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Abstract. Murray and Tsiatis (1996) described a weighted survival estimate that incorporates prognostic time-
dependent covariate information to increase the efficiency of estimation. We propose a test statistic based on the
statistic of Pepe and Fleming (1989, 1991) that incorporates these weighted survival estimates. As in Pepe and
Fleming, the test is an integrated weighted difference of two estimated survival curves. This test has been shown
to be effective at detecting survival differences in crossing hazards settings where the logrank test performs poorly.
This method uses stratified longitudinal covariate information to get more precise estimates of the underlying
survival curves when there is censored information and this leads to more powerful tests. Another important
feature of the test is that it remains valid when informative censoring is captured by the incorporated covariate.
In this case, the Pepe-Fleming statistic is known to be biased and should not be used. These methods could be
useful in clinical trials with heavy censoring that include collection over time of covariates, such as laboratory
measurements, that are prognostic of subsequent survival or capture information related to censoring.
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1. Introduction

Information from auxiliary variables that relate to a clinical endpoint can be used to aug-
ment information provided by the clinical endpoint in treatment comparisons of overall,
or marginal, survival. Some researchers have developed tests that model relationships be-
tween progression and survival within treatment specific marginal survival models. Gray
(1994) considered a three-state model in which time to progression could influence sur-
vival following progression via kernel estimators. Finkelstein and Schoenfeld (1994) used
a similar three state model in the semi-Markov case using parametric models for survival
given progression.

Others have augmented censored failure information on overall survival with fewer as-
sumptions on the relationship between prognostic covariates and outcome. Kosorok and
Fleming (1993) combined linear rank statistics on primary and secondary endpoints. Malani
(1995) suggested a covariate-based modification of Efron’s redistribution to the right algo-
rithm to estimate survival and adjust the score test from the Cox (1972) proportional hazards
model. Robins and Rotnitzky (1992) presented inverse probability weighting strategies for
survival estimation and testing, with weights based on models of the censoring distribution
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as it related to certain prognostic covariates. Murray and Tsiatis (1996) constructed a non-
parametric maximum likelihood estimator for survival involving conditional Kaplan-Meier
estimates averaged over values of the covariate process. The weighted survival (WS) esti-
mate described by Murray and Tsiatis is algebraically related to the estimate described by
Malani for categorical time-dependent covariates and also related to the estimates of Robins
and Rotnitzky when nonparametrically estimated inverse probability weights described in
section 2.1 are applied.

These marginal survival methods differ from traditional conditional approaches to using
covariates, which tend to be parametric or semi-parametric in nature and study survival
according to particular risk factors rather than across the entire population of risk fac-
tors as in the marginal analyses. For instance the proportional hazards model may be
used to adjust for confounding effects of imbalanced baseline covariates across treatment
groups and gains efficiency in studying treatment effects, particularly when prognostic
covariates are balanced across treatment groups. The Cox model is able to give cor-
rect inferences on these baseline-covariate-adjusted treatment effects when proportional
hazards modeling assumptions are valid and informative censoring is correctly captured
with respect to the baseline covariates in the model. However, the ability of this model
to simultaneously adjust for dependent censoring and study treatment effect diminishes
when there are relevant time-dependent covariates that are altered by treatment and can
be considered treatment outcomes in their own right. Although time-dependent covariate
Cox models are available, it is problematic to use them to study treatment effects with
anything other than external time-dependent covariates as described by Kalbfleisch and
Prentice (1980, pp. 122–126). The limitations occur since internal time-dependent co-
variates may be part of the causal pathway between the effect of treatment and survival;
hence when included in the model may diminish or even remove legitimate treatment dif-
ferences.

With marginal survival estimation methods, time-dependent covariates are used to aug-
ment overall survival information rather than to make a conditional adjustment. Murray
and Tsiatis show that their nonparametric marginal WS estimation strategy, when applied
with a prognostic stratified time dependent covariate, produces an estimate of the underly-
ing survival distribution that has a smaller asymptotic closed form variance than the usual
Kaplan-Meier (KM) estimate under uninformative censoring. When the stratified time de-
pendent covariate also completely captures information related to the censoring mechanism,
the survival estimate discussed by Murray and Tsiatis remains consistent while the standard
KM survival estimate is subject to bias. Hence, the WS estimate has improved inferential
properties as compared to the KM estimate while using fewer assumptions in relation to
the censoring mechanism.

We propose to evaluate the difference between two integrated marginal survival curves
as in Pepe and Fleming (1989, 1991), but with the covariate-augmented survival estimates
proposed by Murray and Tsiatis used in place of the KM estimates used in the original
statistic. Hence, the nonparametric aspect to the original test statistic is maintained, but
efficiency is gained and bias reduced through use of the stratified time-dependent covariates
in the WS estimates. Pepe and Fleming presented their statistic as an attractive alternative to
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the logrank test against alternatives with nonproportional hazards. Since many estimates and
tests in survival analysis are functionals of estimated survival probabilities, we expect that
substitution of covariate-augmented survival estimates would lead to improved estimates
and tests. Also, unlike the Pepe-Fleming (PF) tests, tests using the modified survival
estimates will be valid when informative censoring can be completely explained by the
auxiliary longitudinal covariate.

In section 2, we describe the WS estimate as proposed by Murray and Tsiatis noting
required covariance calculations new to this manuscript. In section 3, we review the PF
statistic and its asymptotic properties, derive the asymptotic closed form properties of the
augmented PF statistic and describe asymptotic closed form gains in efficiency over the
original PF test. In section 4 we present properties of the proposed statistic based on both
closed form and finite sample simulation studies. Discussion follows in section 6.

2. Covariate-Augmented Weighted Survival Estimate

We first introduce the augmented survival estimate proposed by Murray and Tsiatis. Let T
and C denote failure and censoring times and X = min(T, C) the observable event time.
Let S(t) and H(t) denote survival and censoring survival functions of T and C and let
λ(t) denote the hazard function for T . Suppose a time-dependent covariate is observed
on each subject at times T ∗

0 , . . . , T ∗
s , with s finite. The covariate may be continuous or

categorical, but is here treated as categorical with a finite number of possible values. A
continuous covariate may be stratified by using quantiles of its distribution if no biolog-
ical breakpoints suggest themselves. To reduce notation we shall consider the covariates
Zi measured at times T ∗

i−1 to have k + 1 possible values labeled 0, . . . , k. The estimation
methods extend straightforwardly when the number of covariate strata varies at the dif-
ferent measuring times. One may define the covariate strata using multiple covariates or
use definitions that specify how missing covariate data are handled. For instance in AIDS
applications one might define Zi as a categorical version of the last CD4 count observed
for each patient at or before time T ∗

i−1. Hence, if a patient misses a bloodwork appointment
at time T ∗

i−1 his most recent measurement may be used to define his covariate strata at
time T ∗

i−1.
If we were to ignore this prognostic covariate information, we would estimate survival

nonparametrically with the KM estimate (1958). But if censoring is present, Murray and
Tsiatis have shown that one may extract information about survival from prognostic co-
variates without making additional assumptions about the data. Let θi1 be the probability
that Z1 = i1 at T ∗

0 and let θi1...im be the probability that a subject has Zm = im at T ∗
m−1,

conditional on the subject surviving at least to time T ∗
m−1 and previously having Z1 = i1

at T ∗
0 , Z2 = i2 at T ∗

1 , . . . , and Zm−1 = im−1 at T ∗
m−2, and let Si1...im (t) be the probability

that a subject survives past time t , conditional on the subject surviving past time T ∗
m−1 and

having Z1 = i1 at T ∗
0 , Z2 = i2 at T ∗

1 , . . . , and Zm = im at T ∗
m−1, m = 2, 3, . . . , s + 1.

Using similar subscripting conventions for the subjects with survival function, Si1...im (t),
define the corresponding censoring survival function to be Hi1...im (t) and the corresponding
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failure hazard to be λi1...im (t), m = 1, . . . , s + 1. We may write P(T > t) = S(t) as

k∑
i1=0

Si1(t)θi1 0 < t ≤ T ∗
1

k∑
i1=0

k∑
i2=0

Si1i2(t)θi1i2 Si1(T ∗
1 )θi1 T ∗

1 < t ≤ T ∗
2

...
k∑

i1=0

k∑
i2=0

· · ·
k∑

is+1=0

Si1...is+1(t)θi1...is+1

×Si1...is (T ∗
s )θi1...is · · · Si1i2(T ∗

2 )θi1i2 Si1(T ∗
1 )θi1 T ∗

s < t .

Based on the above probability statement, the WS estimate uses all possible covariate
information available at each time so that WS(t) =

k∑
i1=0

Ŝi1(t)
ni1

n
0 < t ≤ T ∗

1

k∑
i1=0

k∑
i2=0

Ŝi1i2(t)
ni1i2

ni1.

Ŝi1(T ∗
1 )

ni1

n
T ∗

1 < t ≤ T ∗
2

...
k∑

i1=0

k∑
i2=0

· · ·
k∑

is+1=0

Ŝi1...is+1(t)
ni1...is+1

ni1...is .

×Ŝi1...is (T ∗
s )

ni1...is

ni1...is−1.

· · · Ŝi1i2(T ∗
2 )

ni1i2

ni1.

Ŝi1(T ∗
1 )

ni1

n
T ∗

s < t ,

where ni1...im is the number of people having Z1 = i1 at T ∗
0 , Z2 = i2 at T ∗

1 , . . . , and
Zm = im at time T ∗

m−1, ni1...im−1. = ni1...im−10 + · · · + ni1...im−1k and Ŝi1...im (t) is the KM
survival estimate at time t among those with past covariate values corresponding to i1, . . . im ,
m = 1, 2, . . . , s+1. By estimating the separate conditional components of S(t) we increase
efficiency of estimation in the presence of uninformative censoring. Also, WS(t) uses KM
estimates that are estimated conditional on covariate strata so it remains consistent when
informative censoring patterns are completely captured by the discretized covariate process.
The usual KM estimate requires non-informative censoring to remain consistent. When a
continuous covariate related to the censoring mechanism is stratified for use with the WS
estimate, there will be some residual bias in the estimation procedure. However, in practice
this bias is largely removed even when the number of covariate strata used to capture the
continuous covariate is small. We shall show by simulation that the residual bias becomes
negligible using only three strata to capture informative censoring related to a continuous
covariate. Murray and Tsiatis described a similar phenomenon in Table 3 of their 1996
paper.
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To simplify our formulas we use notation such as Si1...ip .(t) for the expression∑k
ip+1=0 Si1...ip+1(T ∗

p+1)θi1...ip+1 · · · ∑k
im=0 Si1...im (t)θi1...im for T ∗

m−1 < t ≤ T ∗
m . This term,

which is only a function of i1, . . . , ip, represents the conditional probability of survival past
time t given (Z1, . . . , Zp) = (i1, . . . , ip) and T > T ∗

p−1. Similarly in referring to the proba-
bility of surviving past time t given only the strata information (Z1, . . . , Zp) = (i1, . . . , ip)

we shall use the simplified notation Si1...ip (t) while its conditional probability equivalent
is Si1...ip (T ∗

p )Si1...ip .(t) for t > T ∗
p and Si1...ip (t) for T ∗

p−1 < t ≤ T ∗
p . Similar notational

simplifications will be used for estimates. For instance

WSi1...ip .(t) =
k∑

ip+1=0

Ŝi1...ip+1(T ∗
p+1)

ni1...ip+1

ni1...ip .

· · ·
k∑

im=0

Ŝi1...im (t)
ni1...im

ni1...im−1.

is the WS estimate for Si1...ip .(t) where T ∗
m−1 < t ≤ T ∗

m .
In constructing a test statistic we require Cov(WS(t1), WS(t2)). The covariance derivation

uses techniques similar to that of Murray and Tsiatis and can be found in Murray (1994,
pp. 68–71). For T ∗

m1−1 < t1 ≤ T ∗
m1

, m1 = 1, . . . , s, and T ∗
m2−1 < t2 ≤ T ∗

m2
, m2 = 1, . . . , s,

cov
{

n
1
2 WS(t1), n

1
2 WS(t2)

}
=

min(m1,m2)∑
ζ=1

k∑
i1=0

Si1(T ∗
1 )

Hi1(T ∗
1 )

θi1

k∑
i2=0

Si1i2(T ∗
2 )

Hi1i2(T ∗
2 )

θi1i2 · · ·
k∑

iζ−1=0

Si1...iζ−1(T ∗
ζ−1)

Hi1...iζ−1(T ∗
ζ−1)

θi1...iζ−1

×
[

k∑
iζ =0

θi1...iζ Si1...iζ (t1)Si1...iζ (t2)
∫ min(T ∗

ζ
,t1,t2)

T ∗
ζ−1

λi1...iζ (u)du

Hi1...iζ (u)Si1...iζ (u)

+
k∑

iζ =0

θi1...iζ

{
Si1...iζ (t1) − Si1...iζ−1.(t1)

} {
Si1...iζ (t2) − Si1...iζ−1.(t2)

}]
.

A little algebra in the case t1 = t2 gives the variance described by Murray and Tsiatis, which
has been shown to be smaller than the variance of the KM estimate when the longitudinal
covariate is prognostic and censoring is uninformative.

2.1. Inverse Probability Complete Case Survival Estimate

In addition to previous subscripts this section will denote individual values using i , i =
1, . . . , n. Define 
i = I (Ti < Ci ). The inverse probability complete case survival estimate
is

ŜR R(t) = 1

n

n∑
i=1


i I (Ti > t)

Ĥi (Ti )
,

where Ĥi (Ti ) estimates the censoring survival function for individual i at failure time
Ti , usually using semiparametric models such as the proportional hazards model. The
quality of ŜR R(t) as an estimate is directly related to the appropriateness of the tech-
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nique used to fit Ĥi (Ti ). For instance, if the KM censoring survival estimate is used
to fit Ĥi (Ti ), then ŜR R(t) reduces to the KM survival estimate, provided that the event
rates are sufficient to give stable weights. Hence, when the KM estimate suffers from in-
formative censoring, the KM censoring survival estimate would not be appropriate for
Ĥi (Ti ) and would result in biased ŜR R(t). When incorporating covariates, a propor-
tional hazards model is generally advocated to model Ĥi (Ti ). In each case the inverse
weights favor certain types of individuals, i , depending on the value of Ĥi (Ti ). Fa-
voring individuals in the wrong proportion through mismodeling of Ĥi (Ti ) gives biased
results. On the other hand, if the modeling assumptions are correct, then the semi-
parametrically constructed Ĥi (Ti ) will result in more efficient, less-biased survival esti-
mates ŜR R(t), as opposed to nonparametrically constructed survival estimates using cat-
egorical representations of the same covariates. When appropriate, semiparametric cen-
soring survival estimation also avoids curse of dimensionality problems that can occur
when using too many covariate strata to capture the covariate information nonparametri-
cally.

The following calculations demonstrate that WS(t) reduces to ŜR R(t) for T ∗
m−1 < t ≤ T ∗

m

when Ĥi (Ti ) is constructed nonparametrically using categorical time-dependent covariate
strata information on individual i of i1, i2, . . . im at T ∗

0 , T ∗
1 , . . . T ∗

m−1. This information
is always available on relevant individuals with Ti > t . In this case the most efficient
Ĥi (Ti ) estimate is Ĥi1(T ∗

1 )Ĥi1i2(T ∗
2 ) · · · Ĥi1...im−1(T ∗

m−1)Ĥi1...im (Ti ). For convenience, group
individual data according to covariate path so that, for example, Ti such that Ti > t may be
represented using Ti1...im j for covariate strata values in (0, . . . , k) and j in (1, . . . , ni1...im ).
So

ŜR R(t) = 1

n

n∑
i=1


i I (Ti > t)

Ĥi (Ti )

= 1

n

k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0

ni1 ...im∑
j=1


i1...im j I (Ti1...im j > t)

Ĥi1(T ∗
1 ) · · · Ĥi1...im−1(T ∗

m−1)Ĥi1...im (Ti1...im j )

= 1

n

k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0

ni1...im

Ĥi1(T ∗
1 ) · · · Ĥi1...im−1(T ∗

m−1)

×
{

1

ni1...im

ni1 ...im∑
j=1


i1...im j I (Ti1...im j > t)

Ĥi1...im (Ti1...im j )

}

= 1

n

k∑
i1=0

k∑
i2=0

· · ·
k∑

im=0

ni1...im

Ĥi1(T ∗
1 ) · · · Ĥi1...im−1(T ∗

m−1)
Ŝi1...im (t).

The connection to WS(t) follows upon noting Ĥi1...ip (T ∗
p ) = (ni1...ip ./ni1...ip ){Ŝi1...ip (T ∗

p )}−1,
for p in 1, . . . , m − 1.

From a purely operational point of view, by relating survival to prognostic covariates
as with the WS estimator, we have the ability to immediately define covariates that are
relevant to both bias reduction and efficiency gain. In modeling the censoring distribution
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during construction of ŜR R(t), it is straightforward to identify covariates that are prognostic
for censoring. However, if these covariates are not related also to survival, the adjusted
survival estimate although still unbiased will be less efficient than the unadjusted survival
estimate based on results from Murray and Tsiatis. Hence, some knowledge of prognosis
for survival is required in constructing ŜR R(t) efficiently. Information from covariates that
are prognostic for survival and not censoring also do not naturally enter into the modeling
of the censoring distribution.

3. Nonparametric Covariate-Augmented Test Statistic

Now using the WS estimate we define a statistic for testing differences in survival based on
Pepe and Fleming’s 1989 T1 statistic,

T1 =
(n1n2

n

) 1
2

∫ τ

0
ŵ(t)

{
Ŝ1(t) − Ŝ2(t)

}
dt,

where ng is the sample size in group g for g = 1, 2, n = n1+n2 and Ŝg(t) is the KM survival
estimate in group g. The upper limit of integration, τ , must be chosen so that the survival
estimates are consistent within the domain of integration. If the largest event time from a
particular group is censored, then there is no consistent survival estimate beyond this last
event time and the test statistic requires τ less than this last censored event. If both groups
have censored events as their largest event times, τ can be at most the smallest of these
two times. These restrictions on τ assure a stable test statistic for any reasonable choice of
weights, ŵ(t). In the original presentation by Pepe and Fleming, stability was ensured by
requiring ŵ(t) = 0 for values of t > τ . To simplify notation, let A(t) = ∫ τ

t w(u)S(u) du.
Pepe and Fleming showed that T1 converges in distribution to a normal random variable
with mean zero and variance

σ 2 =
2∑

g=1

π1π2

πg

∫ τ

0

A2(t)λ(t)

S(t)Hg(t)
dt,

where πg is the probability of falling in group g and Hg(t) is the censoring survival function
for group g. The augmented statistic replaces the KM estimate with the WS estimate giving

T2 =
(n1n2

n

) 1
2

∫ τ ∗

0
ŵ(t) {WS1(t) − WS2(t)} dt,

where WSg(t) is the covariate modified survival estimate for group g introduced in section 2.
The upper limit of integration, τ ∗, must be constrained so that all survival estimates used
in constructing the WS estimates are consistent for each treatment group within the area
of integration. Asymptotically, τ ∗ is equivalent to τ . The number and choice of covariate
strata may be different for each treatment, but for notational simplicity we take the number
of strata to be the same.

In the testing framework, we indicate treatment group by the “g” subscript prior to the
covariate related subscripts, such as i1 . . . iζ . Define Agi (x) = ∫ τ ∗

x w(y)Sgi (y)dy, let
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Āg(x) = ∑
θgi Agi (x) and Dgi (x) = Agi (x) − Āg(x). We first derive the variance of T2

when the covariates are only measured at baseline. In this case

var(T2) = var

[(n1n2

n

) 1
2

∫ τ ∗

0
ŵ(t) {WS1(t) − WS2(t)} dt

]

≈
2∑

g=1

π1π2

πg

∫ τ ∗

0

∫ τ ∗

0
w(x) w(y) cov

{
n

1
2
g WSg(x), n

1
2
g WSg(y)

}
dx dy

=
2∑

g=1

π1π2

πg

∫ τ ∗

0

∫ τ ∗

0
w(x) w(y)

[
k∑

i=0

θgi Sgi (x)Sgi (y)

∫ min(x,y)

0

λgi (u) du

Hgi (u)Sgi (u)

+
k∑

i=0

θgi
{

Sgi (x) − S̄g(x)
} {

Sgi (y) − S̄g(y)
}]

dx dy

=
2∑

g=1

π1π2

πg

∫ τ ∗

x=0

∫ τ ∗

y=x
w(x) w(y)

{
k∑

i=0

θgi Sgi (x)Sgi (y)

∫ x

u=0

λgi (u) du

Hgi (u)Sgi (u)

}
dy dx

+
2∑

g=1

π1π2

πg

∫ τ ∗

x=0

∫ x

y=0
w(x) w(y)

{
k∑

i=0

θgi Sgi (x)Sgi (y)

∫ y

u=0

λgi (u) du

Hgi (u)Sgi (u)

}
dy dx

+
2∑

g=1

π1π2

πg

∫ τ ∗

0

∫ τ ∗

0
w(x) w(y)

×
[

k∑
i=0

θgi
{

Sgi (x) − S̄g(x)
} {

Sgi (y) − S̄g(y)
}]

dy dx .

After some additional calculation this asymptotic variance becomes

2∑
g=1

π1π2

πg

k∑
i=0

θgi

{∫ τ ∗

u=0

A2
gi (u)λgi (u) du

Hgi (u)Sgi (u)
+ D2

gi (0)

}
,

which can be estimated by substituting maximum likelihood estimates for the unknown
quantities, including those found in Agi (u) and Dgi (0). Specifically, let π̂g = ng

n ,θ̂gi = ngi

ng
,

Ñ (t) be the observed number of deaths at time t and Ỹ (t) be the observed number of
individuals still at risk at time t . This notation will be subscripted similarly to past notation
depending on the covariate path under consideration. Estimate Agi (u) with Âgi (u) =∫ τ ∗

u w(y)Ŝgi (y) dy and Dgi (0) with D̂gi (0) = Âgi (0) − ∑
θgi Âgi (0). Then

v̂ar(T2) =
2∑

g=1

π̂1π̂2

π̂g

k∑
i=0

θ̂gi

[∫ τ ∗

u=0

Â2
gi (u)d Ñgi (u)ngi

Ỹgi (u){Ỹgi (u) − 
Ñgi (u)} + D̂2
gi (0)

]
.

Variance calculations for time-dependent covariates become more complicated. The time
axis can be described in reference to the intervals created by T ∗

0 , . . . , T ∗
s . Define the first
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time interval for t ∈ [0, T ∗
1 ], the second time interval for t ∈ (T ∗

1 , T ∗
2 ], . . . , the mth time

interval for t ∈ (T ∗
m−1, T ∗

m], . . . , the sth time interval for t ∈ (T ∗
s−1, T ∗

s ] and the s + 1st

interval for t ∈ (T ∗
s , τ ∗]. Then

var(T2) = var

[(n1n2

n

) 1
2

∫ τ ∗

0
ŵ(t) {WS1(t) − WS2(t)} dt

]

≈
2∑

g=1

π1π2

πg

∫ τ ∗

0

∫ τ ∗

0
w(x) w(y) cov

{
n

1
2
g WSg(x), n

1
2
g WSg(y)

}
dx dy

=
2∑

g=1

π1π2

πg

s+1∑
m1=1

s+1∑
m2=1

∫ min(T ∗
m1

,τ ∗)

T ∗
m1−1

∫ min(T ∗
m2

,τ ∗)

T ∗
m2−1

w(x) w(y)

× cov
{

n
1
2
g WSg(x), n

1
2
g WSg(y)

}
dx dy

=
2∑

g=1

π1π2

πg

s+1∑
m1=1

s+1∑
m2=1

∫ min(T ∗
m1

,τ ∗)

T ∗
m1−1

∫ min(T ∗
m2

,τ ∗)

T ∗
m2−1

w(x) w(y) (1)

×
min(m1,m2)∑

ζ=1

k∑
i1=0

Sgi1(T ∗
1 )

Hgi1(T ∗
1 )

θgi1

k∑
i2=0

· · ·
k∑

iζ−1=0

Sgi1...iζ−1(T ∗
ζ−1)

Hgi1...iζ−1(T ∗
ζ−1)

θgi1...iζ−1 (2)

×
[

k∑
iζ =0

θgi1...iζ Sgi1...iζ (x)Sgi1...iζ (y)

∫ min(T ∗
ζ
,x,y)

T ∗
ζ−1

λgi1...iζ (u) du

Hgi1...iζ (u)Sgi1...iζ (u)
(3)

+
k∑

iζ =0

θgi1...iζ {Sgi1...iζ (x)−Sgi1...iζ−1.(x)}{Sgi1...iζ (y)−Sgi1...iζ−1.(y)}
]

dx dy. (4)

To reduce notation we define Ai1...iζ (x) = ∫ τ ∗

x w(y)Si1...iζ (y)dy, where Si1...iζ (y) takes on the
appropriate values in the appropriate areas of integration. Similarly, define Āi1...iζ−1(x) =∑k

iζ =0 θi1...iζ Ai1...iζ (x) and Di1...iζ (x) = Ai1...iζ (x) − Āi1...iζ−1(x). After further calculations
available in Murray (1994, pp. 71–72), we find

var(T2) = var

[(n1n2

n

) 1
2

∫ τ ∗

0
w(t) {WS1(t) − WS2(t)} dt

]

=
2∑

g=1

π1π2

πg

s+1∑
ζ=1

k∑
i1=0

Sgi1(T ∗
1 )

Hgi1(T ∗
1 )

θgi1 · · ·
k∑

iζ =0

θgi1...iζ

×
{∫ min(T ∗

ζ
,τ ∗)

u=T ∗
ζ−1

A2
gi1...iζ

(u)λgi1...iζ (u) du

Hgi1...iζ (u)Sgi1...iζ (u)
+ D2

gi1...iζ (T ∗
ζ−1)

}
.

This variance can be estimated similarly to the time independent covariate case. We sub-
stitute maximum likelihood estimates for the unknown quantities, including those found in
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Agi1...iζ (u) and Dgi1...iζ (T ∗
ζ−1). Then

ˆvar(T2) =
2∑

g=1

π̂1π̂2

π̂g

s+1∑
ζ=1

k∑
i1=0

Ŝgi1(T ∗
1 )

Ĥgi1(T ∗
1 )

θ̂gi1 · · ·
k∑

iζ =0

θ̂gi1...iζ

×
{∫ min(T ∗

ζ
,τ ∗)

u=T ∗
ζ−1

Â2
gi1...iζ

(u)d Ñgi1...iζ (u)ngi1...iζ

Ỹgi1...iζ (u)(Ỹgi1...iζ (u) − 
Ñgi1...iζ (u))
+ D̂2

gi1...iζ (T ∗
ζ−1)

}
.

It can be shown that the variance of T2 is asymptotically smaller than T1, when the in-
corporated covariates are prognostic and censoring is uninformative. The variance of T2

also decreases asymptotically with each additional prognostic covariate measurement in-
cluded in the estimate. If the covariate is related to neither the outcome nor the censoring
mechanism, the augmented test statistic is asymptotically equivalent to the original PF test.
Details regarding these results can be found in Murray’s 1994 thesis. Additional remarks
pertaining to asymptotic normality of the adjusted test statistic appear in the appendix.

4. Simulations

Simulations were constructed to investigate power and size properties for increasing levels
of censoring (40%, 50%, 60%) using the identity weight function. This weight function
allows the test statistic to be interpreted in relation to the average years of life saved during
the integrated time region while on treatment 1. To verify size in the baseline covariate
case, 1000 simulations were run under the null hypothesis using a sample size of 200 per
treatment group. A dichotomous covariate with θgi1 = .5 for i1 = 1, 2 was generated for
each treatment group g = 1, 2. Exponential failure times with failure hazards changing
fivefold depending on covariate strata were generated using parameters λg1 = .1 and
λg2 = .5, for g = 1, 2. Non-informative censoring was generated using the Uniform
distribution. Comparable size results of (0.047, 0.053, 0.050) and (0.049, 0.053, 0.047)
were observed for the T2 statistic and the PF statistic, respectively, in increasing order of
censoring percentages.

For 200 subjects per treatment with differing marginal survival functions, properties of the
test statistics incorporating time-independent covariates were also studied using the expo-
nential distribution with hazards increasing fivefold depending on covariate strata member-
ship. Within each treatment, the proportions falling into two different covariate strata were
0.5 with survival hazards within strata 1 and 2 of (0.15, 0.75) and (0.1, 0.5) for treatments
1 and 2, respectively. To study asymptotic relative efficiencies (AREs) and power of the
tests under informative censoring, simulations were generated with uniform censoring. In
this case both augmented and unaugmented tests are valid. For increasing censoring per-
centages, power of the original PF statistic was (0.60, 0.57, 0.55) as opposed to (0.66, 0.63,
0.60) incorporating the covariate information in T2 after 5000 Monte Carlo simulations.
Corresponding AREs calculated using closed form variances with Maple software were
(1.08, 1.08, 1.10) for these increasing censoring percentages, verifying that modest gains
in power and efficiency can be had by incorporating the covariates nonparametrically.
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Table 1. Relative MSE and bias under informative
censoring.

Relative MSE
Percent Pepe-Fleming

Censoring Bias N = 200 N = 500

40% 0.43 1.61 2.44
50% 0.67 2.09 3.68
60% 1.02 2.17 4.17

1. Calculations based on closed form results, 2 fold
increase in censoring hazards between covariate strata

Similar unreported results were seen in studying a second alternative where strata-specific
survival hazards matched across treatment groups with λg1 = .1 and λg2 = .5 for g = 1, 2,
but the proportion of patients falling into the two strata shifted slightly between the two
treatments with (θ11, θ12) = (0.65, 0.35) and (θ21, θ22) = (0.35, 0.65). This scenario could
occur if the time of the first prognostic biomarker measurement, T ∗

0 , occurs soon after the
treatment is given and before anyone has dropped out of the study. The treatment benefit is
then caused by the differing presence of the biomarker between the two treatments, rather
than differences between survival hazards in corresponding covariate strata.

Another issue worth investigation is the assessment of treatment effect when censoring
depends on the covariate. For the time independent covariate case we studied an instance
where informative censoring was present, but at a level perhaps too subtle to detect, with
parameters (λg1, λg2) = (0.1, 0.5) for g = 1, 2, (θ11, θ12) = (0.65, 0.35) and (θ21, θ22) =
(0.35, 0.65) and an exponential censoring distribution with censoring hazard for one strata
2.0 times greater than the censoring hazard for the other strata.

The estimate of the integrated difference in survival probabilities is unbiased for the
statistic augmented by covariates. However, the PF test will be affected through the mis-
measurement of the treatment effect. To compare the bias and variance of the augmented
test with those of the PF test, we looked at ratios of Mean Squared Error (MSE) of the test
statistics estimating

∫ 10
0 {S1(t) − S2(t)} dt . We also display the bias of the PF version of

this difference. All calculations are done in closed form using Maple software. In each case
the true difference in integrated survival probabilities is 1.30, or an average of 1.30 years
of life saved during the first 10 years on study. Table 1 shows results. The bias using
the PF statistic increases with the percentage of censoring in the data. The PF integrated
difference in survival is inflated by 33, 52 and 78 percent for the increasing percentages
of censoring. MSE ratios become higher when censoring is more informative and when
there is a higher percentage of censoring. Simulations were also conducted under the null
hypothesis when censoring was informative through the covariate as described above. For
increasing levels of censoring, the type I errors of the T2 statistic were (0.049, 0.062, 0.059)
while the observed PF statistic type I errors (0.172, 0.297, 0.425) increased in tandem with
the levels of censoring present in the data.

In the case a continuous covariate is related to the censoring mechanism a stratified
form of the covariate may not eliminate all bias when incorporated into the test statistic.
However, the following simulation suggests that any remaining bias will be small. We
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Table 2. Informative censoring with a continuous covariate.

T2Pepe-
Fleming 2 strata 3 strata 4 strata 5 strata

Bias of mean difference 0.574 0.194 0.099 0.060 0.039
Bias of standardized statistic 1.31 0.454 0.233 0.144 0.090
Size of test 0.253 0.072 0.056 0.052 0.051

1. 5000 replications, sample size of 200 each

simulated a continuous covariate along with dependent failure and censoring distributions
where only 50% of deaths were observed. For the failure distribution a fivefold difference
in hazard existed for subjects at the 25th percentile of the the covariate compared to subjects
at the 75th percentile of the covariate. Similarly for the censoring distribution a twofold
difference in hazard existed for subjects at these different percentiles. Bias of the difference
in integrated survival curves, bias of the standardized test statistic and size calculations were
calculated under the null hypothesis. Results are located in Table 2. Note that the size
of the test based on the augmented statistic is very close to 0.05 using merely 3 prognostic
covariate strata. But the PF test remains strongly affected by the informative censoring.
Murray and Tsiatis (1996) showed that most gains in survival estimation efficiency are made
after the continuous covariate is broken into 2 to 3 categories per covariate look across time.
This gain translates to the tests as well.

Further unreported simulations were conducted to study the behavior of the various test
statistics incorporating a time-dependent covariate. The reported baseline covariate sim-
ulations versus the unaugmented test are indicative of what occurs as additional covariate
measurements are included in the test. Additional efficiency gain occurs with each addi-
tional prognostic covariate look, with the degree of gain related to the prognostic value
added from measuring the covariate more than once across time. If the time-dependent co-
variate is connected to the censoring mechanism, bias will occur unless all relevant covariate
information is incorporated in the test statistic.

5. Example

We now apply the T2 statistic to an AIDS example where patients were assigned either low
dose (n = 262) or high dose (n = 262) zidovudine regimens, Fischl et al. (1990). For
illustration we analyze the data at an earlier calendar date, focusing on the first 22 months
on study, in order to provide our testing methods with an increased level of censoring (56%).

We use the PF and T2 statistics with the identity weight to detect whether one treatment
is superior to the other in terms of days of life saved up to τ = 22 months. In this trial
CD4 count and hemoglobin level were known to be modestly predictive of survival, so we
incorporate these covariates into the T2 test statistic in categorical form. Because of the
restrictive size in each of the two treatment groups, the number of strata constructed will be
conservative in order to maintain τ = 22 as a proper upper limit of integration. After mild
exploratory analysis, binary covariates were constructed at baseline and 200 days based on
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CD4 and hemoglobin measurements taken at these times. At the first analysis time, patients
with a better prognosis had either higher CD4 counts and moderate to high hemoglobin
counts or smaller CD4 counts compensated with high hemoglobin counts. Within each of
these two baseline strata, similar definitions for better prognosis patients were used based
on the CD4 and hemoglobin counts available at 200 days (T ∗

1 ). So Z1 = 1, 2 and Z2 = 1, 2
for a total of four possible covariate paths.

Among patients in the low dose treatment group who continued to be at risk at time T ∗
1

and were changing to a poorer prognosis path at that time, there was a slightly greater
tendency to become censored after participating in the study for 15 months as can be seen
in Figure 1. This difference in censoring patterns was not statistically significant, however
it is interesting to compare whether this late term censoring effect has any bearing on the
treatment difference detected. The binary covariate, Z1, had virtually no predictive value
until day 225 or so in this study. After day 225, both Z1 and Z2 are prognostic for survival.
Following the recommendations of Murray and Tsiatis (1996), we shall use the flexibility
allowed us in defining the time dependent covariates to gain the efficiency that is possible
to gain after day 225 from prognostic covariate information without the penalty of defining
unprognostic covariates early on. That is we shall define the new time dependent covariates
Z∗

1 = 1 and

Z∗
2 =


1 if (Z1 = 1 and Z2 = 1)
2 if (Z1 = 1 and Z2 = 2)
3 if (Z1 = 2 and Z2 = 1)
4 if (Z1 = 2 and Z2 = 2)

to incorporate into our analysis. At this analysis time during the first 22 months on study, the
PF statistic estimated the average number of days saved on the low dose treatment arm to be
31.50 ± 30.85 (p-value 0.0453). The T2 test statistic incorporating information only from
the baseline CD4 and hemoglobin predictor, Z1, estimated 31.24±30.76 days of life saved
(p-value 0.0465). Using the more flexible time-dependent covariate definitions Z∗

1 and Z∗
2 ,

the T2 test statistic estimated 31.98 ± 30.72 days of life saved (p-value 0.0413), where the
previous estimated average days of life saved are displayed along with their surrounding
95% confidence intervals. All inferences in this example were essentially similar using
these three test statistics, assuring us that the potential informative censoring observed in
Figure 1 had no discernible effect on the original unaugmented analysis. As a comparison,
the estimated days of life saved during the first 22 months on study was 39.28 ± 30.15
(p-value 0.0107) incorporating information from Z∗

1 and Z∗
2 at a later calendar time when

censoring during the first 22 months was reduced to 11.4%. Hence, all previous estimates
subject to 56% censoring were 7 or 8 days different from the estimate that used more
complete survival information.

6. Discussion

By incorporating additional information through prognostic covariates, the T2 statistic
asymptotically increases the efficiency of survival estimation and hence increases power
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Figure 1. Censoring survival probabilities conditional on Z1 and T > T ∗
1 in AIDS data example.

slightly above that of the PF statistic. A comparison of the closed-form asymptotic vari-
ances of the statistics, found in Murray’s thesis, confirms this. The proposed test statistic
also eliminates informative censoring when the informativeness is captured by the incor-
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porated covariates. Hence, the augmented test statistic provides a testing procedure for
use in cases where traditional nonparametric tests are subject to bias. All these results
are achieved without parametric assumptions. We have found that gains are dependent on
the prognostic value of the covariates incorporated as well as the level of censoring in the
data. Although the relationship between the variances of the augmented statistic and the PF
statistic is complicated, we have observed higher gains in efficiency for higher percentages
of censoring that reach a plateau and then decrease gradually as data become too sparse to
retrieve information regarding survival behavior in the various covariate strata.

Even more striking are results from the bias and MSE ratio calculations described in the
simulation section. With subtle informative censoring present in the data, large biases were
identified for the PF test. The level of information present in the censoring mechanism was
probably too low to detect in any small to moderately sized data set. This is a strong argument
for using our testing methods since informative censoring is handled more correctly in
questionable situations and there is potential to gain efficiency as well.

As demonstrated in the simulation section, these methods can be applied with continuous
covariate data fairly successfully by using categorical versions of these predictors. Most
bias from a continuous covariate source is eliminated using only 2-3 covariate strata as
seen in simulation. It has been our experience that most efficiency gain attainable from
the continuous covariates is accomplished with categorically formed covariates with few
strata. In point of fact, defining too many covariate strata for use with the test statistic
can be detrimental since the upper limit of integration, τ , is constrained to the study times
when all strata can produce consistent survival estimates. In defining covariate strata
when sample size is limited, we recommend incorporating additional longitudinal covariate
measurements rather than finely stratifying covariate information early on as a general rule.
If very many covariate strata are required at multiple time-points with limited data, one may
need to consider the appropriateness of making semi-parametric assumptions. Instead of
WS estimates one could use Robins and Rotnitzky survival estimates with semiparametric
inverse probability weights as described in section 2.1 in adjusting the PF statistic.
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8. Appendix

Remarks on Asymptotic Normality of the Adjusted Test Statistic

A formal proof of asymptotic normality is very complicated in the general case with time
dependent covariates. We give some flavor of the proof by looking at the case with baseline
covariates and considering the one-sample problem. In such a case we estimate S(t) =
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∑k
i=0 Si (t)θi using WS(t) = ∑k

i=0 Ŝi (t)θ̂i . The normalized estimator minus estimand can
be written as

n1/2
∫ τ ∗

0
ŵ(t){WS(t) − S(t)} dt =

k∑
i=0

∫ τ ∗

0
ŵ(t)n1/2{Ŝi (t) − Si (t)}θ̂i dt

+
k∑

i=0

n1/2(θ̂i − θi )

∫ τ ∗

0
ŵ(t)Si (t) dt. (5)

Using standard counting process representation for the Kaplan-Meier estimator, the first
term on the right hand side of equation (4) is equivalent in distribution to

n−1/2

[
k∑

i=0

ni∑
j=1

∫ τ ∗

0

Ai (t)d Mi j (t)

Si (t)Hi (t)

]
+ op(1),

where Ai (t) = ∫ τ ∗

t w(u)Si (u) du, and op(1) corresponds to a term that converges in prob-
ability to zero. With respect to the usual filtration, F(t), which includes the covariates and
all the failure and censoring information up to time t , the above statistic is a realization of
a martingale process that by standard application of the martingale central limit theorem
is asymptotically normal with mean zero. The second term on the right hand side of (4)
is a linear combination of n1/2(θ̂i − θi ), which is also asymptotically normal with mean
zero, and another op(1) term. Since the estimates θ̂i are functions of the covariates they are
F(0) measurable and hence uncorrelated with the first term on the rhs of (4). Consequently,
n1/2

∫ τ ∗

0 ŵ(t){WS(t) − S(t)} dt is asymptotically normal with mean zero. This argument
can be extended to the time-dependent covariate case using an induction argument together
with appropriate conditioning arguments.
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