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THIS REPORT PUBLISHED



THE DIFFRACTION OF SHOCK WAVES
THROUGH OBSTACLES WITH VARIOUS OPENINGS

IN THEIR FRONT AND BACK SURFACES

I. INTRODUCTION

This report presents the results of a photographic investigation
of shock-wave diffraction through models with various openings in their
front and back surfaces. Also included is a discussion of a method for
determining the strength of shock waves by measurements of limiting Mach

configurations.

II. DIFFRACTION OF SHOCK WAVES THROUGH MODELS WITH VARIOUS OPENINGS

IN THEIR FRONT AND BACK SURFACES

Three symmetric models were used in this investigation. The out-
side dimensions of each were 1-1/2" x 4-1/2". The size of the openings in
the front and back surfaces was varied: +the opening in Model A was 53-1/5
percent of the inside dimension; the opening in Model B was 20 percent of
the inside dimension; and the opening in Model C was 5 percent of the in-
side dimension. Each model was studied at three shock strengths: 1/5
was 1.1, 1.44, and 1.8. Both the shock velocity and the flow velocity be-

hind the shock are given in the following table for each shock strength:

lzg U‘mméksec} ugmmé«sec}
1.1 .360 .024
1.44 406 .093
1.8 Ah9 152



The figure numbers of the photographs for a particular shock

strength end model are given in the following table:

1.1 1.4h 1.8
A 1-5 6-10 11-15
B 16-20  21-25 26-30
c 31-36 37-b2 13148

Figures 36 and 42 show an extremely weak primary shock which
has been reflected from both the back and front surfaces.

Caution must be exercised in applying these strictly two-dimen-
sional results to three-dimensional problems. In particular, the shock
strength inside an obstacle will be determined by the effective aperture
in the front of the obstacle, as shown in Figure . To a first approxi-
mation, the thickness of

the separated boundary

layer is probably depend-
——————— ent on shock strength and

time but not on the geom-

etry of the opening. If
effective aperture nominal aperture
this be true, then the

effect of the boundary
Figure o
layer will be much more

important in the case of a narrow slit than in the case of a square open-

ing in the front of an obstacle.



ITI. DETERMINATION OF SHOCK STRENGTH BY MEASUREMENT OF MACH

CONFIGURATIONS FOR INFINITESIMAL DEFLECTION

In the analysis of shock-diffraction photographs, one is often
confronted with ‘the problem of determining the strength of a shock wave
which essentially has undergone reflection through an infinitesimsl sngle.
For instance, this problem arises in several places in this report. When-
ever there is a practically plane shock wave followed by a weak reflected
shock, as in Figure 8, Mach reflection through an infinitesimal angle may
be assumed to have occurred. Lincoln G. Smithl cells this the extreme
gonic case. It has been called one of the trivial solutions of the gen-
eral Mach reflection equations by W. Bleakney and A. H. Taub.,2

A simple analysis is sufficient for the description of this lim-
iting configuration (see Figure B). Assume that an infinitesimal inclina-
tion starts at the point b.
As the shock, S, passes b,
a sound wave is sent out in-
to the flow behind S. This

\ sound wave travels with the

-
"

speed of sound behind the

-

| main shock wave and is swept

downstream with the flow vel-

Figure B ocity u behind the shock wave.

1 Lincoln G. Smith, Photographic Investigation of the Reflection of Plane
Shocks in Air, NDRC Report No. A-350,

2 W, Bleakney and A. H. Taub, "Interaction of Shock Waves, Rev. of Mod.
Phys, 21 (1949) 584,




The angle © is given by

_ U-n
s 0 = g

U
6 = Cou a,

All the velocities appearing in this expression can be expressed as func-

tions of shock strength and gas constantso5

U a, (ha) T
w = a, = n-0(1 -¥)

(NG

Q, = ao —LI * E
T (pe§)

where ap is sound speed ahead of the shock wave; u = (7+1)/(7-1); end €

= po/pl, the shock strength. Thus

r pe¥  __(p-d(1-8)
5 - A% [ E(p+F)
|+p§

§(p+3)

3

F. W. Geiger and C. W. Mautz, The Shock Tube as an Instrument for the

Investigation of Transonic and Supersonic Flow Patterns, Report on Con-
tract N6-ONR-232, T.0.IV, 1949.




or

6 = cou”

This function is plotted in Figure 2,

b (1-5)
pti
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