
Machine Learning, 13, 285-319 (1993) 
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

What Makes a Problem Hard for a Genetic Algorithm? 
Some Anomalous Results and Their Explanation 

STEPHANIE FORREST FORREST@CS.UNM. EDU 
Department of Computer Science, University of New Mexico, Albuquerque, NM 87181-1386 

MELANIE MITCHELL* MM@SANTAFE. EDU 

Artificial Intelligence Laboratory, University of Michigan, Ann Arbor, MI 48109-2110 

Abstract. What makes a problem easy or hard for a genetic algorithm (GA)? This question has become increas- 
ingly important as people have tried to apply the GA to ever more diverse types of problems. Much previous 
work on this question has studied the relationship between GA performance and the structure of a given fitness 
function when it is expressed as a Walsh polynomial. The work of Bethke, Goldberg, and others has produced 
certain theoretical results about this relationship. In this article we review these theoretical results, and then dis- 
cuss a number of seemingly anomalous experimental results reported by Tanese concerning the performance of 
the GA on a subclass of Walsh polynomials, some members of which were expected to be easy for the GA to 
optimize. Tanese found that the GA was poor at optimizing all functions in this subclass, that a partitioning of 
a single large population into a number of smaller independent populations seemed to improve performance, 
and that hillclimbing outperformed both the original and partitioned forms of the GA on these functions. These 
results seemed to contradict several commonly held expectations about GAs. 

We begin by reviewing schema processing in GAs. We then give an informal description of how Walsh analysis 
and Bethke's Walsh-schema transform relate to GA performance, and we discuss the relevance of this analysis 
for GA applications in optimization and machine learning. We then describe Tanese's surprising results, examine 
them experimentally and theoretically, and propose and evaluate some explanations. These explanations lead to 
a more fundamental question about GAs: what are the features of problems that determine the likelihood of suc- 
cessful GA performance? 

Keywords. Genetic algorithms, Walsh analysis, Tanese functions, deception. 

1. Introduct ion 

The  genetic a lgor i thm (GA) is a machine- learning technique, originated by Hol land (1975), 

loosely based on the principles of  genetic variat ion and natural selection. GAs have become  

increas ingly  popular  in recent  years as a me thod  for solving complex  search p rob lems  in 

a large number  o f  different  disciplines.  The  appeal  of  GAs comes  f rom their  s implici ty 

and e legance  as a lgor i thms as wel l  as f rom their  power  to discover  good solutions rapidly 

for difficult high-dimensional  problems. In addition, GAs are idealized computational models  

of  evolut ion that are being used to study quest ions in evolut ionary b io logy and popula t ion  

genetics (Bergman & Feldman,  1990). 

In the s implest  form of  the GA,  bit  strings play the role  of  ch romosomes ,  with individual  

bits playing the role  o f  genes.  An  initial populat ion of  individuals  (bit strings) is generated 

randomly, and each individual receives a numerical  evaluation that is then used to make  mul-  

tiple copies  of  higher-fi tness individuals  and to el iminate lower-fitness individuals.  Genet ic  

*Current address: Santa Fe Institute, 1660 Old Pecos Tr., Suite A, Santa Fe, NM 87501. 

129 



286 S. FORREST AND M. MITCHELL 

operators such as mutation (flipping individual bits) and crossover (exchanging substrings of 
two parents to obtain two offspring) are then applied probabilistically to the population to 
produce a new population, or generation, of individuals. The GA is considered to be suc- 
cessful if a population of highly fit individuals evolves as a result of iterating this procedure. 

The GA has been used in many machine-learning contexts, such as evolving classifica- 
tion rules (e.g., Packard, 1990; De Jong & Spears, 1991), evolving neural networks (e.g., 
Miller, Todd, & Hegde, 1989; Whitley, Dominic, & Das, 1991), classifier systems (e.g., 
Holland, 1986; Smith, 1980), and automatic programming (e.g., Koza, 1990). In many 
of these cases there is no closed-form "fitness function"; the evaluation of each individual 
(or collection of  individuals) is obtained by "running" it on the particular task being learned. 
The GA is considered to be successful if an individual, or collection of individuals, evolves 
that has satisfactorily learned the given task. The lack of a closed-form fitness function 
in these problems makes it difficult to study GA performance rigorously. Thus, much of 
the existing GA theory has been developed in the context of "function optimization," in 
which the GA is considered to be successful if it discovers a single bit string that represents 
a value yielding an optimum (or near optimum) of the given function. An introduction 
to GAs and GA theory is given by Goldberg (1989c), and many of the results concerning 
GA theory and applications can be found in the various ICGA proceedings (Grefenstette, 
1985; Grefenstette, 1987; Schaffer, 1989; Belew & Booker, 1991), in Davis (1987, 1991), 
and in the two previous special issues of Machine Learning (Goldberg & Holland, 1988a; 
De Jong, 1990a). 

GAs have been successfully applied to many difficult problems, but there have been some 
disappointing results as well. In cases both of success and failure, there is often little detailed 
understanding of why the GA succeeded or failed. Given the increasing interest in applying 
the GA to an ever wider range of problems, it is essential for the theory of GAs to be more 
completely developed so that we can better understand how the GA works and when it 
will be most likely to succeed. 

In this article, we focus on a specific, initially surprising instance of GA failure that 
brings up several general issues related to this larger goal. We describe and explain a number 
of seemingly anomalous results obtained in a set of experiments performed by Tanese (1989a) 
using the GA to optimize a particular subset of Walsh polynomials. These polynomials 
were chosen because of their simplicity and the ease with which they can be varied, and 
because of the relationship between GAs and Walsh functions (see section 3). They were 
expected to present a spectrum of difficulty for the GA. However, the results of the GA 
on these polynomials were not at all as expected: for example, the GA's performance was 
strikingly poor on all of the functions included in Tanese's experiments, and was significantly 
worse than the performance of a simple iterated hillclimbing algorithm. Our analysis of 
these apparently surprising results explains the failure of the GA on these specific func- 
tions, and it makes the following more general contributions: (1) we identify some previously 
ignored features of search spaces that can lead to GA failure; (2) we demonstrate that there 
are a number of different, independent factors that contribute to the difficulty of search 
for a GA; and (3) we conclude that any successful research effort into the theory of GA 
performance must take into account this multiplicity rather than concentrating On only one 
factor (e.g.,deception; see Goldberg, 1989b; Liepins & Vose, 1990; Whitley, 1991; Das 
& Whitley, 1991). 

130 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 287 

While this article deals with learning real-valued functions on bit strings, the discussion 
and results presented here are relevant to researchers using GAs in other contexts as well, 
for a number of reasons. First, it is important for researchers using a particular machine- 
learning method (here, GAs) to know what analysis tools exist and what use they have. 
Schemas and Walsh analysis are such tools, and this article provides a review of these aimed 
at readers with little or no previous knowledge of GA theory. Second, Tanese's results had 
seemingly surprising implications for the relative effectiveness of partitioned versus tradi- 
tional GAs and for the relative effectiveness of hillclimbing versus either form of the GA. 
This article explains these results and in so doing, illuminates the particular aspects of 
Tanese's applications problems that allowed these implications to hold. Finally, this article 
makes a number of more general points about the GA related to De Jong's advice for using 
GAs in the context of machine learning: 

The key point in deciding whether or not use genetic algorithms for a particular problem 
centers around the question: what is the space to be searched? If that space is well- 
understood and contains structure that can be exploited by special-purpose search tech- 
niques, the use of genetic algorithms is generally computationally less efficient. If the 
space to be searched is not so well understood and relatively unstructured, and i f  an 
effective GA representation of that space can be developed, then GAs provide a surpris- 
ingly powerful search heuristic for large, complex spaces (De Jong, 1990b, p. 351, italics 
added). 

It is of central importance to understand what constitutes "an effective GA representation," 
We address this question by discussing some more general implications of Tanese's results 
for studying how the structure of a search space is related to the expected performance 
of the GA. 

In the following sections we review schema processing in GAs, give an overview of the 
relationship between schema processing and Walsh polynomials, and describe how Walsh 
analysis has been used to characterize the difficulty of functions for the GA. W~ then describe 
the particular functions Tanese used in her experiments (the Tanesefunctions), and discuss 
and explain some of her anomalous results. Finally, we discuss the more general question 
of how to characterize problems in terms of the likelihood of successful GA performance 
(and the role of GA-deception in such characterizations). This article presents details from 
experiments that were summarized in Forrest and Mitchell (1991). 

2. Genetic algorithms and schema processing 

The notion of a schema is central to understanding how GAs work. Schemas are sets of 
individuals in the search space, and the GA is thought to work by directing the search towards 
schemas containing highly fit regions of the search space. The notion of schema processing 
is important in any GA application, but for the purpose of this article, we will restrict our 
discussion to searches over bit strings. Much of the discussion given here also applies to 
more general representations. 

131 



288 S. FORREST AND M. MITCHELL 

In the case of bit strings, a schema can be expressed as a template, defined over the 
alphabet {0, 1, *}, that describes a pattern of bit strings in the search space {0, 1} t (the 
set of bit strings of length l). For each of the l bit-positions, the template either specifies 
the value at that position (1 or 0), or indicates by the symbol • (referred to as don't care) 
that either value is allowed. 

For example, consider the two strings A and B: 

A = 1 0 0 1 1 1  

B = 0 1 0 0 1 1 .  

There are eight schemas that describe the patterns these two strings have in common, in- 
cluding: ****11, **0"**, **0"*1, **0"11. 

A bit string x that matches a schema s's pattern is said to be an instance of s (sometimes 
written as xes); for example, 00 and 10 are both instances of *0. In schemas, l's and O's 
are referred to as defined bits; the order of a schema is simply the number of defined bits 
in that schema. The defining length of a schema is the distance between the leftmost and 
rightmost defined bits in the string. For example, the defining length of **0"11 is 3, and 
the defining length of **0"** is 0. 

Schemas can be viewed as defining hyperplanes in the search space {0, 1} l, as shown 
in figure 1. Figure 1 shows four hyperplanes (corresponding to the schemas 0"** 1"*** 
*0"** and *1"**). Any point in the space is simultaneously an instance of two of these 
schemas. For example, the point in the figure is a member of both 1"*** and *0"** (and 
also of 10"**). 

The fitness of any bit string in the population gives some information about the average 
fitness of the 21 different schemas of which it is an instance (where I is the length of the 
string), so an explicit evaluation of a population of M individual strings is also an implicit 
evaluation of a much larger number of schemas. That is, at the explicit level the GA searches 
through populations of bit strings, but we can also view the G, qs search as an implicit schema 
sampling process. At the implicit level, feedback from the fitness function, combined with 
selection and recombination, biases the sampling procedure over time away from those 
hyperplanes that give negative feedback (low average fitness) and towards those that give 
positive feedback (high average fitness). 

According to the building blocks hypothesis (Holland, 1975; Goldberg, 1989c), the GA 
initially detects biases in low-order schemas (those with a small number of defined bits), 

*d*** d**** 

i**** *1 '** 
Search Space 

Figure 1. Schemas define hyperplanes in the search space. 

132 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 289 

and coverages on this part of the search space. Over time, it detects biases in higher-order 
schemas by combining information from low-order schemas via crossover, and (if this proc- 
ess succeeds) it eventually converges on the part of the search space that is most fit. The 
building blocks hypothesis states that this process is the source of the GA's power as a 
search and optimization method. An important theoretical result about GAs is the Schema 
Theorem (Holland, 1975; Goldberg, 1989c), which guarantees that over time the observed 
best schemas will receive (in expectation) an exponentially increasing number of samples. 

The GA therefore exploits biases that it finds by focusing its search more and more nar- 
rowly on instances of fit schemas, and it explores the search space using the heuristic that 
higher-order schemas with high average fitness are likely to be built out ,of lower-order 
schemas with high average fitness. Reproduction is the exploitation mechanism, and genetic 
operators--usually crossover and mutation--are the exploration mechanisms. (Holland pro- 
poses that mutation is a much less powerful exploration mechanism than crossover, prevent- 
ing information from being permanently lost from the population (Holland, 1975). Accord- 
ing to the Schema Theorem, exploration predominates early on in a run of the GA, but 
over time, the GA converges more and more rapidly on what it has detected as the most 
fit schemas, and exploitation becomes the dominant mechanism. 

This strong convergence property of the GA is a two-edged sword. On the one hand, 
the fact that the GA can identify the fittest part of the space very quickly is a powerful 
property; on the other hand, since the GA always operates on finite-size populations, there 
is inherently some sampling error in the search, and in some cases the GA can magnify 
a small sampling error, causing premature convergence (Goldberg, 1989c). Also, in some 
cases strong convergence is inappropriate, for example, in classifier systems (ttolland, 1986), 
in which the GA is trying to evolve a set of co-adapted rules, each one specialized for 
a specific but different task, rather than a population of similar rules. 

As an example of the relevance of schemas to function optimization, consider the func- 
tion shown in figure 2. The function is defined over integers in the interval [0, 31] (here, 
l = 5), so the x-axis represents the bit string argument (input to the function), and the y-axis 

0"*** 

*0"** 

1"*** 

F(x) 3 

2 

1 

0 

-1 

-2 

-3 

Fitness 

l i t  

X 

Figure 2. Example function. The solid line indicates the function, and the dashed lines indicate some schemas. 
The shaded region is the most fit region of the space. 

133 



290 s. FORREST AND M. MITCHELL 

shows the function's value, or fitness. In this example the x value will always be between 
0 and 31. For example, the string 10000 would be interpreted as 16, and 01000 would be 
interpreted as 8.1 Three schemas are displayed at the top of the plot: the schema 0"*** 
(top dashed line) includes all points less than 16, the schema 1"*** (bottom dashed line) 
includes all points greater than or equal to 16, and the schema *0"** (middle dashed lines) 
specifies the intervals [0, 8) and [16, 24). Using this example it is easy to see how an indi- 
vidual that was an instance of the schema 0"*** could be combined through crossover with 
an instance of the schema *0"** to yield an instance of 00"** which corresponds to the 
most fit region of the space (the shaded region in figure 2). That is, 0"*** and *0"** are 
partial solutions. 

Schemas induce a partitioning of the search space (Holland, 1988). For example, as seen 
in figure 1, the partition d**** (where "d" means "defined bit") divides the search space 
into two halves, corresponding to the schemas 1"*** and 0"*** That is, the notation d**** 
represents the partitioning that divides the space into two halves consisting of schemas 
with a single defined bit in the leftmost position. Similarly, the partition *d*** divides the 
search space into a different two halves, corresponding to the scherrms *1"** and *0"** 
The partition dd*** represents a division of the space into four quarters, each of which 
corresponds to a schema with the leftmost two bits defined. Any partitioning of the search 
space can be written as a string in {d, .}t, where the order of the partition is the number 
of defined bits (number of d's). Each partitioning of n defined bits contains 2 n partition 
elements; each partition element corresponds to a schema. Each different partitioning of 
the search space can be indexed by a unique bit string in which l's correspond to the parti- 
tion's defined bits and O's correspond to the non-defined bits. For example, under this enu- 
meration, the partition d*** . . .  * has indexj = 1000 . . .  0, and the partition dd*** . . .  * 
has indexj  = 11000 . . .  0. 

3. Walsh-schema analysis 

Two goals for a theory of genetic algorithms are (1) to describe in detail how schemas are 
processed, and (2) to predict the degree to which a given problem will be easy or difficult 
for the GA. Bethke's dissertation (1980) addressed these issues by applying Walsh functions 
(Walsh, 1923) to the study of schema processing in GAs. In particular, Bethke developed 
the Walsh-schema transform, in which discrete versions of Walsh functions are used to 
calculate schema average fitnesses efficiently. He then used this transform to characterize 
functions as easy or hard for the GA to optimize. Bethke's work was further developed 
and explicated by Goldberg (1989a, 1989b). In this section we introduce Walsh functions 
and Walsh polynomials, review how the Walsh schema transform can be used to understand 
GAs, and sketch Bethke's use of this transform for characterizing different functions. Our 
discussion is similar to that given by Goldberg (1989a). 

3.L Walsh functions, Walsh decompositions, and Walsh polynomials 

Walsh functions are a complete orthogonal set of basis functions that induce transforms 
similar to Fourier transforms. However, Walsh functions differ from other bases (e.g., 

134 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 291 

trigonometric functions or complex exponentials) in that they have only two values, +1 
and -1.  Bethke demonstrated how to use these basis functions to construct functions with 
varying degrees of difficulty for the GA. In order to do this, Bethke used a discrete version 
of Walsh's original continuous functions. These functions form an orthogonal basis for real- 
valued functions defined on {0, 1} l. 

The discrete Walsh functions map bit strings x into {1, -1}.  Each Walsh function is asso- 
ciated with a particular partitioning of the search space. The Walsh function corresponding 
to the jth partition (where, as described above, the index j is a bit string) is defined as 
follows (Bethke, 1980; Tanese, 1989a): 

~j(x) = { 
1 if x A j has even parity (i.e., an even number of  l ' s )  

- 1 otherwise. 

Here, A stands for bitwise AND. Notice that ~,j(x) has the property that the only bits 
in x that contribute to its value are those that correspond to l's in j .  

Plots of the four Walsh functions defined on two bits are given in figure 3. 
Since the Walsh functions form a basis set, any function F(x) defined on {0, 1} 1 can 

be written as a linear combination of  Walsh functions: 

2 / - 1  

F(x) = ~_a ~oj~bj(x) 
j=o 

where x is a bit string, l is its length, and each ~oj is a real-valued coefficient called a Walsh 
coefficient. For example, the function shown in figure 2 can be written as 

F(x) = 2~bmooo(X) + ~10o0o(x)- 

The Walsh coefficients o~j of a given function F can be obtained via the Walsh transform, 
which is similar to a Fourier transform. The representation of  a function F in terms of 
a set of Walsh coefficients ~oj is called F ' s  Walsh decomposition or Walsh polynomial. In 
this and the next subsection, we will explain how the Walsh transform works and discuss 
the close relationship between Walsh analysis and schemas. 

As a simple example of the Walsh transform, consider the function F(x) = x 2, where 
x is a two-bit string. The space of two-bit strings can be partitioned into sets of schemas 
in four different ways, as illustrated in figure 4. 

ig (x) II/(x) II/(x) ~ (x) 
O0 01 1 0  11 

. . . .  -,1 -,l -,1 
00 01 10 11 00 01 I0 11 00 01 10 11 00 01 10 11 

Figure 3. Plots of the four Walsh functions defined on two bits. 

135 



292 S. FORREST AND M. MITCHELL 

O0 Ol 

i0 ii 

. / 

O0 Ol 

i0 Ii 

D. Partition = dd, j = 11 A. Par t i t ion=**, j=00 B. Parti t ion=*d,j=01 C. Partition = d * , j =  10 

Figure 4. Four different partitionings of the space of two-bit strings. 

The Walsh transform works by transforming F(x) into the summed series of  Walsh terms 
F(x) zz-1 = E)= 0 ¢oj~j(x), in which increasingly longer partial sums provide progressively 
better estimates of the value of F(x). The terms in the sum are obtained from the average 
values of F in progressively smaller partition elements. 

In this example we will use Walsh analysis to get better and better estimates for F(11) 
(= 9). 

Consider first the average value of F on the entire space, which is the same as the average 
fitness u(**) of the schema ** in the partition j = 00 (part A of  figure 4): 

u(**) = /? = (F(00) + F(01) + F(10) + F(11))/4 = 14/4. 

Let COoo = u(**) = F.. This could be said to be a "zeroth-order" estimate of F(11) (or of 
F(x) for any x). 

Now to get a better estimate for F(11), some corrections need to be made to the zeroth- 
order estimate. One way to do this is to look at the average value of F in a smaller partition 
element containing F(1 D--say, *1 (the right-hand element shown in part B of  figure 4). 
The average value of  the schema *1 is 

u(*l) = O:o0 - correction,i; 

that is, it is equal to the average of the entire space minus the deviation of u(*l) from the 
global average. Likewise, the average value of the complement schema *0 is 

u(*0) = COoo + correction,i, 

since u(*l) + u(*0) = 2u(**) = 2O:o0. (The assignment of + or - to correction,1 here 
is arbitrary; it could have been reversed.) The magnitude of the correction is the same 
for both schemas ('1 and *0) in partition *d. Call this magnitude wOl. A better estimate 
for F(11) is then woo - co01. 

The same thing can be done for the other order-1 schema containing 11: 1" Let o:10 
be the deviation of  the average value in d* from the global average. Then, 

u(l*) = o~0o - ~1o. 

An even better estimate for F( I  1) is woo - Wol - ~Olo. This a first-order estimate (based 
on one-bit schemas). The two correction terms are independent of each other, since they 

136 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 293 

correc t  for differences in average values o f  schemas def ined on different  bits, so we sub- 

tract  them both.  I f  the funct ion were  linear, this would  give the exact value o f  F(11) .  (In 

some  sense, this is what  it means for a funct ion def ined on bit  strings to be  linear.) 

However ,  since F(x) = x 2 is nonlinear,  one addit ional  correc t ion  needs to be  made  to 

account  for the di f ference be tween  this est imate and the average of  the order-2  schema,  

the string 11 itself: 

F ( l l )  = OJoo - OJol - COlo + correctionil. 

The  magni tude  of  the order-2  cor rec t ion  t e rm is the same for each F(x). This can be  

shown as follows. We know that 

F ( l l )  = COoo - O~ol - O~1o + correctionml, 

and by a s imilar  analysis, 

F(10)  = Woo + coOl - ~Olo + correctionmo. 

Adding both sides o f  these two equations,  we get  

F ( l l )  + F(10)  = 2~Ooo - 2colO + correctionlm + correction lo. 

But F ( l l )  + F(10)  = 2u(1") (by defini t ion of  u(l*)), so we have 

F ( l l )  + F(10)  = 2 u ( l * )  = 2O~oo - 2Wlo, 

since, as we discussed above, u ( l * )  = O~oo - OJlo. Thus,  correction11 = -correctionlo. 
Similarly,  

F(01)  = ~Ooo - ~Oo1 + ~1o + correctionol, 

SO, 

F ( l l )  + F(01)  = 2~Ooo - 

and since 

2coOl + correctionll + correction Ol, 

F ( l l )  + F(01)  = 2 u ( * l )  = 2woo - 2o~Ol, 

we have correction11 = -correctionol. 
Finally, 

F(00)  = COoo + COol + W]o + correctionoo, 

SO, 

F(00)  + F(01)  = 2O~oo + 26Ol 0 + correctionll + correctionol, 

137 



294 S. F O R R E S T  A N D  M .  M I T C H E L L  

and since 

F(00) + F(01) = 2u(0*) = 20:00 + 20:20, 

we have correctionoo = -correct ionoa.  Thus the magnitudes of the second-order correc- 
tion terms are all equal. Call this common magnitude 0:21. 

We have shown that, for this simple function, each partition j '  has a single 0:j, associated 
with it, representing the deviation of the real average fitness of  each schema in partition 
j '  from the estimates given by the combinations of lower-order 0:j's. The magnitude of this 
deviation is the same for all schemas in partitionj'.  This was easy to see for the first-order 
partitions, and we showed that it is also true for the second-order partitions (the highest- 
order partitions in our simple function). In general, for any partition j ,  the average fitnesses 
of  schemas are mutually constrained in ways similar to those shown above, and the unique- 
ness of 0:j can be similarly demonstrated for js  of any order. 

Table 1 gives the exact Walsh decomposition for each F(x) .  
We have now shown how function values can be calculated in terms of Walsh coefficients, 

which represent progressively finer correction terms to lower-order estimates in terms of 
schema averages. A converse analysis demonstrates how the 0:j's are calculated: 

0:o0 = u ( * * )  

= (0 + 1 + 4 + 9)/4 
= 14/4 

0 :01  = 0 : 0 0  - -  u(*l) 
= (0 + 1 + 4 + 9)/4 - (1 + 9)/2 
= (0 - 1 + 4 - 9)/4 
= - 6 / 4  

0:1o = 0:00 - u ( l * )  

-- (0 + 1 + 4 + 9)/4 - (4 + 9)/2 
= ( 0  + 1 - 4 - 9 ) / 4  

- -  - 1 2 / 4 .  

0:1a = F(1t)  - first-order estimate 

= F ( l l )  - (0:00 - o:Ol - 0:1o) 
= 9 - (14/4 + 6/4 + 12/4) 
= 4 / 4 .  

Table 1. Expressions for F(x) for 
each xe{0, 1} 2. 

g ( 0 0 )  = 6o00 + co01 + colO + COll. 

F ( 0 1 )  = co00 - co01 + c°10 - C°l l '  

F ( 1 0 )  = co00 + o:01 - o:10 - col l .  

F ( l l )  = Woo - co01 - COlo + c°11" 

138 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 295 

And to check: 

F ( l l )  = O~oo - wOl - wlO + Wll = 14/4 + 6/4 + 12/4 + 4/4 = 9. 

In general, 

2 l -1  
1 wj = -~ ~ F(x)~/j(x). 

x=O 

This is the Walsh transform (it is derived more formally in Goldberg (1989a)). Once the 
60j's have been determined, F can be calculated as 

2 l -1  

v(x) = E wj j(x). 
j=O 

This expression is called the Walsh polynomial representing F(x). 
How does one decide whether or not a deviation term wj is added or subtracted in this 

expression? The answer to this question depends on some conventions: e.g., whether u(*l) 
is said to be Woo - w01 or Woo + w01. Once these conventions are decided, they impose 
constraints on whether higher-order Walsh coefficients will be added or subtracted in the 
expression for F(x). I f x  happens to be a member of a schema s whose average deviates in 
a positive way from the lower-order estimate, then the positive value of the ~ correspond- 
ing to s's partition goes into the sum. All that is needed is a consistent way of assigning 
these signs, depending on the partition j and what element o f j  a given bit string x is in. 
The purpose of  the Walsh functions ~j(x) is to provide such a consistent way of assigning 
signs to wj's, via bitwise AND and parity. This is not the only possible method; a slightly 
different method is given by Holland for his hyperplane transform (Holland, 1988)--an 
alternative formulation of the Walsh-schema transform, described in the next section. 

3.2. The Walsh-schema transform 

There is a close connection betwen the Walsh transform and schemas. The Walsh-schema 
transform formalizes this connection. In the previous section, we showed that, using Walsh 
coefficients; we can calculate a function's value on a given argument x using the average 
fitnesses of schemas of which that x is an instance. An analogous method, proposed by 
Bethke (1980), can be used to calculate the average fitness u(s) of a given schema s, e.g., *1. 
Bethke called this method the Walsh-schema transform. This transform gives some insight 
into how schema processing is thought to occur in the GA. It also allowed Bethke to state 
some conditions under which a function will be easy for the GA to optimize, and allowed 
him to construct functions that are difficult for the GA because low-order schemas lead 
the search in the wrong direction. 

Formal derivations of the Walsh-schema transform are given by Bethke (1980), Goldberg 
(1989a), and Tanese (1989a). Here we present the transform informally. 

139 



296 S. FORREST AND M. M I T C H E L L  

Using the same example as before, the average fitness of  the schema *1 is u(*l) = 6000 
- 6001; this comes from the definition of 6001- The value of u(*l) does not depend on, say, 
6010; it depends only on Walsh coefficients of partitions that either contain *1 or contain 
a superset of *1 (e.g., ** D *). In general a partition j is said to subsume a schema s 
if it contains some schema s '  such that s '  D s. For example, the three-bit schema 10" 
is subsumed by four partitions: dd* d** *d* and *** which correspond to t h e j  values 
1 10, 100, 010, and 000, respectively. Notice tha t j  subsumes s if and only if each defined 
bit in j (i.e., each 1) corresponds to a defined bit in s (i.e., a 0 or a 1, not a *). 

The Walsh-schema transform expresses the fitness of a schema s as a sum of progressively 
higher-order Walsh coefficients 60j, analogous to the expression of F(x) as a sum of pro- 
gressively higher-order 60j's. Just as each 60j in the expression for F(x) is a correction term 
for the average fitness of some schema in partition j containing x, each 60j in the expres- 
sion for u(s) is a correction term, correcting the estimate given by some lower-order schema 
that contains s. The difference is that for F(x), all 2 l partition coefficients must be summed 
(although some of them may be zero). But to calculate u(s), only coefficients of  the sub- 
suming partitions ("subsuming coefficients") need to be summed. 

The example two-bit function given above was too simple to illustrate these ideas, but 
an extension to three bits suffices. Let F(x) = x 2, but let x be defined over three bits in- 
stead of two. The average fitness of the schema *01 is a sum of the coefficients of partitions 
that contain the schemas *** **1, *0" and *01. An easy way to determine the sign of a 
subsuming coefficient 60j is to take any instance of s and to compute t~j(x). This value will 
be the same for all xes, as long as j is a subsuming partition, since all the ones in j are 
matched with the same bits in any instance of s. For example, the partition **d ( j  = 001) 
subsumes the schema *11, and ~b001(x) = -1  for any xe * 11. Using a similar method 
to obtain the signs of the other coefficients, we get 

u (* l l )  = 60oO0 - wool - 60010 + 60011. 

In general, 

u(s) = ~ 607b(s), 
jJ j  subsumes  s 

where ~j(s) is the value of ~,j(x) (=  +1 or -1)  for any xes. 
The sum 

u (* l l )  = wooo - W0Ol - 60010 + 60011 

gives the flavor of how the GA actually goes about estimating u(* 1 1). To review, a popula- 
tion of strings in a GA can be thought of  as a number of  samples of  various schemas, and 
the GA works by using the fitness of the strings in the population to estimate the fitness 
of schemas. It exploits fit schemas via reproduction by allocating more samples to them, 
and it explores new schemas via crossover by combining fit low-order schemas to sample 
higher-order schemas that will hopefully also be fit. In general there are many more instances 
of  low-order schemas in a given population than high-order schemas (e.g., in a randomly 

140 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 297 

generated population, about half the strings will be instances of 1"* . . .  * but very few, 
if any will be instances of 111 . . .  1). Thus accurate fitness estimates will be obtained 
much earlier for low-order schemas than for high-order schemas. The GA's estimate of 
a given schema s can be thought of as a process of gradual refinement, where the algorithm 
initially bases its estimate on information about the low-order schemas containing s, and 
gradually refines this estimate from information about higher- and higher-order schemas 
containing s. Likewise, the terms in the sum above represent increasing refinements to the 
estimate of how good the schema *11 is. The term ~O0o 0 gives the population average (cor- 
responding to the average fitness of the schema ***) and the increasingly higher-order ~0j's 
in the sum represent higher-order refinements of the estimate of *11 's fitness, where the 
refinements are obtained by summing coj's corresponding to higher- and higher-order par- 
titions j containing *11. 

Thus, one way of describing the GA's operation on a fitness function F is that it makes 
progressively deeper estimates of what F's Walsh coefficients are, and biases the search 
towards partitions j with high-magnitude c0j's, and to the partition elements (schemas) for 
which these correction terms are positive. 

~3.3. The Walsh-schema transform and GA-deceptive functions 

Bethke (1980) used Walsh analysis to partially characterize functions that will be easy for 
the GA to optimize. This characterization comes from two facts about the average fitness 
of a schema s. First, since u(s) depends only on ~0j's for which j subsumes s, then if the 
order o f j  (i.e., the number of l's in j)  exceeds the order of s (i.e., the number of defined 
bits in s), then ~0j does not affect u(s). For example, o~ m does not affect u(*ll):  * l l ' s  
two instances 011 and 111 receive opposite-sign contributions from co m.  Second, if the 
defining length of j  (i.e., the distance between the leftmost and rightmost l's in j)  is greater 
than the defining length of s (i.e., the distance between the leflmost and rightmost defined 
bits in s), then u(s) does not depend on ¢0j. For example, c0101 does not affect u(* l l ) - -  
again, since u(*l 1)'s two instances receive opposite-sign contributions from c0101. 

Bethke suggested that if the Walsh coefficients of a function decrease rapidly with 
increasing order and defining length of the j 's-- that  is, the most important coefficients 
are associated with short, low-order partitions--then the function will be easy for the GA 
to optimize. In such cases, the location of the global optimum can be determined from 
the estimated average fitness of low-order, low-defining-length schemas. As we described 
above, such schemas receive many more samples than higher-order, longer-defining-length 
schemas: "low order" means that they define larger subsets of the search space and "short 
defining length" means that they tend to be kept intact under crossover. Thus the GA can 
estimate their average fitnesses more quickly than those of higher-order, longer-defining- 
length schemas. 

Thus, all else being equal, a function whose Walsh decomposition involves high-order 
j ' s  with significant coefficients should be harder for the GA to optimize than a function 
with only lower-orderj's, since the GA will have a harder time constructing good estimates 
of the higher-order schemas belonging to the higher-order partitions j. 

141 



298 s. FORREST AND M. MITCHELL 

Bethke's analysis was not intended as a practical tool for use in deciding whether a given 
problem will be hard or easy for the GA. As was mentioned earlier, the fitness functions 
used in many GA applications are not of a form that can be easily expressed as a Walsh 
polynomial. And even if a function F can be so expressed, a Walsh transform of F requires 
evaluating F at every point in its argument space (this is also true for the "Fast Walsh 
Transform" (Goldberg, 1989a)), and is thus an infeasible operation for most fitness func- 
tions of interest. It is much more efficient to run the GA on a given function and measure 
its performance directly than to decompose the function into Walsh coefficients and then 
determine from those coefficients the likelihood of GA success. However, Walsh analysis 
can be used as a theoretical tool for understanding the types of properties that can make 
a problem hard for the GA. For example, Bethke used the Walsh-schema transform to con- 
struct functions that mislead the GA, by directly assigning the values of Walsh coefficients 
in such a way that the average values of low-order schemas give misleading information 
about the average values of higher-order refinements of those schemas (i.e., higher-order 
schemas contained by the lower-order schemas). Specifically, Bethke chose coefficients 
so that some short, low-order schemas had relatively low average fitness, and then chose 
other coefficients so as to make these low-fitness schemas actually contain the global opti- 
mum. Such functions were later termed "deceptive" by Goldberg (1987, 1989b, 1991), who 
carrried out a number of theoretical studies of such functions. Deception has since been 
a central focus of theoretical work on GAs. Walsh analysis can be used to construct prob- 
lems with different degrees and types of deception, and the GA's performance on these 
problems can be studied empirically. The goal of such research is to learn how deception 
affects GA performance (and thus why the GA might fail in certain cases), and to learn 
how to improve the GA or the problem's representation in order to improve performance. 

In section 9, we further discuss deception and its relation to the goal of characterizing 
functions as hard or easy for the GA. 

4. Tanese functions 

Bethke's method of creating functions by directly assigning the values of Walsh coefficients 
permitted the straightforward construction of functions that present different degrees of 
difficulty to the GA. Tanese (1989a, 1989b) also used this method in her dissertation, in 
which she presented a comparative study of the performance of a number of variants of 
the GA. In particular, this study compared the variants' performance in optimizing partic- 
ular classes of Walsh polynomials that were constructed to present various levels of diffi- 
culty to the GA? 

Tanese compared the behavior of the "traditional" GA with a "partitioned" GA, in which 
the single large population of the traditional GA was subdivided into a number of smaller 
subpopulations that independently worked to optimize a given objective function. Tanese 
also studied a partitioned GA in which individuals in various subpopulations were allowed 
to "migrate" to other subpopulations during a run (she called this GA "distributed"). 

For her experiments comparing the performance of GA variants, Tanese wanted to be 
able to generate automatically a number of classes of fitness functions, with different classes 
having different levels of difficulty, but with each function in a given class having similar 

142 



, W H A T  MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 299 

levels of difficulty. She generated different classes of Walsh polynomials as follows. The 
functions were defined over bit strings of length 32. Each fitness function F was generated 
by randomly choosing 32 j 's ,  all of the same order (e.g., 4). Tanese generated functions 
only of even order for her experiments. The coefficient coj for each of the 32 chosenj was 
also chosen randomly from the interval (0, 5]. The fitness function consisted of the sum 
of these 32 terms. Once the 32 j ' s  were chosen, a point x '  was chosen randomly to be 
the global optimum, and the sign of each non-zero ~oj was adjusted so that the fitness of 
x '  would be ~ I jl. The order of F is defined as the common order of the j ' s  in its terms. 

For example, 

F(x) = ~ll l lO(X) + 2~111o1(X ) - 3~l lOl l (X ) 

is an order-4 function on five-bits (rather than 32) with three terms (rather than 32), with 
global optimum 6. This Walsh polynomial, like those used by Tanese, has two special prop- 
erties: (1) all of the non-zero terms in the polynomial are of the same order (Tanese actually 
used only even-order functions); and (2) there exists a global optimum x '  whose fitness 
receives a positive contribution from each term in the polynomial. Functions with these 
two properties will hereafter be called Tanese functions. 

This method of constructing functions had several advantages: (1) it was easy to construct 
random functions of similar difficulty, since functions of the same order were thought to 
be of roughly the same difficulty for the GA; (2) functions of different degrees of difficulty 
could be constructed by varying the order, since low-order functions of this sort should 
be easier for the GA to optimize than high-order functions; and (3) the global optimum 
was known, which made it possible to measure the GA's absolute performance. 

The results of Tanese's experiments were surprising, and seem to contradict several 
common expectations about GAs. Specifically, Tanese's results show that for every Tanese 
function she studied--including the low-order ones--the GA performed poorly, and that 
its performance was often improved when the total population was split up into very small 
subpopulations. Moreover, Tanese found that the performance of a simple iterated hillclimb- 
ing algorithm was significantly better on these functions than both the traditional and parti- 
tioned forms of the GA. These results apparently contradict Bethke's analysis, which predicts 
that the low-order Tanese functions should be relatively easy for the GA to optimize. These 
results also apparently contradict some other beliefs about the GA--that it will routinely 
outperform hillclimbing and other gradient descent methods on hard problems such as those 
with nonlinear interactions (Holland, 1988), and that a population must be of a sufficient 
size to support effective schema processing (Goldberg, 1985, 1989d). In order to better 
understand the sources of Tanese's results, we performed a number of additional experiments, 
which are described in the following sections. 

5. Experimental setup 

The experiments we report in this article were performed with a similar GA and identical 
parameter values to those used by Tanese (1989a) (and also in previous work by Forrest, 
1985). All of Tanese's experiments used strings of length 32 and populations of 256 indi- 

143 



300 S. FORREST AND M. MITCHELL 

viduals. The population was sometimes subdivided into a number of smaller subpopula- 
tions. Tanese's algorithm used a sigma scaling method, in which the number of expected 
offspring allocated to each individual is a function of the individual's fitness, the mean 
fitness of the population, and the standard deviation from the mean_The number of expected 
offspring given to individual x was ((F(x) - F)/2a) + 1, where F is the population mean 
and a is the standard deviation. Thus an individual of fitness one standard deviation above 
the population mean was allocated one and a half expected offspring (there was a cutoff 
at a maximum of five expected offspring). Multipoint crossover was used, with a crossover 
rate of 0.022 per bit (e.g., for 32-bit strings, there were on average 0.7 crossovers per pair 
of parents). The crossover rate (per pair) was interpreted as the mean of a Poisson distribu- 
tion from which the actual number of crosses was determined for each individual. The 
mutation probability was 0.005 per bit. With the exceptions of sigma scaling and multipoint 
crossover, Tanese's GA was conventional (proportional selection, complete replacement 
of the population on every time step, and no creative operators besides crossover and muta- 
tion). Tanese ran each of her experiments for 500 generations. For some of our experiments 
we altered certain parameter values; these exceptions will be noted explicitly. 

Tanese conducted experiments on Walsh polynomials of orders 4, 8, 16, and 20. For each 
experiment she randomly generated 64 functions of a given order, and compared the per- 
formance of the traditional (single population) GA with a number of partitioned GAs in 
which the population of 256 individuals was subdivided into various numbers of smaller 
subpopulations. In this article, we discuss results only for functions of order 8, since these 
were the functions Tanese analyzed in the greatest depth. All of our experiments involved 
manipulations of parameters in the traditional GA; we did not do any experiments with 
partitioned GAs. For each of our experiments, we ran the GA once on each of 20 different 
randomly generated functions, for 200 generations each. Tanese carried each run out to 
500 generations, but in each of our runs that used strings of length 32, the population had 
converged by about generation 100, and the results would not have changed significantly 
if the run had been extended. The shorter runs were sufficient for determining the compar- 
ative effects of the various manipulations we performed on the parameters. 

Tanese also compared her GA results with the results of running an iterated hillclimbing 
algorithm on randomly generated Tanese functions. The iterated hillclimbing algorithm 
works as follows (Tanese, 1989a). 

Repeat the following until a specified number of function evaluations have been performed. 

1. Choose a random string x in the search space, and calculate its fitness. 
2. Calculate the fitness of every one-bit mutation of x. If  an improvement over x's fitness 

is found, set x equal to the string with the highest fitness. 
3. Repeat step 2 until no one-bit mutation yields an improvement. Save this "hilltop" point. 
4. Go to step 1. 

Finally, return the highest hilltop. 
In order to compare the performance of a run of iterated hillclimbing with that of a run 

of the GA, Tanese ran the above algorithm until the number of function evaluations was 
equal to that performed by the GA (the population size times the number of generations). 

144 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 301 

6. An examination of  Tanese's results 

One of Tanese's most  striking results was the poor  performance of the GA (in both its tradi- 
t ional  and par t i t ioned-populat ion form) on  the funct ions described above and the super ior  
per formance  of h i l lc l imbing to both forms of the GA. 

The results of  our  replicat ion of some of Tanese's original  experiments  compar ing  the 
tradit ional GA and hi l lc l imbing are summarized in the first and sixth rows of table 2, under  

"Or ig ina l "  and "Hil l  32"  (hi l lc l imbing with 32-bit  strings). Our  replications conf i rm 

Tanese's f indings,  that, on  order-8 functions,  nei ther  the GA nor  hi l lc l imbing discovers 
the op t imum,  bu t  that h i l lc l imbing performs significantly better than the GA in terms of  

the average m a x i m u m  fitness found. On  average, h i l lc l imbing was able to find a string 
whose  fitness was wi thin  about  5 % of  the m a x i m u m ,  whereas the original  GA was able 
to f ind a string whose fitness was only  wi thin  about  12% of  the max imum.  

In  the following subsections,  four possible  explanations for the GA's poor  per formance  
are discussed and evaluated: (1) the choice of per formance  criteria gave an unfair  measure  
of  the GA's performance,  (2) crossover is ineffective on  these funct ions because of the lack 
of  lower-order bui ld ing blocks;  (3) the average defining-lengths of t h e j ' s  are very long, 
and  thus good schemas tend to be broken  up by crossover; and (4) the r andom generat ion 

of 32 j ' s  over strings of  length 32 results in a large n u m b e r  of correlated posi t ions among 
the j ' s ,  effectively making  the funct ions very difficult.  

Table 2. Summary of results of all experiments. 

Average Max 
Times Optimum Average Max Fitness Average Generation Mean Fitness 

Found (% opt.) of Max Fitness (% opt.) 

Original 0 88.1 (2.9) 31 (33) 85.1 (3.8) 
No Xover 32 0 88.4 (2.7) 22 (28) 86.2 (2.6) 

Def-Len 10 0 92.3 (2.9) 41 (48) 89.2 (3.0) 
Str-Len 128 19 99.97 (0.13) 150 (30) 93.6 (1.3) 
No Xover 128 17 99.85 (0.45) 72 (41) 93.9 (0.6) 
Hill 32 0 95.4 (1.5) -- -- 
Hill 128 20 100.0 (0.0) -- -- 

The experiments were all performed running the traditional GA (and in two cases, hillclimbing) on randomly 
generated order-8 Walsh polynomials. Each result summarizes 20 runs of 200 generations each. The experiments 
were: (1) Original (replicating Tanese's experiments); (2) No Xover 32 (same as Original but with no crossover); 
(3) Def-Len 10 (limiting the defining length of partition indices to 10); (4) Str-Len 128 (incresing the string length 
to 128 bits); (5) No Xover 128 (same as Str-Len 128 but with no crossover); (6) Hill 32 (hillclimbing on 32 bits); 
and (7) Hill 128 (hillclimbing on 128 bits). All runs except the 128-bit runs used strings of length 32. The values 
given are (1) the number of times the optimum was found; (2) the maximum fitness (percent of optimum) found 
(averaged over 20 runs); (3) the average generation at which the maximum fitness was first found; and (4) the 
maximum population mean (% of optimum) during a run (averaged over 20 runs). The numbers in parenthesis 
are the standard deviations. 

145 



302 s. FORREST AND M. MITCHELL 

6.L Performance criteria 

Tanese used three main performance measures in her experiments, each associated with 
an average over 64 "trials" (five runs each on 64 randomly generated functions). These 
measures were: (1) the best overall fitness (averaged over 64 trials); (2) the average fitness 
in the final generation (averaged over 64 trials); and (3) the best fitness in the final genera- 
tion (averaged over 64 trials). She found that for the first and last measures, the perfor- 
mance of the partitioned GA was generally superior to that of the traditional GA; these 
results were generally reversed for the "average final fitness" measure. She also used a 
summary measure called "success rate": the number of trials on which the global optimum 
was found at least once out of five times. On the 64 trials (i.e., 320 runs total) on randomly 
generated order-4 Walsh polynomials, the success rate of the traditional GA was only 3. 
The most successful partitioned algorithm's success rate was only 15, and the success rate 
of hillclimbing was 23--almost eight times the success rate of the traditional GA and more 
than one and a half times the success rate of the best partitioned GA. On 320 runs on 
randomly generated order-8 polynomials, neither the traditional nor the various partitioned 
GAs (nor hillclimbing) ever found the optimum, but hillclimbing consistently reached higher 
fitness values than the GA did. 

We examined the possibility that the seemingly poor performance of the GA was due 
to the strictness of the performance measures used by Tanese. To do this, we compared 
the GA and hillclimbing using two alternative performance measures that are well known 
in the GA literature: De Jong's on-line and off-line performance measures (De Jong, 1975; 
Goldberg, 1989c). These measures are made in terms of the number of function evalua- 
tions an algorithm has performed up to a certain time. The on-line performance at time 
t is the average value of all fitnesses that have been evaluated by the algorithm up to time 
t. The off-line performance at time t is the average value, over t evaluation steps, of the 
best fitness that has been seen up to each evaluation step. For example, if at t = 5, five 
strings have been evaluated yielding fitnesses 10, 20, 8, 4, and 15, the on-line performance 
would be 10 + 20 + 8 + 4 + 15/5, and the off-line performance would be 10 + 20+ 
20 + 20 + 20/5. 

In figure 5, the on-line and off-line performance values are plotted over 51,200 function 
evaluations (the equivalent of 200 generations of the GA with a population of 256) for typical 
runs of both the GA and hillclimbing running on the same order-8 Tanese function. The 
y-axes give the performance in terms of percent of the function optimum (0 %-100 %). The 
on-line and off-line measures were computed every 800 function evalutions. As can be 
seen, the GA performs significantly better than hillclimbing on on-line performance, but 
worse on off-line performance (very similar results are obtained on other runs). The on-line 
result is to be expected: hillclimbing spends most of its time searching through low-fitness 
single-bit mutations of high-fitness strings, only moving when it finds a higher-fitness muta- 
tion. The offline result is closer to traditional optimization measures, and the better perfor- 
mance of hillclimbing on this measure is what is unexpected. In the next several sections, 
we will propose and evaluate possible explanations for this result. 

146 



W H A T  M A K E S  A P R O B L E M  H A R D  F O R  A G E N E T I C  A L G O R I T H M ?  303 

100 

80 

60 
On-Line 
Perform. 

40 

20 
G A - -  
Hill . . . .  

I I I I 
10000 20000 30000 40000 50000 

Number of Function Evals 

100 

60 
Off-Line 
Perform. 

40 

i i i i 

G A - -  
Hill . . . .  

i i i i 
10000 20000 30000 40000 50000 

Number of Function Evals 

Figure 5. Plots  d isplaying  on- l ine  and of f - l ine  p e r f o r m a n c e  o n  a typica l  run o f  the  G A  and o f  h i l l c l imbing  on  an 

order-8  Tanese  function.  T h e  y-axes  g ive  the per formance  in terms o f  percent  o f  the function o p t i m u m  (0 %-100 %).  

6.2. Is crossover effective on these functions? 

As was discussed in section 2, the GA's power is thought to be due to its implicit search 
of schemas in the search space, in which more and more samples are given to fitter schemas, 
and fit lower-order schemas are combined to produce hopefully fitter higher-order schemas. 
Thus, to understand the performance of the GA on a fitness function F, we must ask what 
types of schemas will yield useful information to the GA and to what extent these schemas 
can be usefully combined by crossover. 

The fitness of  a string x under a Tanese function F depends on the parity of  x A j for 
each j in the terms of F. Recall that the only terms in F that contribute to a schema s's 
average fitness are those whose j 's  subsume s, where j subsumes s implies that each 1 
i n j  corresponds to a defined bit in s. For example, s = *011 is subsumed b y j  = 0111 
(the index for the partition *ddd) but not j = 1011 (the index for the partition d*dd). 

To understand this better, consider a Tanese function with only one order-2 term (with 
l = 4): 

F(x) = 2 .0f f l l00(x  ). 

147 



304 s. FORREST AND M. MITCHELL 

A schema s with only one defined bit (order 1) gives no information to the GA about this 
function, since half the instances of s will yield -2 .0  and half will yield +2.0. This can 
be easily checked, for example, with the schema 1"**. Likewise, the schema 0"00, which 
is also not subsumed by j = 1100, has the same property. In general, if a term o~j~bj(x) 
does not subsume s (i.e., if some 1 in j  corresponds to a * in s), then half of s's instances 
will yield - ~ j  and half will yield +o~j for that term, so if a schema s is not subsumed 
by any terms, then its average fitness is zero. An order-n j cannot subsume a schema of 
less than order n, so this means that for a Tanese function of order n, no schema of order 
less than n will give the GA any useful information about what parts of the search space 
are likely to be more fit. Thus crossover, one of the major strengths of the GA, is not 
a useful tool for recombining building blocks until schemas that are subsumed by terms 
in the fitness function have been discovered--such schemas must be of order at least as 
high as that of the function. This means that the power of crossover--as a means of recom- 
bining fit lower-order building blocks--is severely curtailed in these functions. 

To verify this empirically, we ran the GA without crossover (i.e., crossover-rate = 0) 
on 20 randomly generated 32-bit order-8 functions. These results (along with results from 
all experiments described in this article) are summarized in table 2; they are summarized 
under the heading No Xover 32, and are to be compared with the values under Original, 
giving the results from our replication of Tanese's traditional GA runs on order-8 functions. 
The GA's performance was not impaired; the maximum fitness discovered and the mean 
population fitness are not significantly different from the runs in which crossover was used 
(Original in the table). 

• 3. Is the GA's poor performance due to long defining lengths of schemas? 

In the Tanese functions, an order-n partition indexj was constructed by randomly placing n 
l's in a string of 32 bits. The expected defining length for such a j  can be calculated using 
equation (4) from Goldberg, Korb, and Deb (1990) (p. 5): (6)/(l + 1) =-(n - 1)/(n + 1), 
where (6) is the expected defining length for a string with n l's in an/-bit  string. Thus, 
the expected defining length for an order-4 Tanese function (with strings of length 32) is 
approximately 20, and for an order-8 function it is approximately 26, a substantial propor- 
tion of the entire string. This last estimate corresponds closely to the empirical data presented 
in Tanese's thesis (Tanese, 1989a, table 5.1) for one example order-8 Walsh polynomial. 

As we pointed out earlier, the only useful schemas are ones that are subsumed by one 
or more of the terms in the fitness function. The calculation given above implies that such 
schemas will, like the j ' s  in the function's terms, tend to have long defining lengths. As 
was discussed in section 3.3, long defining lengths o f j ' s  (and thus of useful schemas) can 
make a function hard for the GA because of the high probability of crossover disruption 
of useful schemas, since the longer the defining length of a schema, the more likely it is 
to be broken up under crossover (Holland, 1975; Goldberg, 1989c). To what degree was 
this problem responsible for the poor performance of the GA on these functions? 

To answer this question, we ran the traditional GA with Tanese's parameters on 20 ran- 
domly generated order-8 functions, in which the j ' s  were restricted to have a maximum 
defining length of 10. That is, for each of the 32 j ' s ,  a randomly positioned window of 
10 contiguous loci was chosen, and all eight l's were placed randomly inside this window. 

148 



; WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 305 

The results are summarized in table 2 under Def-Len 10. Using the success-rate criterion 
described above, the performance was identical to Tanese's original results: the traditional 
GA never found the optimum. Other performance measures made it clear that limiting 
the defining length improved the GA's performance slightly: the GA was able to find strings 
with slightly higher fitnesses (in terms of percent of optimum) and slightly higher mean- 
population fitnesses. We conclude that the contribution of long defining lengths to the GA's 
overall poor performance on these functions is not significant. 

6.4. Is the GA's poor performance due to overlap among significant loci in the 
partition indices? 

Next, we consider the possibility that overlaps among defined positions in the j ' s  (i.e., 
loci with l's) were causing correlations among terms in a given fitness function, making 
the optimization problem effectively higher-order. As a simple example of this, suppose 
that 0011 and 0110 are two order-2 j ' s  that have non-zero positive coefficients. These j ' s  
overlap at bit position 2, since they both have value 1 at that locus. There are eight strings 
x that will cause ~0011(x) to be positive, corresponding to the schemas **00 and **11. 
Likewise, there are eight strings that will cause ~b0110(x ) to be positive, corresponding to 
the schemas *00" and "11". So, in order to find a point that gets a positive value from 
both ~b0110(x ) and ~b0Oll(X), the GA must discover either the schema *000 or the schema 
* 111. This overlap has the effect that three bits are effectively correlated [instead of two, 
making the problem effectively order-3 instead of order-2. In the case of the Tanese func- 
tions, this is a likely source of difficulty; for example, with order-8 functions, where 32 
order-8 terms were randomly generated, each 1 in any givenj will on average be a member 
of seven other different j 's, and thus the effective linkage will be exceedingly high. 

To assess the effect of overlaps, we ran the GA on functions in which the strings were 
of length 128 rather than 32 (but still order 8), in order to reduce the number of overlaps. 
With a string length of 128, each defined locus with a 1 would participate on average in 
only 2 of the 32 j 's. As shown in table 2 (under Str-Len 128), the GA's performance was 
remarkably improved. The GA found the optimum 19/20 times (compared[ with 0/20 for 
the 32-bit case), and came very close to finding the optimum on the other run. In addition, 
the mean fitnesses of the population were substantially higher than they were on the 32-bit 
functions. Of all the experiments we tried, this caused the most dramatic improvement, 
leading us to conclude that the principle reason the Tanese functions are difficult is because 
the short strings (32 bits) and relatively high number of terms (32) causes nearly all 32 
bits to be correlated, thus creating an order-32 problem. In the non-overlapping case, the 
order of the problem is much lower, and it is possible for the GA to optimize each term 
of the function almost independently. 

To verify further the ineffectiveness of crossover on the Tanese functions, we ran the 
GA without crossover on 20 randomly generated 128-bit order-8 functions. The results 
are summarized under No Xover 128 in table 2: the performance of the GA was not 
significantly different from the 128-bit runs in which crossover was used (Str Len 128). 
With both the shorter and longer string-lengths (and thus with both large and small amounts 
of overlap), whether or not crossover is used does not make a significant difference in 
the GA's performance on these functions. 

149 



306 S. FORREST AND M. MITCHELL 

The fact that overlap is much higher with 32-bit functions than with 128-bit functions 
explains the strikingly different dynamics between runs of the GA on the former and latter 
functions, as shown in figures 6 to 11. These figures are explained below. 

A Walsh polynomial F can be thought of as a "constraint satisfaction" problem in which 
each term in F is a particular constraint. The goal is to find an individual x that satisfies 
(i.e., receives positive values from) as many terms as possible, and preferably from terms 
with high coefficients. In a typical run on 32-bit strings, the GA quickly finds its highest- 
fit individual, typically by generation 30 or so (see the "Average Generation of Max Fit- 
ness" column in table 2). Figure 6 plots the percentage of the optimum of the maximum 
fitness in the population versus time for one typical run. As can be seen, the GA found 
its highest-fit individual by about generation 40, and this individual's fitness was about 
90% of the optimum. 

Given an individual x in the population, each t e r m  ¢oj~.,j(x) in the fitness function contrib- 
utes either a positive or negative value to x's total fitness. If ~oj~j(x) contributes a positive 
value, we call x a positive instance of that term; otherwise we call x a negative instance. 
Figure 7 shows, for this same run, how the percentages in the population of positive and 
negative instances of each term vary over time. The y-axis consists of the 32 partition coef- 
ficients o~j of the fitness function, in order of ascending magnitude (recall that these coeffi- 
cients were each chosen randomly in a range from 0.0 to 5.0, and then their signs were 
adjusted). The x-axis consists of generation numbers, from 0 to 200. At any point in the 
plot, the value of the gray-scale represents the percentage of individuals x in the population 
that are positive instances of the given term at the given time. The darker the gray value, 
the higher the percentage. As can be seen, very early on (after generation 10), a large subset 
of the terms have 80%-100% as positive instances, and a smaller subset of terms have only 
a small number of positive instances. 

This result can be explained in terms of the constraint-satisfaction problem. Any individual 
x with suboptimal fitness receives positive values from only a subset of the terms in the fit- 
ness function, leaving the rest of the terms "unsatisfied," that is, yielding negative values on 
that individual. However, because of the high degree of overlap, the constraint satisfaction 

100 

80 

60 
Max Fitness 

(% Opt) 
40 

20 

0 
0 

/ 

h I I 

50 I00 150 200 
Generation 

Figure 6. The percentage of the optimum of the maximum fitness plotted over time for a typical run with string 
legnth 32. For this plot, the maximum fitness was sampled every 10 generations. 

150 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 307 

4.93 . 

4.85. 

4.84 

4 .57 . 

a.53 

4.51 

4.12 _ 

3.87 _ 

-3.74 _ 

-3.63 _ 

-3.38 

-3.34 _ 

--3.19 -- 

3.03 -- 

2.69 -- 

2.55 _ 
2 . 5 2  -- 

-2 .44 _ 

-2.38 _ 

2.17 -- 

1.92 _ 

1.38 _ 

--1.15 _ 

1.14 _ 

0.98 

o .94 _ 

o .89 _ 

O.56 _ 

0.56 _ 

0.37 

-0.13 

0.13 

iiiiiiiiii 
iliiiii!ii 
. . . . . . . . . . .  : , , < i i ? : ~ :  

~iiii:ii:i 

!iiii!:iil - -  -- . . . . . . . . .  

.,,,,, 

>>?::::! 

i:iii::i::i • 

:iiiiiiiiii 

:i:::::::;! N ~::::,~:~:~,::, • 
::i:i::iii~ ~ " : : : : "  " _ __  

I ' ' J ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I 
0 50 i00 150 20o 

G e n e r a t i o n  

R 8o<p<~ioo R 60<p<-80 m 40<p<=60 ~ 20<p<=40 ~ 0<p<-20 ~ p-o 

Figure 7 The percent of positive instances for each term in the fitness function plotted over time for the same r u n  

with string length 32. The coefficients on the y-axis are in order of increasing magnitude. The darker the gray 
value, the higher the percentage of positive instances. The values plotted here were sampled every 10 generations. 

problem here is very severe, and to discover an individual that receives additional positive 
values from other terms--without losing too many of the currently held positive values-- is  
very difficult, especially since crossover does not help very much on these functions (see 
section 6.2). This is particularly true since, once individuals of relatively high fitness are 
discovered, the diversity of  the population falls very quickly. This can be seen in figure 8, 
which plots the number of  distinct individuals in the population over time? As figure 7 
indicates, the population very quickly subdivides itself into a small number of  mutually 
exclusive sets: one large set of individuals receiving positive values from one subset of 

250 

2OO 

150 
N u m  

D i s t i n c t  
I n d i v s  

100 

50 

0 I 

5O 

I I 

100 150 200 

G e n e r a t i o n  

Figure 8. The number of distinct individuals in the population plotted over time for the same run with string 
length 32. For this plot, the number of distinct individuals was sampled every 10 generations. 

151 



308 S. FORREST AND M. MITCHELL 

the terms in the fitness function, and other, much smaller sets of individuals receiving 
positive values from the other terms in the fitness function. 

To summarize, the GA stays stuck at a local optimum that is discovered early. It is possi- 
ble that raising crossover and mutation rates (or using other techniques to prevent premature 
convergence; see Goldberg (1989c)) might improve the GA's performance on such func- 
tions, since it would increase the amount of diversity in the population. 

On a typical run involving strings of length 118, the situation is very different. Figures 
9 to 11 plot the same quantities for one such run. As can be seen in figure 9, the GA tends 
not to discover its highest-fit individual until late in the run (on average, around generation 
150), and, as can be seen in figure 11, the diversity of the population remains relatively 
high throughout the run. The continuing high diversity of the population is a result of several 
factors, including the following: since the problem is less constrained, there are many ways 
in which an individual can achieve relatively high fitness; and since the crossover rate was 
defined on a per-bit basis, there are on average a greater number of crossovers per chromo- 
some here than in the 32-bit case. But the relative lack of constraints was the major factor, 
since when crossover was turned off in the 118-bit case, the population diversity remained 
considerably higher than for the 32-bit run described above, although it was less than in 
the 128-bit case with crossover turned on. As can be seen in figure 10, in the 128-bit case 
the population does not segregate into mutually exclusive sets--throughout a typical run, 
almost all of the terms in the fitness function provide positive values to a significant frac- 
tion of the population. 

Because of the relative lack of constraints in the 128-bit case, the population does not 
quickly become locked into a local optimum, and is able both to continue exploring longer 
than in the 32-bit case and to optimize each term of the fitness function more independently. 

In short, these results indicate that the major cause of the GA's difficulty on Tanese's 
original functions is the high degree of overlap among significant loci in the j 's ,  creating 
problems of high effective order. A secondary cause of difficulty is the lack of information 
from lower-order schemas, making crossover relatively ineffective on these functions. 

100 

80 

60 
Max Fitness 

(% Opt) 
40 

20 

0 

/ r  

I I 

50 100 150 200 
Generation 

Figure 9. The percentage of the optimum of the maximum fitness plotted over time for a typical run with string 
length 128. For this plot, the maximum fitness was sampled every 10 generations. 

152 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 309 ) 

-5.0 _ 
-4.85 _ 
4.56 
4.48 
4.38 
4.37 

-4.28 
4.18 
4.G2 
3.95 
3.82 

-~ -3.8 
o .~ -3.71 

-3-66 
-3.64 
3 -34 

-3.17 
0 ~ -3.05 

3.03 
"~ -S.O 
~ 2 . 8 8  
~ 2 . 3 3  

-i .74 
1.52 
1.51 

-1.45 
-1.22 
-0.98 
0.91 
0 .77 

- o  .5S 
o . 5 1  

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I 
0 5o i00 150 2O0 

Generation 

m 80<p<-100 m 6o<p<-so ~ 40<p<~60 ~ 20<p<~40 ~ o<p<-2G ~ p~o 

Figure 10. The percent of positive instances for each term in the fitness function plotted over time for the same run 
with string length 128. The coefficients on the y-axis are in order of increasing magnitude. The darker the gray 
value, the higher the percentage of positive instances. The values plotted here were sampled eveD~ 10 generations. 

250 

200 

150 
Nuln 

D i s t i n c t  

Indivs 
100 

50 

0 I I I 

50 100 150 200 
G e n e r a t i o n  

Figure 11. The humber of distinct individuals in the population plotted over time for the same run with string 
length 128. For this plot, the number of distinct individuals was sampled every 10 generations. 

Note  that these two factors--overlaps and lack of  information from lower-order s c h e m a s - -  
do not i m p l y  that the Tanese functions are deceptive;  a function can have these features 

and still not be  deceptive.  The  Tanese functions thus provide an important counterexample  
to a prevail ing be l i e f  that decept ion is the crucial feature in characterizing what  types o f  
functions are dif f icult  for the GA to op t imize  (Das & Whitley,  1991). The notion of  decep-  
t ion and its relation to the Tanese funct ions and to GA performance  in general is d i scussed  
further in sect ion 9. 

153 



310 S. FORREST AND M. MITCHELL 

7. Why does subdividing the population seem to improve performance? 

Recall that Tanese compared the behavior of the "traditional" GA with a "partitioned" 
GA, in which the single large population of the traditional GA was subdivided into a num- 
ber of smaller subpopulations that independently worked to optimize the given function. 
Although both the traditional and partitioned GAs performed poorly on the Tanese func- 
tions, the results reported by Tanese showed that the performance of most instances of the 
partitioned GA was better than that of the traditional GA. This was the case even when 
the population was subdivided into extremely small subpopulations, such as 64 subpopula- 
tions of 4 individuals each, and, in some cases, even for 128 subpopulations of 2 individuals 
each. For functions of order higher than 4, neither the traditional nor partitioned GA's 
ever found the function optimum, so the difference between the two was measured only 
in terms of proximity to the optimum of the best fitness discovered. 

As Tanese points out, these results run against conventional wisdom about GAs: it has 
been thought that on difficult problems a large population is needed for processing a suffi- 
cient number of schemas (Goldberg, 1985). 

Tanese proposes three main reasons for this surprising result. 

1. Tanese functions have a large number of local optima, and the GA tends to converge 
on one. Each of the smaller subpopulations of the partitioned GA will converge earlier 
than a larger single population, but the subpopulations tend to converge on different 
optima, and so are able to explore a greater number. 

2. After the populations converge, the major adaptive force is mutation. Mutation will be 
more effective in a smaller population than in a large population, since in a large popula- 
tion, the greater number of mutations will drive up the variance of fitnesses in the popu- 
lation, making it less likely that fit mutations will be able to produce enough offspring 
to spread in the population (recall that the expected number of offspring is a function 
of the fitness and the standard deviation). In the smaller population, fewer mutations 
will occur and the variance will be lower, allowing fit mutations to spread more effectively. 

3. Since smaller populations tend to be more homogeneous (for the reasons given above), 
fit mutations are less likely to be destroyed through crossover. 

Explanation 1 seems correct, especially in light of the dynamics that were discussed 
in section 6.4. It seems that the traditional GA quickly finds a single local optimum that 
satisfies a subset of terms in the Walsh polynomial, and cannot go beyond that point. Since 
the number of different chromosomes in the population falls so quickly, the traditional GA 
does not use the potential for diversity that its large population offers. This explains why 
a number of small populations running in parallel would likely results in at least one way 
of satisfying the constraints that was superior to local optimum found by a single large- 
population GA. 

Explanation 2 relies on the assumption that large populations tend to be more diverse 
and have higher standard deviations than smaller ones. But as was seen in figure 8, the 
diversity of the large population with 32-bit strings falls very quickly, so this assumption 
seems incorrect. We believe that the main factor keeping successful mutations at bay is 
the degree to which the problem is constrained: once a local optimum is settled upon, 

154 



, WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 311 

it is very unlikely that a single mutation (or a small set of mutations) will yield a fitter 
individual. 

A similar point could be made with respect to explanation 3. Given the homogeneity 
that results even with a large population, it seems likely that this is not a significant factor 
in the relative poor performance of the traditional GA. 

It is important to point out that the effects discussed here come about because of the 
special characteristics of the fitness functions being used--in particular, the fact that the 
single-order functions prevent the GA from exploiting information from lower-order building 
blocks through crossover. For functions in which lower-order building blocks do yield useful 
information, these effects might not be seen. The results and analaysis for these functions 
cannot be assumed to be applicable to all instances of Walsh polynomials. 

8. W h y  does  hi l lc l imbing outper form the GA on these functions? 

The discussions in the previous sections allow us to understand why hillclimbing outper- 
forms the GA on the Tanese functions. Since the nature of the Tanese functions precluded 
the GA from using information from lower-order building blocks via crossover, the genetic 
operators of crossover and mutation served mainly as a means of generating random varia- 
t ion- in  effect, an inefficient form of hillclimbing. This is the reason for the greater success 
of hillclimbing on these functions. This is shown further by the results of running hillclimbing 
on functions with 128-bit strings, summarized under Hill 128 in table 2. On these easier 
functions (with less overlap than the 32-bit string functions), hillclimbing still beat the 
GA, funding the optimum 20 out of 20 times versus 17 out of 20 times for the GA. 

9. Are  the Tanese functions deceptive? 

None of the explanations given so far for Tanese's anomalous results relies on the Tanese 
functions being deceptive. However, the poor performance of the GA led Goldberg to propose 
that "deception or partial deception" was lurking in the Tanese functions (Goldberg, 1991). 
In this section we examine the question of whether or not it is possible for a Tanese func- 
tions to be deceptive. This examination has led to some general concerns about what the 
term "deception" actually means or should mean, and what its role is in understanding GAs. 

9.L Definitions of deception 

A number of different definitions of deception as well as types of deception have been 
proposed in the GA literature (e.g., see Bethke, 1980; Goldberg, 1987; Liepins & Vose, 
1990; Whitley, 1991). Although thre is no generally accepted definition of the term "decep- 
tion," it is generally agreed that the notion of deception involves situations in which lower- 
order schemas give misleading information to the GA about the probable average fitness 
of higher-order refinements (higher-order schemas contained by the lower-order schemas). 
For the purpose of this section, we will use the definitions of different types of deception 

155 



312 S. FORREST AND M. MITCHELL 

proposed by Whitley (1991). These definitions are summarized below. These definitions 
all use the notion of competition among schemas in a partition. For example, in a four-bit 
problem, the order-2 partition *dd* contains four schemas: *00", *01", *10", and *11". 
The winner of this "hyperplane competition at order-2" (or, equivalently, the winner of 
this partition) is the schema with the highest average fitness. The partition *dd* is said 
to subsume the partition *ddd, which contains eight schemas, each a subset of one of the 
schemas in *dd* This notion of a partition subsuming another partition is analogous to 
the notion of a partition subsuming a schema. 

The following definitions are adopted from Whitley (1991) (which, as is stated in that 
paper, are consistent with most other proposed definitions of deception in the literature). 

Definition: A problem contains deception if the winner of some partition has a bit pattern 
that is different from the bit pattern of the winner of a higher-order subsumed partition. 

Definition: A problem is fully deceptive at order N if, given an order-N partition P, the 
winners of all subsuming lower-order partitions lead toward a deceptive attractor, a hyper- 
plane in P that is different from the winner of P. 

Definition: A problem is consistently deceptive at order N if, given a order-N partition 
P, the various winners of all subsuming lower-order partitions lead toward hyperplanes 
that are different from the winner of P (though not necessarily leading towards the same 
deceptive attractor). 

It should be noted that, strictly speaking, deception is a property of a particular represen- 
tation of a problem rather than of the problem itself. In principle, a deceptive representation 
could be transformed into a non-deceptive one, but in practice it is usually an intractable 
problem to find the appropriate transformation. 

9.2. Tanese functions and deception 

The first question we want to address is, could the functions that Tanese used possibly be 
deceptive? As it turns out, the answer is not clear, since the definitions given above neglect a 
key aspect of these functions: every partition of the search space contains at least two winning 
(maximal) schemas. This is because for j ' s  of even order, ~j(x) = ~bj(x-). But the defini- 
tions given above all specify that there is a single winner ("the winner") of each partition. 

The definition of contains deception could be modified as follows: 

Definition: A problem contains deception if one of  the winners of some hyperplane com- 
petition has a bit pattern that is different from the bit pattern of each of the winners of 
a higher-order subsumed partition. 

If this definition were adopted, then it would be possible for a even-order Tanese func- 
tion to contain deception. The following is a simple example of such a function (where 
the bit strings are of length 5 and the order of the j ' s  is 4): 

F(x) = ~ l l l lO(X)  + 2,dJlllOl(X ) - 3 ~ l l O l l ( X  ). 

156 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 3 1 3  

F(x) meets the two requirements of a Tanese function: all the non-zero terms are of the 
same order (4), and there is a point x '  whose fitness receives a positive contribution from 
each term in F(x). One such point is x '  = 10100, with F(x ' )  = 6. 

To show that this function contains deception according to the modified definition, con- 
sider the partition P = dddd* One winner of P is the schema s o = 1111". This can be 
seen as follows. As was discussed in section 6.2, the only terms in F that contribute to 
a schema s's average fitness are those whose j ' s  subsume s, where j subsumes s implies 
that each 1 in j corresponds to a defined bit in s. For example, So is subsumed only by 
the first term of F. A te rm (.,ojl~j(x) that does not subsume s will contribute 0 to s's average 
fitness, since, because a Walsh function's value depends on parity, half the; instances of 
s will make this term positive and half will make it negative. This can be easily checked 
for So with respect to the second two terms of F. The average fitness of So is 1, which is 
the highest possible average fitness for schemas in P, since schemas in P are subsumed 
only by the first term of E Thus, So is a winner in P. 

However, consider the subsumed partition P '  = ddddd. According to the modified defini- 
tion, if the problem does not contain deception, then either 11111 or 11110 should be 
a winner in P'. But the fitness of 11111 is 0, and the fitness of  11110 is 2, whereas the 
fitness o f x '  = 10100 (a winner in P') is 6. Thus, this function contains deception accord- 

i n g  to the modified definition. 
It can be proved, however, that for any Tanese function, every partition contains some 

winner that does not lead the GA astray. This is stated formally by the following theorem: 

Theorem 1: Let P be any partition of the search space defined by a Tanese function F. 
Then there exists a schema s in P such that s is a winner in P and, for any P '  subsumed 
by P, there exists a winning schema s '  in P '  such that s '  C s. 

Proof: Let x '  be a global optimum of F. Let s be the schema in P whose defined bits are 
the same as the corresponding bits in x'. The average fitness of s depends only on the terms 
in F that subsume s. Call the set of such terms SUBSUMES(s). Since x '  is a global optimum 
of a Tanese function, it receives positive values from all terms in F, so it receives positive 
values from all terms in SUBSUMES(s). But the value of a te rm OJj~j(X) in SUBSUMES(s) 
on x '  depends only on the bits in x '  corresponding to l's inj .  Since SUBSUMES(s) is the 
set of terms that subsume s, these l's appear only in positions corresponding to defined bits 
in s (which are the same as x's defined bits), so every instance of s also receives positive 
values from all the terms in SUBSUMES(s). Thus s is a winner in P. (Note that if SUB- 
SUMES(s) is empty, then all schemas in P are winners, since they all have average fitness 0.) 

Now let P '  be a higher-order subsumed partition of P. Let s '  be the schema in P '  for 
which s '  C s, and for which the additional defined bits in s '  are set so that x '  c_ s'. Then, 
for the same reason as above, s '  is a winner in P'. 

We have shown that (1) there can be a winning schema in a given partition that does 
not contain any winning schema in a higher-order subsumed partition, but (2) there is always 
at least one winning schema in every partition that contains a winning schema in every 
higher-order subsumed partition (and thus contains a global optimum). 

It is unclear from Whitley's definition whether or not this situation should be called 
"deception." Theorem 1 implies that the Tanese functions cannot be fully or consistently 

157 



314 s. FORREST AND M. MITCHELL 

deceptive, but it seems to be a matter of definition whether or not they can contain decep- 
tion. Certainly the property illustrated by the example "deceptive" function given above 
might cause difficulty for the GA, but the degree of difficulty might be different from a 
function containing deception that strictly conforms to Whitley's definition. It is interesting 
to note that Wilson (1991) defines a problem to be "GA-easy" if "the highest fitness schema 
in every complete set of competing schemata contains the optimum." Theorem 1 could 
be interpreted to imply that the Tanese functions are GA-easy, since there is a highest- 
fitness schema in each partition that contains the optimum. Of course, as Tanese demon- 
strated, many Tanese functions were far from easy for the GA. 

As with the notion of "GA-easy," most definitions of deception assume that there will 
always be a single winner in every partition. However, it cannot be expcected that for every 
problem posed to the GA, every partition in the search space will contain a unique winning 
schema. Thus it is of considerable importance, in formulating a definition of deception, 
to take into account situations such as the multiple partition-winners in the Tanese func- 
tions. While the Tanese functions are a particularly extreme example of this, multi-modality 
of this kind certainly exists in other more natural functions, and we need to be clear about 
what deception means in these circumstances. Definitions of deception should at least take 
into account the difference between the kind of deception found in the example function 
given above, and the kind specified by Whitley's original definition. If they are both to 
be called "deception," then it is clear that deception is a broad concept with a number 
of dimensions, and these various dimensions should be identified. 

Note that the example of a "deceptive" Tanese function given above is quite different 
from the functions that Tanese actually used. It may be that the differences (e.g., 32 terms 
instead of 3 terms, 32-bit strings instead of 5-bit strings, higher-order j 's)  place additional 
constraints on the functions that affect whether or not they can be deceptive. We have shown 
only that it is possible to construct a Tanese function (obeying the two criteria stated earlier) 
that contains "deception." It is still an open question whether or not the original Tanese 
functions actually contain the type of deception illustrated in the example. And again it 
is important to note that the two major factors we have identified as responsible for the 
GA's difficulty on the Tanese functions--overlaps and lack of information from lower-order 
schemas--are distinct from the notion of deception. We believe it is these features, and 
not deceptiveness, that makes Tanese functions hard for the GA to optimize. 

9.3. Deception and GA performance 

The previous subsection raised some concerns suggested by the Tanese functions about 
how deception should be defined. We also have some concerns about the role played by 
the notion of deception in understanding GAs. It has been common in the GA literature 
to characterize problems containing deception as "GA-hard" and problems lacking decep- 
tion as "GA-easy" (e.g., see Goldberg & Bridges, 1988; Liepins & Vose, 1990; Wilson, 
1991), but these are unfortunate identifications, since they imply that every problem con- 
taining deception will be hard for the GA and every problem lacking deception will be 
easy for the GA. 

158 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 315 

However, the GA can easily succeed on many deceptive problems--for example, when 
the degree of deception is very slight. In addition, Grefenstette and Baker (1989) have ques- 
tioned some of the assumptions made in applying Walsh analysis to GAs; their results imply 
that certain types of deception might not cause the difficulty that Walsh analysis would pre- 
dict. Conversely, non-deceptive problems can be difficult for the GA: for example, Mitchell, 
Forrest, and Holland's non-deceptive "Royal Road" functions (Mitchell, Forrest, & Holland, 
1992; Forrest & Mitchell, 1992) can be constructed to be quite difficult for the GA. Thus, 
as the terms are currently used, "GA-hard" does not necessarily imply hard for the GA, 
and "GA-easy" does not necessariy imply easy for the GA. This is clearly a bad use of 
terminology. 4 

Thus, deception is not the only factor determining how hard a problem will be for a 
GA, and it is not even clear what the relation is between the degree of deception in a prob- 
lem and the problem's difficulty for the GA. There are a number of factors that can make 
a problem easy or hard, including those we have described in this article: the presence 
of multiple conflicting solutions or partial solutions, the degree of overlap, and the amount 

of information from lower-order building blocks (as opposed to whether or not this infor- 
mation is misleading). Other such factors include sample error (Grefenstette & Baker, 1989), 
the number of local optima in the landscape (Schaffer et al., 1989), and the relative differ- 
ences in fitness between disjoint desirable schemas (Mitchell, Forrest, & Holland, 1992). 
Most efforts at characterizing the ease or difficulty of problems for the GA have concen- 
trated on deception, but these other factors have to be taken into account as well. 

At present, the GA community lacks a coherent theory of the effects on the GA of the 
various sources of facilitation or difficulty in a given problem; we also lack a complete 
list of such sources, as well as an understanding of how to define and measure them. Until 
such a theory is developed, the terms "GA-hard" and "GA-easy" should be defined in 
terms of the GA's performance on a given problem rather than in terms of the a priori 

structure of the problem. A general relation between a given problem's structure and the 
expected GA performance on that problem is still a very open area of research. 

Finally, we are concerned about the focus on finding the global optimum that is implicit 
in many definitions of deception (and thus of "GA-hard" and "GA-easy"). In many appli- 
cations it is infeasible to expect the GA to find the global optimum (and in many applica- 
tions the global optimum is not known). Moreover, it could be argued that in general the 
GA is more suited to finding good solutions quickly than to finding the absolute best solu- 
tion to a problem. But some researchers define deception solely in terms of hyperplanes 
leading toward or away from the global optimum (e.g., see Liepins & Vose, 1990). This 
narrows the concept of deception and makes it less generally useful for characterizing prob- 
lems according to probable GA success or failure, especially when "success" does not 
require that the exact optimum point be found. Also, several so-called deceptive problems 
are essentially multi-peaked functions with a negligible difference between the global opti- 
mum and the runner-up; for many applications it would not matter which one the GA found. 
Should such cases be classified with the stigma of deception? Or even worse, should such 
cases be relegated to the foreboding class of "GA-hard?" We need to clarify that it means 

for the GA to succeed or fail as well as what causes it to succeed or fail before we can 
define "GA-hard" and "GA-easy." 

159 



316 S. FORREST AND M. MITCHELL 

10. Conclusions 

After examining several possible causes for the GA's poor performance on the Tanese func- 
tions, we reach several conclusions: 

• Overlap in the defined loci between differentj 's in a given Tanese function created func- 
tions of much higher effective order than the actual order of their Walsh terms. This 
is the principle reason for the difficulty of the functions. 

• The lack of information from lower-order schemas hampered crossover from contributing 
to the search. This was a secondary cause of the GP~s poor performance, and largely 
accounts for the superior performance of hillclimbing. 

• Long defining lengths in the non-zero partitions contributed slightly to the GA's poor 
performance but were not a major factor. This is related to the ineffectiveness of crossover 
on these functions. On other problems for which crossover is effective, useful schemas 
with long defining lengths would be more likely to be destroyed by crossover and would 
thus cause difficulty for the GA. 

Tanese's results could be erroneously interpreted to imply that all Walsh polynomials 
are difficult for GAs, and that hillclimbing will generally outperform the GA on such func- 
tions. Such a result would be very negative for the GA, since any real-valued function defined 
on bit strings can be expressed as a Walsh polynomial. However, the experiments and anal- 
yses reported in this article suggest that Tanese's results should not be interpreted as a general 
negative verdict on GAs. The functions she studied are a highly restricted subset of the 
class of Walsh polynomials and have several peculiar properties that make them difficult 
to search. Her results could also mistakenly be taken to imply that partitioned GAs with 
smaller subpopulations will always outperform traditional GAs. This may not be true for 
functions in which recombination of lower-order building blocks plays a major role in 
the search. 

These results raise the important question of what problems are well suited for the GA, 
and more importantly, what features of these problems distinguish the GA from other 
methods. We have shown in this article that the GA's difficulty with the Tanese functions 
was due to factors other than deception, which has historically been the focus of theoretical 
work on GAs. The results discussed in this article underscore the fact that there are a number 
of different, independent factors that can be sources of difficulty for a GA, and we believe 
that these various factors must be identified and studied as part of the effort to characterize 
different problems in terms of the likelihood of GA success. The promise of GAs is based 
on the belief that "discovery and recombination of building blocks, allied with speedup 
provided by implicit parallelism, provides a powerful tool for learning in complex domains" 
(Goldberg & Holland, 1988b), but a better understanding of the details of building-block 
processing and implicit parallelism, and how they are affected by the structure of a given 
problem, is needed in order to use GAs more effectively. 

One clearly important factor lacking in the Tanese functions is the availability of lower- 
order building blocks that can combine to produce fit higher-order schemas; such hierar- 
chical schema-fitness structure is what makes crossover an effective operator. The "building 
blocks hypothesis" (Holland, 1975; Goldberg, 1989c) implies that the degree to which a 

160 



' WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 317 

fitness landscape contains such structure will in part determine the likelihood of success 
for the GA. Another hypothesized contributing factor is the degree to which the fitness 
landscape contains different "mountainous" regions of high-fitness points that are separated 
by "deserts" of low-fitness points (Holland, 1989). In order to travel from a low mountain- 
ous region to a higher one, a low-fitness desert must be crossed. Point-mutation methods 
such as hillclimbing can have very high expected waiting times to cross such deserts (if 
they can cross them at all); the hypothesis is that the GA will be much more likely to cross 
such deserts quickly via the crossover operation. 

The degree to which these factors are present in a given problem may depend to a large 
extent on the representation chosen for the problem; the role of representation in GA func- 
tion optimization has been discussed by Liepins and Vose (1990). We are currently studying 
the behavior of the GA and other search methods on a class of functions in which the degree 
to which these and other factors are present can be directly varied (Mitchell, Forrest, & 
Holland, 1992; Forrest & Mitchell, 1992), and we are investigating ways in which the 
presence of such features can be detected in a given function with a given representation. 
We believe that this investigation will lead to a better understanding of the classes of prob- 
lems for which the GA is likely to be a successful search or learning method. 

Acknowledgements 

This work is a natural follow-up to Reiko Tanese's thesis work. We are grateful for the 
interesting results that she uncovered and the clarity with which she reported them in her 
dissertation. We thank John Holland and Quentin Stout for providing many valuable sugges- 
tions for this research, Robert Smith for a number of helpful discussions about the notion 
of GA deception, and Lashon Booker, Greg Huber, Gunar Liepins, and Rick Riolo for 
their comments on earlier drafts of this article. We also thank Emily Dickinson, Julie 
Rehmeyer, and Yuval Roth-Tabak for help in creating the figures and graphs in this article. 
Support for this project was provided by the Santa Fe Institute, Santa Fe, NM (support 
to both authors); the Center for Nonlinear Studies, Los Alamos National Laboratory, Los 
Alamos, NM, Associated Western Universities, and National Science Foundation grant 
IRI-9157644 (support to S. Forrest); and the Michigan Society of Fellows, University of 
Michigan, Ann Arbor, MI (support to M. Mitchell). 

No~s 

1. Most numerical optimization applications actually use a Gray-coded representation of numbers for the GA. 
2. In her dissertation, Tanese describes experiments involving several fitness functions. In this article we consider 

only the results with respect to Walsh polynomials. 
3. We counted two individuals as being distinct only if they were different at some significant locus--that is, 

at a locus in which one of the 32 j ' s  had value 1 (otherwise the two individuals would be equivalent as far 
as the fitness function was concerned). As one v~uld expect, with strings of length 32, every locus was significant, 
which is not generally the case for strings of length 128. 

4. Stewart Wilson (personal communication) has proposed the term "veridical" to replace "GA-easy" in describing 
the problems lacking deception. 

161 



318 S. FORREST AND M. MITCHELL 

References 

Belew, R.K. & Booker, L.B. (Eds.) (1991). Proceedings of the Fourth International Conference on Genetic Algo- 
rithms. San Mateo, CA: Morgan Kaufmarm. 

Bergman, A., & Feldman, M.W. (1990). More on selection for and against recombination. Theoretical Population 
Biology, 38(1), 68-92. 

Bethke, A.D. (1980). Genetic algorithms as function optimizers. (Doctoral dissertation, University of Michigan.) 
Dissertation Abstracts International, 41(9), 3503B. 

Das, R., & Whitley, L.D. (1991). The only challenging problems are deceptive: Global search by solving order-1 
hyperplanes. In R.K. Belew & L.B. Booker (Eds.), Proceedings of the Fourth International Conference on 
Genetic Algorithms. San Mateo, CA: Morgan Kaufmann. 

Davis, L.D. (Ed.) (1987). Genetic algorithms and simulated annealing. Research Notes in Artificial Intelligence. 
Los Altos, CA: Morgan Kauffmann. 

Davis, L.D. (Ed.) (1991). The handbook of genetic algorithms. New York: Van Nostrand Reinhold. 
De Jong, K.A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Unpublished doctoral 

dissertation, University of Michigan, Ann Arbor, MI. 
De Jong, K.A. (Ed.) (1990a). Special issue on genetic algorithms. Machine Learning, 5(4). 
De Jong, K.A. (1990b). Introduction to the second special issue on genetic algorithms. Machine Learning, 5(4), 

351-353. 
De Jong, K.A., & Spears, W. (1991). Learning concept classification rules using genetic algorithms. In Proceedings 

of the Twelfth International Conference on Artificial Intelligence, 651-656. San Mateo, CA: Morgan Kaufmann. 
Forrest, S. (1985). Documentation for  9risoner's dilemma and norms programs that use the genetic algorithm. 

Unpublished report, University of Michigan, Ann Arbor, MI. 
Forrest, S., & Mitchell, M. (1991). The performance of genetic algorithms O n Walsh polynomials: Some anomalous 

results and their explanation. In R.K. Belew & L.B. Booker (Eds.), Proceedings of the Fourth International 
Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann. 

Forrest, S., & Mitchell, M. (1992). Towards a stronger building-blocks hypothesis: Effects of relative building- 
block fitness on GA performance. In L.~D, Whitley (Ed.), Foundations of genetic algorithms 2. San Mateo, 
CA: Morgan Kaufmann. 

Goldberg, D.E. (1985). Optimal initial population size for binary-coded genetic algorithms (Technical Report 
TCGA Report No. 85001). Tuscaloosa, AL: University of Alabama. 

Goldberg, D.E. (1987). Simple genetic algorithms and the minimal deceptive problem. In L.D. Davis (ed.), Genetic 
algorithms and simulated annealing. Research Notes in Artificial Intelligence. Los Altos, CA: Morgan Kaufmann. 

Goldberg, D.E. (1989a). Genetic algorithms and Walsh functions: Part I, A gentle introduction. Complex Systems, 
3, 129-152. 

Goldberg, D.E. (1989b). Genetic algorithms and Walsh functions: Part II, Deception and its analysis. Complex 
Systems, 3, 153-171. 

Goldberg, D.E. (1989c). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison 
Wesley. 

Goldberg, D.E. (1989d). Sizing populations for serial and parallel genetic algorithms. In J.D. Schaffer (Ed.)j 
Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann. 

Goldberg, D.E. (1991). Construction of high-order deceptive functions using low-order Walsh coefficients (Technical 
Report 90002). Urbana, IL: Illinois Genetic Algorithms Laboratory, Department of General Engineering, Univer- 
sity of Illinois. 

Goldberg, D.E., & Bridges, C.L. (1988). An analysis of a reordering operator on a GA-hard problem (Technical 
Report 88005). Tuscaloosa, AL: The Clearinghouse for Genetic Algorithms, Department of Engineering 
Mechanics, University of Alabama. 

Goldberg, D.E., & Holland, J.H. (Eds.). (1988a). Special issue on genetic algorithms. Machine Learning, 3(2-3). 
Goldberg, D.E., & Holland, J.H. (1988b). Introduction to the first special issue on genetic algorithms. Machine 

Learning, 3(2-3), 95-99. 
Goldberg, D.E., Korb, B., & Deb, K. (1990). Messy genetic algorithms. Motivation, analysis, and first results. 

Complex Systems, 3, 493-530. 
Grefenstette, J.J. (Ed.). (1985). Proceedings of the First International Conference on Genetic Algorithms and Their 

Applications. Hillsdale, NJ: Lawrence Erlbanm Associates. 

162 



WHAT MAKES A PROBLEM HARD FOR A GENETIC ALGORITHM? 319 

Grefenstette, J.J. (Ed.). (1987). Genetic Algorithms and Their Applications: Proceedings of the Second Interna- 
tional Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Grefenstette, J.J., & Baker, J.E. (1989). How genetic algorithms work: A critical look at implicit parallelism. 
In J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, 
CA: Morgan Kanfmann. 

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press. 
Holland, J.H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms applied to 

parallel rule-based systems. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning 
(Vol. 2). San Mateo, CA: Morgan Kaufmann. 

Holland, J.H (1988). The dynamics of searchers directed by genetic algorithms. In Y.C. Lee (Ed.), Evolution, 
learning, and cognition. Teaneck, NJ: World Scientific. 

Holland, J.H. (1989). Using classifier systems to study adaptive nonlinear networks. In D.L. Stein (Ed.), Lectures 
in the sciences of complexity (Vol. 1), Reading, MA: Addison-Wesley. 

Koza, J.R. (1990). Genetic programming: A paradigm for genetically breeding populations of computer programs 
to solve problems (Technical Report STAN-CS-90-1314). Stanford, CA: Department of Computer Science, Stanford 
University. 

Liepins, G.E., & Vose, M.D. (1990). Representational issues in genetic optimization. Journal of Experimental 
and Theoretical Artificial Intelligence, 2, 101-115. 

Miller, G.E, Todd, P.M., & Hegde, S.U. (1989). Designing neural networks using genetic algorithms. In J.D. 
Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms (.pp. 379-384). San 
Mateo, CA: Morgan Kaufmann. 

Mitchell, M., Forrest, S., & Holland, J.H. (1992). The royal road for genetic algorithms: Fitness landscapes 
and GA peformance. In Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT 
Press/Bradford Books. 

Packard, N.H. (1990). A genetic learning algorithm for the analysis of complex data. Complex Systems, 4(5). 
Schaffer, J.D. (ed.). (1989). Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, 

CA: Morgan Kaufmarm. 
Smith, S.E (1980). A learning system based on genetic adaptive algorithms. Unpublished Ph.D. dissertation, 

Computer Science Department, University of Pittsburgh, pittsburgh, PA. 
Tanese, R. (1989a). Distributed genetic algorithms for function optimization. Unpublished doctoral dissertation, 

University of Michigan, Ann Arbor, MI. 
Tanese, R. (1989b). Distributed genetic algorithms. In J.D. Schaffer (ed.), Proceedings of the Third International 

Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann. 
Walsh, J.L. (1923). A closed set of orthogonal functions. American Journal of Mathematics, 55, 5-24. 
Whitley, L.D. (1991). Fundamental principles of deception in genetic search. In G. Rawlins (Ed.), Foundations 

of genetic algorithms. San Mateo, Ca: Morgan Kaufmann. 
Whitley, L.D., Dominic, S., & Das, R. (1991). Genetic reinforcement learning with multilayer neural networks. 

In R.K. Belew & L.B. Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms 
(pp. 562-569). San Mateo, CA: Morgan Kaufmann. 

Wilson, S.W. (1991). GA-easy does not imply steepest-ascent optimizable. In R.K. Belew & L.B. Booker (Eds.), 
Proceedings of The Fourth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann. 

Received October 7, 1991 
Accepted January 31, 1992 
Final Manuscript July 23, 1992 

163 


