and RdðbÞ ¼
limn!1 n�1

Pn
j¼1 E½Wd

j ðbÞ
�2�.

The asymptotic covariance can be estimated empirically by replacing limiting val-
ues with their observed empirical counterparts. The proof of almost sure conver-
gence in Theorem 1 involves several applications of the Strong Law of Large
Numbers, followed by results from convex function theory. The proof of asymp-
totic normality combines the Multivariate Central Limit Theorem with various
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applications of results from the modern theory of empirical processes. An outline
of the proof of Theorem 1 is provided in the Appendix.
We now provide asymptotic results for the parameter estimators in model (2).

Regularity conditions (a), (b), (c) and (e) are as previously-listed. We add the fol-
lowing condition:

(g) There exists s(d)(s;b) such that

sup
s2½0;s�

SðdÞðs; bÞ � sðdÞðs; bÞ
�� ���!a:s: 0;

for d=0,1,2 and all b in a compact set.

Regarding condition (d), positive-definiteness is assumed for the following matrix:

Xcðb0Þ ¼
Z s

0

vðs; b0Þsð0Þðs; b0Þdl0ðsÞ; ð10Þ

where vðs; bÞ ¼ sð2Þðs; bÞ=sð0Þðs; bÞ � zðs; bÞ�2 and zðs; bÞ ¼ sð1Þðs; bÞ=sð0Þðs; bÞ. In
condition (f), we replace Wd

j ðb0Þ with:

Wc
j ðbÞ ¼

Xnj

i¼1

Z s

0

ZijðsÞ � zðs; bÞ
� �

dMc
ijðs; bÞ: ð11Þ

We now describe the essential asymptotic results pertaining to model (2), begin-
ning with the regression parameter estimator.

THEOREM 2 Under conditions (a) to (g), bbc is strongly consistent for b0 and
n1=2ðbbc � b0Þ is asymptotically normally distributed with mean 0 and covariance
Xcðb0Þ

�1Rcðb0ÞXcðb0Þ
�1, where Xc(b) is as defined in (10) and

RcðbÞ ¼ limn!1 n�1
Pn

j¼1 E½W
c
j ðbÞ

�2�.

The proof of Theorem 2 is similar to that of Theorem 1, but simpler. We next
consider the baseline mean estimator for model (2), starting with the definition,
b/0ðtÞ ¼ fbl0ðt; bbnÞ � l0ðtÞg. The asymptotic behavior of fb/0ðtÞ; t 2 ½0; s�g is sum-
marized by the following theorem.

THEOREM 3 Under conditions (a) to (g), b/0ðtÞ converges almost surely to 0, uni-
formly in t2[0,s]; in addition, n1=2b/0ðtÞ converges weakly to a Gaussian process with
mean zero and covariance function given by r0(s,t), where:

r0ðs; tÞ ¼ lim
n!1

n�1
Xn

j¼1
E½njðs; b0Þnjðt; b0Þ�
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njðt; bÞ ¼ hðt; bÞTXcðbÞ�1Wc
j ðbÞ þ

Xnj

i¼1

Z t

0

sð0Þðs; bÞ�1dMc
ijðs; bÞ;

with hðt; bÞ ¼ �
R t
0 zðs; bÞdl0ðsÞ.

Theorem 3 can be proved by decomposing b/0ðtÞ into fbl0ðt;bbnÞ � bl0ðt; b0Þgþ
fbl0ðt; b0Þ � l0ðtÞg and applying the Uniform Strong Law of Large Numbers (Pol-
lard, 1990) and various empirical process results (van der Vaart and Wellner,
1996). A proof of Theorem 3 is outlined in the Appendix.

4. Simulation Study

Finite-sample properties of the proposed regression parameter estimators were as-
sessed through simulation. First, for each cluster, we generated a latent (frailty)
variate, Rj, inducing positive correlation among subjects within a cluster, with Rj

� Gamma (r�2R ;r�2R ). Next, a subject-specific frailty was generated, Qi � Gamma
(r�2Q ; r�2Q ) to induce correlation among the within-subject event times. Note that
E[QiRj]=1, while r2

QR � VðQiRjÞ ¼ ðr2
Q þ 1Þðr2

R þ 1Þ � 1. The magnitude of the
within-cluster and within-subject correlation increases with increasing r2

R and r2
Q,

respectively. We chose r2
R=0.25, 0.5 and r2

Q ¼ 0:5, 1.0, since, in most practical
situations, the within-subject correlation will be greater than that for between-sub-
ject. A covariate, Zij, was generated from the Bernoulli(0.5) distribution. For each
subject, the kth event time for the ith subject within the jth cluster is given by:

Ti;j;k ¼ Ti;j;k�1 � log 1�Uijk

� �
QiRjdl0 expfb0Zijg
� ��1 ð12Þ

where Uijk are independent Uniform(0,1) variates and Ti,j,0 ” 0. Set-
ting l0(t)=0.25t, 0.5t and 0.75t implies the conditional model,

E½N�ijðtÞjZij;Qi;Rj� ¼ QiRjl0t expfb0Zijg;

as well as the following marginal model:

E½N�ijðtÞjZij� ¼ l0t expfb0Zijg:

Censoring times were generated as Cij � Uniform(0,5), representing a study of
length 5 time units with randomly staggered entry times and administrative cen-
soring only. Observed events were those such that Ti,j,k<Cij and the expected
number of observed events per subject ranged from 0.625 to 1.875 for Zij=0, to
1.25 to 3.75 when Zij=1. Each data configuration was replicated 500 times.
The accuracy of the large-sample distributional approximation of bbc from model

(2) is assessed in Table 1 for n=50 and n=100, with b0 set to log(2) and cluster
sizes nj=2, nj=5 and nj=20. It can be seen that bbc is approximately unbiased for
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all data configurations. The average approximated standard error, denoted by
ASE, closely approximates the empirical standard deviation, ESD, with empirical
coverage probabilities (CP) close to the nominal value, 0.95. For n=50, slight un-
der-coverage occurs, which reduced progressively with increasing cluster size.
We next examined the setting where the baseline rates are cluster-specific by

replacing l0(t) in (12) by:

Table 1. Simulation results: common baseline rate model – bias, accuracy of asymptotic distributional

approximation.

n=50 n=100

nj r2
R r2

Q dl0(t)/dt Bias ASE ESD CP Bias ASE ESD CP

2 0.25 0.5 0.25 )0.006 0.297 0.322 0.92 0.000 0.214 0.218 0.93

0.5 0.001 0.253 0.260 0.93 0.007 0.183 0.196 0.93

0.75 )0.001 0.239 0.259 0.92 0.002 0.172 0.173 0.96

1.0 0.25 )0.007 0.339 0.376 0.92 )0.007 0.244 0.257 0.94

0.5 )0.005 0.300 0.322 0.92 0.007 0.217 0.232 0.93

0.75 )0.005 0.286 0.316 0.91 )0.004 0.210 0.215 0.94

0.5 0.5 0.25 )0.008 0.320 0.368 0.91 0.002 0.233 0.236 0.94

0.5 0.002 0.282 0.306 0.93 )0.003 0.205 0.213 0.94

0.75 )0.010 0.266 0.277 0.94 )0.003 0.193 0.203 0.94

1.0 0.25 0.013 0.365 0.394 0.94 )0.007 0.265 0.267 0.95

0.5 )0.003 0.329 0.371 0.90 )0.004 0.242 0.256 0.93

0.75 )0.009 0.316 0.342 0.91 )0.004 0.230 0.247 0.93

5 0.25 0.5 0.25 0.000 0.189 0.195 0.94 )0.001 0.135 0.140 0.94

0.5 0.000 0.162 0.163 0.94 0.001 0.116 0.119 0.94

0.75 0.000 0.151 0.152 0.94 )0.002 0.110 0.110 0.95

1.0 0.25 )0.002 0.217 0.226 0.94 0.000 0.157 0.161 0.94

0.5 )0.003 0.193 0.204 0.93 0.003 0.141 0.146 0.94

0.75 )0.009 0.186 0.197 0.93 0.004 0.134 0.136 0.94

0.5 0.5 0.25 0.006 0.205 0.228 0.92 )0.007 0.148 0.151 0.95

0.5 0.006 0.181 0.188 0.93 )0.002 0.130 0.133 0.94

0.75 0.002 0.170 0.181 0.93 0.000 0.125 0.123 0.95

1.0 0.25 )0.005 0.236 0.250 0.93 )0.012 0.170 0.176 0.93

0.5 0.007 0.213 0.221 0.93 0.007 0.154 0.159 0.94

0.75 0.000 0.203 0.220 0.92 )0.007 0.149 0.151 0.95

20 0.25 0.5 0.25 )0.004 0.095 0.097 0.94 0.000 0.068 0.069 0.95

0.5 )0.001 0.081 0.081 0.95 0.000 0.058 0.059 0.95

0.75 )0.004 0.076 0.079 0.93 0.000 0.055 0.057 0.95

1.0 0.25 0.000 0.110 0.109 0.95 )0.002 0.079 0.079 0.95

0.5 )0.002 0.099 0.099 0.94 0.001 0.071 0.067 0.95

0.75 )0.002 0.094 0.099 0.93 )0.001 0.067 0.067 0.95

0.5 0.5 0.25 0.001 0.103 0.105 0.94 )0.003 0.074 0.075 0.94

0.5 )0.002 0.091 0.097 0.93 0.004 0.065 0.067 0.94

0.75 )0.005 0.087 0.091 0.93 )0.001 0.061 0.068 0.94

1.0 0.25 )0.007 0.118 0.130 0.92 0.003 0.086 0.087 0.95

0.5 0.001 0.107 0.117 0.92 )0.010 0.079 0.074 0.94

0.75 )0.001 0.104 0.112 0.94 )0.008 0.075 0.075 0.94
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l0jðtÞ ¼ f1þ ð2nÞ
�1g�1f1þ j� n=2

n
gl0ðtÞ ð13Þ

We set b0=log(2), l0(t)=0.25t, l0(t)=0.5t and l0(t)=0.75t, with n=50 then
n=100. Under (13), the cluster-specific baseline means vary from 0.5�l0(t) to
1.5�l0(t). Cluster sizes were set to nj=5, nj=10, and a third set-up where cluster

Table 2. Simulation results: cluster-specific baseline rate model – bias, accuracy of asymptotic distribu-

tional approximation.

n=50 n=100

nj rR
2 rQ

2 dl0ðtÞ Bias ASE ESD CP Bias ASE ESD CP

5 0.25 0.5 0.25 0.007 0.208 0.228 0.93 0.010 0.150 0.150 0.94

0.5 0.014 0.171 0.179 0.92 )0.007 0.163 0.171 0.93

0.75 0.007 0.160 0.162 0.94 )0.008 0.115 0.114 0.94

1.0 0.25 0.017 0.242 0.256 0.92 0.007 0.178 0.188 0.93

0.5 )0.006 0.212 0.220 0.92 )0.008 0.155 0.161 0.95

0.75 0.008 0.201 0.206 0.92 )0.003 0.145 0.159 0.93

0.5 0.5 0.25 0.009 0.214 0.238 0.92 0.020 0.155 0.168 0.92

0.5 0.016 0.177 0.186 0.94 0.002 0.130 0.128 0.95

0.75 0.016 0.165 0.180 0.92 0.000 0.121 0.115 0.95

1.0 0.25 )0.016 0.252 0.266 0.94 0.030 0.185 0.182 0.96

0.5 )0.020 0.225 0.241 0.92 )0.007 0.163 0.171 0.93

0.75 )0.011 0.212 0.236 0.92 )0.009 0.156 0.161 0.92

10 0.25 0.5 0.25 0.014 0.137 0.139 0.93 )0.003 0.098 0.103 0.93

0.5 0.001 0.114 0.117 0.93 0.000 0.082 0.083 0.95

0.75 0.005 0.107 0.116 0.94 0.003 0.076 0.075 0.96

1.0 0.25 )0.010 0.159 0.164 0.94 0.008 0.116 0.119 0.94

0.5 )0.001 0.141 0.145 0.94 )0.003 0.102 0.104 0.94

0.75 )0.005 0.133 0.138 0.93 )0.002 0.096 0.097 0.94

0.5 0.5 0.25 0.003 0.141 0.148 0.93 )0.008 0.101 0.105 0.95

0.5 )0.011 0.119 0.126 0.91 )0.002 0.086 0.087 0.94

0.75 )0.005 0.109 0.115 0.93 )0.006 0.080 0.077 0.95

1.0 0.25 )0.009 0.168 0.178 0.93 )0.004 0.121 0.127 0.94

0.5 )0.008 0.147 0.158 0.93 0.003 0.107 0.107 0.96

0.75 0.000 0.140 0.154 0.90 )0.005 0.104 0.102 0.93

2,5,10,20, 0.25 0.5 0.25 0.005 0.126 0.126 0.94 0.009 0.090 0.092 0.94

0.5 )0.002 0.103 0.108 0.95 )0.003 0.074 0.075 0.95

0.75 0.005 0.095 0.098 0.93 0.002 0.069 0.067 0.95

1.0 0.25 0.006 0.146 0.140 0.93 )0.009 0.105 0.105 0.94

0.5 )0.007 0.126 0.135 0.92 )0.001 0.092 0.097 0.93

0.75 )0.008 0.119 0.123 0.93 )0.003 0.087 0.087 0.95

0.5 0.5 0.25 )0.004 0.127 0.140 0.91 0.002 0.093 0.093 0.94

0.5 0.011 0.108 0.114 0.93 0.001 0.079 0.078 0.96

0.75 )0.005 0.099 0.108 0.93 0.007 0.072 0.073 0.95

1.0 0.25 )0.002 0.151 0.163 0.92 )0.003 0.111 0.117 0.94

0.5 0.004 0.132 0.140 0.91 0.003 0.097 0.100 0.94

0.75 )0.006 0.126 0.132 0.93 )0.005 0.091 0.094 0.95
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size is a mixture of nj=2 (10%), nj=5 (40%), nj=10 (40%) and nj=20 (10%). We
examine the performance of model (1) in Table 2, where the average baseline
mean is denoted by l0ðtÞ ¼ n�1

Pn
j¼1 l0jðtÞ and is equal to l0(t) under (13).

Results in Table 2 indicate that bbd from model (1) is approximately unbiased, with
asymptotic standard errors which yield empirical coverage probabilities close to

Table 3. Simulation results: common baseline model – estimated variance and empirical type-I error

rates based on different variance estimators (n=100, b=0, l0j(t)=l0(t)).

100�AEV Empirical Type-I error

nj rR
2 rQ

2 dl0(t)/dt Eq. (14) Eq. (15) Thm 2 EMPV Eq. (14) Eq. (15) Thm 2

2 0.25 0.5 0.25 3.59 5.40 5.80 6.08 0.130 0.062 0.052

0.5 2.05 3.82 4.25 4.72 0.188 0.076 0.058

0.75 1.53 3.27 3.69 3.89 0.226 0.072 0.052

1.0 0.25 3.88 7.02 7.41 7.66 0.158 0.064 0.060

0.5 2.28 5.38 5.78 6.08 0.238 0.078 0.058

0.75 1.74 4.79 5.19 5.52 0.268 0.080 0.064

0.5 0.5 0.25 3.81 6.39 7.24 8.37 0.178 0.078 0.066

0.5 2.19 4.62 5.44 5.70 0.224 0.094 0.066

0.75 1.65 4.21 5.13 5.65 0.304 0.096 0.066

1.0 0.25 3.95 8.04 8.88 8.93 0.198 0.066 0.056

0.5 2.40 6.54 7.32 7.58 0.282 0.068 0.056

0.75 1.84 5.93 6.72 6.61 0.298 0.068 0.056

5 0.25 0.5 0.25 1.44 2.22 2.96 3.02 0.172 0.092 0.052

0.5 0.82 1.56 2.31 2.42 0.258 0.130 0.058

0.75 0.61 1.34 2.09 2.04 0.290 0.124 0.046

1.0 0.25 1.53 2.88 3.57 3.89 0.218 0.092 0.058

0.5 0.90 2.17 2.88 3.24 0.326 0.116 0.064

0.75 0.70 1.99 2.71 2.53 0.284 0.102 0.064

0.5 0.5 0.25 1.50 2.59 4.05 4.11 0.252 0.116 0.058

0.5 0.87 1.95 3.47 3.63 0.338 0.140 0.064

0.75 0.66 1.70 3.18 3.13 0.378 0.148 0.058

1.0 0.25 1.57 3.42 4.88 4.80 0.260 0.108 0.062

0.5 0.94 2.69 4.12 3.98 0.338 0.112 0.054

0.75 0.74 2.48 3.94 3.89 0.386 0.114 0.058

10 0.25 0.5 0.25 0.72 1.11 1.96 2.00 0.246 0.148 0.056

0.5 0.41 0.79 1.69 1.69 0.346 0.180 0.050

0.75 0.30 0.68 1.56 1.69 0.412 0.226 0.056

1.0 0.25 0.76 1.43 2.28 2.35 0.258 0.132 0.066

0.5 0.45 1.12 1.94 2.06 0.410 0.162 0.048

0.75 0.35 1.00 1.85 1.74 0.369 0.170 0.059

0.5 0.5 0.25 0.74 1.31 3.02 3.26 0.346 0.222 0.066

0.5 0.44 0.99 2.73 2.95 0.436 0.260 0.062

0.75 0.33 0.88 2.65 2.62 0.504 0.228 0.054

1.0 0.25 0.77 1.68 3.35 3.62 0.350 0.182 0.066

0.5 0.48 1.36 3.07 3.53 0.514 0.214 0.066

0.75 0.37 1.25 2.95 3.12 0.520 0.236 0.052
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the nominal 95%; the degree of coverage was closer to the nominal level for
n=100 compared to n=50.
Next, we set b0=0 and evaluated the performance of three Wald statistics,

Wn ¼ bb2
c=
bVðbbcÞ, in testing H0:b0=0 against H1:b0 „ 0. Data were generated from

the common baseline model through (12), with n=100 and nj=2, 5, and 10. The
three test statistics differ in that a different variance estimator was used for each.
For the first test statistic, independence is assumed for both subjects within-cluster
and events within-subject, with the variance estimator given by:

bXcðbbcÞ�1
Xn

j¼1

Xnj

i¼1
NijðsÞ

 !�1Xn

j¼1

Xnj

i¼1

Z s

0

fZij � Zðs; bbcÞgd bMc
ijðs; bbcÞ

n o�2 bXcðbbcÞ�1;

ð14Þ

which is the variance which would be derived under the proportional rates model
if one assumed that events-within-subject and subjects-within-cluster were uncorre-
lated. The second test statistic assumes only that subjects within-cluster are inde-
pendent, and employs the following variance estimator:

bXcðbbcÞ�1
Xn

j¼1
nj

 !�1Xn

j¼1

Xnj

i¼1

Z s

0

fZij � Zðs; bbcÞgd bMc
ijðs; bbcÞ

� ��2
bXcðbbcÞ�1; ð15Þ

This is the variance estimator proposed by Lin et al. (2000) for recurrent event
data, but with independent subjects. The third test statistic is based on the pro-
posed variance estimator corresponding to Theorem 2, specifically,

bXcðbbcÞ�1n�1
Xn

j¼1

Xnj

i¼1

Z s

0

fZij � Zðs; bbcÞgd bMc
ijðs; bbcÞ

( )�2
bXcðbbcÞ�1: ð16Þ

Average estimated variances (AEV) based on (14) and (15), as well as the
proposed method are presented in Table 3, along with corresponding empirical
Type-I error rates. Empirical variances are also listed and are denoted EMPV.
The proposed variance estimator is always closest to the empirical variance and
the proposed test statistic rejects H0: b0=0 with frequency approximately equal to
the nominal value, 0.05, for almost all data configurations. Type I error rates
based on test statistics assuming within-cluster/within-subject independence, or
just within-cluster independence, were often grossly inflated. Although both were
often unacceptably greater than the nominal level, the type I error rate for estima-
tor (15) was closer to the nominal value than (14), which is consistent with the
fact that its underlying assumptions, while false, are closer to the truth. With clus-
ter size of nj=2, the variance estimator which ignores within-cluster correlation
actually does not perform very poorly. Although (15) incorrectly assumes that
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E
Xnj�1

i¼1

Z s

0

fZij � �Zðs; b0ÞgdMc
ijðs; b0Þ

Xnj

‘¼iþ1

Z s

0

fZ‘j � �Zðs; b0ÞgdMc
‘jðs; b0Þ

" #

equals zero, few cross-product terms are ignored since cluster sizes are so small.
Naturally, for larger cluster sizes, such as nj=5 and nj=10, method (15) does
not fare as well. The corresponding results for the cluster-specific baseline rate
model (Table 4) were similar, although much less extreme. The stratified model
allows the regression parameter to be consistently estimated when the baseline
rate is center-specific, as opposed to being equal across all clusters. However, the
equality of the baseline rates across clusters and independence of subjects within
a cluster are two separate issues and the allowance of cluster-specific baselines
need not accommodate the latter. As an example, consider an unmeasured clus-
ter-specific covariate, such as Rj, for which data are unavailable, which affects
the event rate but is independent of the covariate of interest (e.g., Zij). Since Rj

and Zij are independent, the regression parameter corresponding to Zij can be
estimated consistently even though Rj is not included in the model. However, the
variance will be mis-specified, as demonstrated by the results in Table 4.
Finally, we examined the case where the baseline mean is cluster-specific, but the

common baseline mean model is fitted. We chose n=50, nj=10, b0=log(2),
and l0j(t) as specified in (13), again with l0(t)=0.25t, 0.5t and 0.75t. Within this
framework, we considered two set-ups. In the first set-up, Zij was distributed as
Bernoulli(0.5); i.e., constant across all clusters. In the second set-up, Zij � Ber-
noulli(pj), where,

Table 4. Simulation results: cluster-specific baseline model estimated variance and empirical type-I

error rates based on different variance estimators (n=100, b=0).

100�AEV Empirical Type-I error

nj rR
2 rQ

2 dl0ðtÞ=dt (14) (15) (16) EMPV (14) (15) (16)

10 0.25 0.5 0.25 0.79 0.96 1.14 1.19 0.090 0.072 0.058

0.50 0.40 0.63 0.76 0.78 0.156 0.074 0.062

0.75 0.26 0.52 0.63 0.54 0.182 0.066 0.046

1.0 0.25 0.79 1.24 1.50 1.59 0.152 0.082 0.062

0.50 0.39 0.92 1.12 1.20 0.250 0.088 0.064

0.75 0.26 0.81 0.98 1.12 0.352 0.098 0.064

0.5 0.5 0.25 0.79 1.01 1.18 1.16 0.094 0.066 0.048

0.50 0.39 0.68 0.81 0.72 0.148 0.064 0.040

0.75 0.26 0.57 0.68 0.70 0.238 0.088 0.058

1.0 0.25 0.40 1.02 1.24 1.28 0.266 0.086 0.062

0.50 0.79 1.36 1.63 1.41 0.158 0.056 0.040

0.75 0.26 0.91 1.11 1.25 0.380 0.080 0.064
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pj ¼ 0:5� f1þ ð2nÞ�1g�1f1þ j� n=2

n
g: ð17Þ

Note that, under (17), n�1
Pn

j¼1 pj ¼ 0:5. Results are presented in Table 5. Even
when the common-baseline model is fitted to a cluster-specific baseline data struc-
ture, bbc remained unbiased in the setting where the covariate distribution did not
differ by cluster. However, in the setting where the covariate’s distribution was
cluster-specific, bbc was greatly biased.

5. Analysis of CORR Dialysis Data

We applied the methods to the analysis of technique failures (TF) among
Canadian peritoneal dialysis (PD) patients. Data were obtained from the
Canadian Organ Replacement Register. Basic demographic and clinical informa-
tion is collected at the time each patient begins therapy for end-stage renal
disease. Follow-up information on treatment assignments and switches, kidney
transplants, as well as mortality data are reported by each renal center. The
9861 patients who received PD between January 1, 1990 and December 31, 1997
were included in the analysis, with the observation period concluding on Decem-
ber 31, 1997.
As mentioned previously, the primary goal was to compare covariate-adjusted

TF rates by region. Adjustment covariates included age, gender, race, calendar
period, underlying disease leading to renal failure, comorbid conditions and type
of PD. Patients began follow-up when they initiated PD. Technique failure was
considered to be a switch from PD to hemodialysis. Patients were clustered by
center. There were n=85 centers; cluster size averaged 155 patients (median of

Table 5. Simulation results: common baseline rate model-bias, accuracy of asymptotic distributional

approximation (when baseline rate is actually cluster-specific).

l0j (t) „ l0(t), Zij� Ber(0.5) l0j (t) „ l0(t), Zij� Ber(pj)

nj rR
2 rQ

2 dl0ðtÞ=dt Bias ASE ESD CP Bias ASE ESD CP

10 0.25 0.5 0.25 )0.008 0.138 0.146 0.94 0.169 0.147 0.145 0.77

0.50 0.001 0.121 0.129 0.92 0.167 0.134 0.126 0.72

0.75 )0.001 0.113 0.121 0.94 0.164 0.134 0.119 0.70

1.0 0.25 0.007 0.160 0.158 0.94 0.169 0.166 0.166 0.82

0.50 )0.002 0.145 0.153 0.92 0.161 0.152 0.150 0.80

0.75 )0.005 0.139 0.147 0.94 0.165 0.158 0.142 0.74

0.5 0.5 0.25 0.005 0.149 0.151 0.95 0.149 0.168 0.158 0.84

0.50 0.012 0.134 0.133 0.96 0.150 0.150 0.145 0.81

0.75 0.000 0.126 0.132 0.93 0.165 0.144 0.138 0.76

1.0 0.25 )0.004 0.174 0.186 0.94 0.180 0.197 0.181 0.81

0.50 0.008 0.160 0.171 0.92 0.157 0.171 0.165 0.85

0.75 0.003 0.150 0.162 0.93 0.153 0.161 0.159 0.84
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89), and ranged from nj=5 to nj=1332. Patients were followed from the time they
began PD until the earliest of death, receipt of a kidney transplant, or conclusion
of the observation period. In total, there were 3317 technique failures, for an aver-
age of 0.33 per patient; the minimum being 0 and maximum being 4. Since our
objective was to compare PD technique failure rates between regions, we fitted the
following conditional rate model:

E½dN�ijðtÞjZijðtÞ;PDijðtÞ ¼ 1� ¼ expfbT
0ZijðtÞgdl0ðtÞ;

where PDij (t)=1 when the jth patient from center i is receiving PD and 0 other-
wise. We can interpret E½dN�ijðtÞjPDijðtÞ ¼ 1� as the rate of transfer off PD due to
technique failure. Note that the use of such a conditional model avoids issues
pertaining to the dependent censoring (e.g., due to death or receipt of a kidney
transplant, in which case dialysis ceases, but not due to TF). The proposed model
and methods can be applied upon re-defining the risk set process as I(Cij ‡ t)
PDij (t). The independent censoring assumption pertaining to this analysis can be
expressed as:

Table 6. Analysis of CORR dialysis data-estimated regression parameters for region and estimated

standard errors by assumed level of independence.

Variance

estimator

Independence

assumptions Region bbc
cSEðbbcÞ vn

2 p

(14) Within-Patient I (ref) 0 – – –

Within-Center II )0.012 0.064 0.035 0.85

III )0.076 0.061 1.535 0.22

Independence IV )0.245 0.067 13.396 <0.01

V 0.015 0.095 0.026 0.87

VI )0.186 0.051 13.431 <0.01

VII 0.189 0.085 4.919 0.03

(15) Within-Center I (ref) 0 – – –

Independence II )0.012 0.065 0.033 0.86

III )0.076 0.065 1.343 0.25

IV )0.245 0.072 11.425 <0.01

V 0.015 0.106 0.021 0.89

VI )0.186 0.056 11.089 <0.01

VII 0.189 0.093 4.096 0.04

(16) None I (ref) 0 – – –

II )0.012 0.195 0.004 0.95

III )0.076 0.185 0.167 0.68

IV )0.245 0.159 2.366 0.12

V 0.015 0.126 0.015 0.90

VI )0.186 0.184 1.021 0.31

VII 0.189 0.236 0.639 0.42
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E½dN�ijðsÞjZijðsÞ;PDijðsÞ ¼ 1;Cij > s� ¼ E½dN�ijðsÞjZijðsÞ;PDijðsÞ ¼ 1�:

The analysis was based on the common baseline model since the covariate of pri-
mary interest, region, is center-specific. If a center-specific baseline model had
been used, then differences by region would not be identifiable because there is no
variation by region among patients within the same center.
Results of our analysis are displayed in Table 6. The estimated coefficient, bbc,

represents the covariate-adjusted log rate ratio for each region compared to Re-
gion I (reference). Results are presented for three methods of estimating VðbbcÞ
which correspond to three different levels of assumed independence. The top por-
tion of Table 6 pertains to a model which assumes that all TF’s are independent
(i.e., within-patient, and between-patient-within-center). It is found that Regions
IV and VI have significantly lower TF rates than Region I, while TF rates in Re-
gion VII are significantly higher. The middle portion of Table 6 is based on a
model which acknowledges lack of within-patient TF independence, but does as-
sume that patients within-center are independent. Estimated standard errors are
slightly increased, but are very comparable to those based on the pure indepen-
dence assumption described in the preceding paragraph; in terms of statistical sig-
nificance, conclusions remain the same (significantly decreased TF rate for
Regions IV and VI; significantly increased TF rate for Region VII). In the bottom
section of Table 6, VðbbcÞ is estimated using Theorem 2, which does not impose
any restrictions on the correlation structure either within-patient or within-center.
Standard errors estimated by Theorem 2 are notably elevated (differing by multi-
ples of 1.3–3.6) compared to those which assume some degree of independence.
No rate ratios approach statistical significance (p ‡ 0.12).

6. Discussion

We propose semiparametric regression methods for clustered recurrent event data.
Two models are considered, both of which assume multiplicative covariate effects.
The first model allows for distinct cluster-specific baseline event rates, while
the second uses a common baseline. For each model, the regression parameter
estimators are shown to be consistent and asymptotically normal estimators. For
the common baseline model, a baseline mean estimator is proposed, which is
shown to be uniformly consistent and, upon normalization, to converge to a zero-
mean Gaussian process. Through simulation, both methods are shown to perform
well in finite samples. The underestimation of variance is demonstrated in the set-
ting where subjects are clustered, but assumed independent. Finally, the analysis
of the dialysis data illustrates the potential to lead to false conclusions if the clus-
tering of the subjects is not taken into account.
The choice between the common and cluster-specific baseline rate models, respec-

tively, would depend on the nature of the data structure and aims of the investiga-
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tor. In model (2), comparisons by covariate level are made within a cluster, which
would rule out the use of this model if a cluster-level covariate is of interest, as was
the case for the dialysis data in Section 5. In situations where cluster-specific baseline
rates are distinct, a model which assumes a common baseline rate will yield unbiased
estimates of the regression parameter, provided the covariate distributions are equal
across clusters. In such cases, the estimated baseline mean can be validly interpreted
as having been averaged across clusters. However, in settings where baseline rates
and covariate distributions are distinct among clusters, regression coefficients may
be greatly biased, if estimated through a common baseline model, as demonstrated
in our simulation study.
The proposed methods are flexible in the sense that they make no assump-

tions about the nature of the dependence structure for either the repeated
events within a subject or subjects within the same cluster. However, the lack
of involvement of the correlation structure in the parameter estimation can also
be seen as a drawback, with respect to lost efficiency. For example, a frailty
model which parameterizes both the within-subject and within-cluster correlation
may be a valuable method for handling clustered recurrent event data, particu-
larly if the method accommodated hypothesis testing of the frailty parameters.
Such a model has not appeared in the published literature and is currently
under consideration.

7. Appendix

7.1. Proof of Theorem 1

We begin by setting:

‘nðbÞ ¼
Xn

j¼1

Xnj

i¼1

Z s

0

bTZijðsÞ � log njS
ð0Þ
j ðs; bÞ

� �n o
dNijðsÞ;

then set Dn(b)=n)1{‘n(b)) ‘n(b0)}, such that:

DnðbÞ ¼ n�1
Xn

j¼1

Xnj

i¼1

Z s

0

fðb� b0ÞTZijðsÞ þ Tjðs; bÞgdNijðsÞ

where Tjðs; bÞ ¼ log S
ð0Þ
j ðs; b0Þ=S

ð0Þ
j ðs; bÞ

� �
. Using conditions (a) to (f), and the

Strong Law of Large Numbers (SLLN), it can be shown that DnðbÞ�!
a:s:

DðbÞ,
where:

DðbÞ ¼ ðb� b0Þ
T
PðbÞ þQðbÞ;

with PðbÞ ¼ limn!1 PnðbÞ, QðbÞ ¼ limn!1QnðbÞ, PnðbÞ ¼ n�1
Pn

j¼1 PjðbÞ, QnðbÞ ¼
n�1

Pn
j¼1 QjðbÞ and
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PjðbÞ ¼
Xnj

i¼1

Z s

0

IðCij > sÞZijðsÞ expfbT
0ZijðsÞgdl0jðsÞ

QjðbÞ ¼
Xnj

i¼1

Z s

0

IðCij > sÞTjðs; bÞ expfbT
0ZijðsÞgdl0jðsÞ

Let Br be the following compact set: Br ¼ fb : b� b0k k � rg, with boundary
@Br ¼ fb : b� b0k k ¼ rg. By Theorem 10.8 of Rockafellar (1970), strong conver-
gence of DnðbÞ to D(b) is uniform on b2Br. Note that @DðbÞ=@bjb0

¼ 0p�1 and
@2DðbÞ=@b@bTjb0

¼ �Xdðb0Þ, which is assumed negative-definite through condi-
tion (d). Therefore, D(b) has unique maximizer b0, and in particular
Dðb0Þ > supb2@Br DðbÞ. Since supb2Br DnðbÞ �DðbÞj j �!a:s: 0, for almost all realiza-
tions, there exists n0 such that, for n ‡ n0, Dn(b0)>Dn(b) for b2¶Br. Thus, there
exists a maximizer of Dn(b) in the interior of Br, and arguments in Jacobsen
(1989) can be used to demonstrate the uniqueness of this maximizer for large n.
Recall that bbd solves @DnðbÞ=@b ¼ 0, and hence is the unique maximizer. Since r is
chosen arbitrarily, letting r fi 0 yields that bbd�!

a:s:
b0 as n fi ¥.

With respect to asymptotic normality, through a first-order Taylor series expan-
sion about b=b0,

UdðbbdÞ ¼ Udðb0Þ þ
@

@bT
UdðbÞjb� ðbbd � b0Þ

where b* lies on the line segment joining bbd and b0. Setting
bXdðb�Þ ¼ �n�1@UdðbÞ=@bTjb� , we have n1=2ðbbd � b0Þ ¼ bXdðb�Þ

�1n�1=2Udðb0Þ. Since
bbd�!

a:s:
b0, with jjb� � b0jj � jjbbd � b0jj, as n fi ¥,

bXdðb�Þ �!
a:s:

Xdðb0Þ: ð18Þ
We now derive the distribution of n)1/2Ud (b0). Considering the integrand of an
independent contribution to Ud (b0), provided model (1) and assumption (3) hold,
E½ZijðsÞdMd

ijðs; b0ÞjZijðsÞ� ¼ 0. Additionally,

E½Zjðs; b0ÞdMd
ijðs; b0ÞjZijðsÞ�

¼ E½E½Zjðs; b0ÞdMd
ijðs; b0ÞjZ1jðsÞ; . . . ;ZnjjðsÞ;C1j; . . . ;Cnjj��

¼ E½E½Zjðs; b0ÞjZ1jðsÞ; . . . ;ZnjjðsÞ;C1j; . . . ;Cnjj�
� E½dMd

ijðs; b0ÞjZ1jðsÞ; . . . ;ZnjjðsÞ;C1j; . . . ;Cnjj��
¼ E½E½Zjðs; b0ÞjZ1jðsÞ; . . . ;ZnjjðsÞ;C1j; . . . ;Cnjj�
� E½dMd

ijðs; b0ÞjZijðsÞ��
¼ 0:

Hence, Udðb0Þ is a sum of independent mean-zero random vectors, such that
n�1=2Udðb0Þ converges in distribution to a zero-mean normal with variance RdðbdÞ
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by the Lindeberg–Feller Central Limit Theorem (Sen and Singer, 1993). This re-
sult, combined with (18) through Slutsky’s Theorem, concludes the proof of
asymptotic normality.

7.2. Proof of Theorem 3

Set b/0ðtÞ ¼ b/01ðtÞ þ b/02ðtÞ, where:

b/01ðtÞ ¼ fbl0ðt; bbcÞ � bl0ðt; b0Þg
b/02ðtÞ ¼ fbl0ðt; b0Þ � l0ðtÞg:

By the triangle inequality,

sup
t2½0;s�

b/0ðtÞ
���

��� � sup
t2½0;s�

b/01ðtÞ
���

���þ sup
t2½0;s�

b/02ðtÞ
���

���: ð19Þ

Now, one can write:

b/01ðtÞ ¼ n�1
Xn

j¼1

Xnj

i¼1

Z t

0

Sð0Þðs; bbcÞ�1 � Sð0Þðs; b0Þ�1
n o

dNijðsÞ: ð20Þ

Based on a linear Taylor series expansion,

Sð0Þðs; bbcÞ�1 � Sð0Þðs; b0Þ�1
n o

¼ �Zðs; b0Þ
T

Sð0Þðs; b0Þ
ðbbc � b0Þ þ oðn�1=2Þ

almost surely. Substituting this expression back into (20) gives b/01ðtÞ ¼
bhðt; b0ÞTðbbc � b0Þ þ oðn�1=2Þ, where bhðt; b0Þ ¼ �n�1

Pn
j¼1
Pnj

i¼1
R t
0 Zðs; b0Þ

Sð0Þðs; b0Þ�1dNijðsÞ. Since Nij(t) is bounded, S(0) (s;b) is bounded away from 0 as
n fi ¥ and S(1)(s;b) is bounded for all b in a compact set, bhðt; b0Þ will be bounded
for sufficiently large n. This, in conjunction with the fact that bbc�!

a:s:
b0 implies

that jb/01ðtÞj �!
a:s:

0. We now consider b/02ðtÞ, which can be written:

b/02ðtÞ ¼ n�1
Xn

j¼1

Xnj

i¼1

Z t

0

Sð0Þðs; b0Þ�1dMc
ijðs; b0Þ: ð21Þ

By the Uniform SLLN (Pollard, 1990, p. 41), n�1
Pn

j¼1
Pnj

i¼1 M
c
ijðt; b0Þ

���
��� converges

almost surely to 0 for t2[0,s]. Additionally, sð0Þðs; bÞ is bounded away from 0,
while S(0) (s;b) is bounded away from 0 as n fi ¥. Combining these facts,

sup
t2½0;s�

b/02ðtÞ
���

����!a:s: 0;
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which, combined with the fact that jb/01ðtÞj �!
a:s:

0 for all t 2 ½0; s� concludes the
proof of uniform consistency upon applying (19).
With respect to weak convergence of the process fn1=2b/0ðtÞ; t 2 ½0; s�g,

n1=2b/01ðtÞ ¼ bhðt; b0ÞTn1=2ðbbc � b0Þ þ opð1Þ

n1=2b/02ðtÞ ¼ n�1=2
Xn

j¼1

Xnj

i¼1

Z t

0

Sð0Þðs; b0Þ�1dMc
ijðs; b0Þ þ opð1Þ:

Using conditions (a)–(h), the SLLN and various results from empirical processes
(e.g., Bilias, Gu and Ying, 1997), bhðt; b0Þ�!

a:s:
hðt; b0Þ; combining this result with

the fact that

n�1=2Ucðb0Þ ¼ n�1=2
Xn

j¼1
Wc

j ðb0Þ þ opð1Þ

yields:

n1=2b/01ðtÞ ¼ hðt; b0ÞTXcðb0Þ�1n�1=2
Xn

j¼1
Wc

j ðb0Þ þ opð1Þ; ð22Þ

where Wc
j ðbÞ is as defined in (11). With respect to n1=2b/02ðtÞ, using results from

empirical processes, it can be shown that

sup
t2½0;s�

n�1=2
Xn

j¼1

Xnj

i¼1

Z t

0

fSð0Þðs; b0Þ�1 � sð0Þðs; b0Þ�1gdMc
ijðs; b0Þ

�����

������!
P

0:

Therefore,

n1=2b/02ðtÞ ¼ n�1=2
Xn

j¼1

Xnj

i¼1

Z t

0

sð0Þðs; b0Þ�1dMc
ijðs; b0Þ þ opð1Þ: ð23Þ

Combining (22) and (23), n1=2b/ðtÞ ¼ n�1=2
Pn

j¼1 njðt; b0Þ þ opð1Þ, which behaves
asymptotically as a sum of independent mean-zero random variates and, hence,
has finite-dimensional distributions which converge to a mean-zero Normal ran-
dom vector with covariance function r0(s,t) by the Lindeberg-Feller CLT. The
demonstration that nj (t;b0) is manageable for i=1,...,n, such that n1=2b/ðtÞ is tight,
followed by application of the Functional CLT (Pollard, 1990) concludes the
proof of weak convergence.
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