Heat capacity and phase equilibria of hollandite polymorph of \(\text{KAlSi}_3\text{O}_8\)

Abstract The low-temperature heat capacity \(C_p\) of \(\text{KAlSi}_3\text{O}_8\) with a hollandite structure was measured over the range of 5–303 K with a physical properties measurement system. The standard entropy of \(\text{KAlSi}_3\text{O}_8\) hollandite is 166.2±0.2 J mol\(^{-1}\) K\(^{-1}\), including an 18.7 J mol\(^{-1}\) K\(^{-1}\) contribution from the configurational entropy due to disorder of Al and Si in the octahedral sites. The entropy of \(\text{K}_2\text{Si}_4\text{O}_9\) with a wadeite structure (Si-wadeite) was also estimated to facilitate calculation of phase equilibria in the system \(\text{K}_2\text{O–Al}_2\text{O}_3–\text{SiO}_2\). The calculated phase equilibria obtained using Perple\(_x\) are in general agreement with experimental studies. Calculated phase relations in the system \(\text{K}_2\text{O–Al}_2\text{O}_3–\text{SiO}_2\) confirm a substantial stability field for kyanite–stishovite/coesite–Si-wadeite intervening between \(\text{KAlSi}_3\text{O}_8\) hollandite and sanidine. The upper stability of kyanite is bounded by the reaction kyanite \((\text{Al}_2\text{SiO}_5) = \text{corundum (Al}_2\text{O}_3) + \text{stishovite (SiO}_2)\), which is located at 13–14 GPa for 1,100–1,400 K. The entropy and enthalpy of formation for \(\text{K-cymrite (KAlSi}_3\text{O}_8Æ\text{H}_2\text{O})\) were modified to better fit global best-fit compilations of thermodynamic data and experimental studies. Thermodynamic calculations were undertaken on the reaction of \(\text{K-cymrite to KAlSi}_3\text{O}_8\) hollandite + \(\text{H}_2\text{O}\), which is located at 8.3–10.0 GPa for the temperature range 800–1,600 K, well inside the stability field of stishovite. The reaction of muscovite to \(\text{KAlSi}_3\text{O}_8\) hollandite + corundum + \(\text{H}_2\text{O}\) is placed at 10.0–10.6 GPa for the temperature range 900–1,500 K, in reasonable agreement with some but not all experiments on this reaction.

Keywords Hollandite · \(\text{KAlSi}_3\text{O}_8\) · Si-wadeite · K-cymrite · Heat capacity · High-pressure phase equilibria · Thermodynamic calculation

Introduction

Ringwood et al. (1967) first discovered that potassium feldspar transforms into a hollandite structure when pressure exceeds 12 GPa. The K atoms in \(\text{KAlSi}_3\text{O}_8\) hollandite are accommodated in tunnels formed by double chains of edge-sharing (Si,Al)O\(_6\) octahedra (Ringwood et al. 1967; Yamada et al. 1984; Zhang et al. 1993). Kinomura et al. (1975) found an intermediate-pressure assemblage of kyanite (\(\text{Al}_2\text{SiO}_5\)), coesite (\(\text{SiO}_2\)), and \(\text{K}_2\text{Si}_4\text{O}_9\) with a wadeite structure (Si-wadeite) separating the stability field of sanidine at low pressure and \(\text{KAlSi}_3\text{O}_8\) hollandite at high pressure. This was verified by additional experiments (Urakawa et al. 1994; Yagi et al. 1994). The lower stability of \(\text{KAlSi}_3\text{O}_8\) hollandite was located at pressures of 8–10 GPa for temperatures of 1,000–1,500 K. With one-fourth of the Si atoms in octahedral sites, the structure of Si-wadeite (\(\text{K}_2\text{Si}_4\text{O}_9\)) can be considered as three-membered rings of SiO\(_4\) tetrahedra connected by octahedrally coordinated Si atoms (Kinomura et al. 1977; Swanson and Prewitt 1983). Liu (1978) reported \(\text{KAlSi}_3\text{O}_8\) hollandite plus a high-pressure form of \(\text{KAI}_2\text{O}_2\) forming from kalsilite (\(\text{KAI}_2\text{O}_2\)) in the pressure range of 17–30 GPa. Faust and Knittle (1994) documented the breakdown of a natural muscovite to \(\text{KAI}_2\text{Si}_3\text{O}_8\) hollandite + corundum + \(\text{H}_2\text{O}\) at pressures between 10.9 and 12.0 GPa at around 1,073 K. The phase \(\text{KAlSi}_3\text{O}_8\) hollandite has also been reported in hydrated average upper continental crust, MORB, andesite, and pelite compositions when pressure is greater than 8 GPa (Irifune et al. 1994; Schmidt 1996; Domanik and Holloway 1996, 2000; Ono 1998; Wang
Electron microprobe (EMP) analyses of run product hollandite by Dom anik and Holloway (2000) show 14–30% deficiencies in the K site that are not matched by excess Si. They inferred that phengite decomposed to K\(\text{AlSi}_3\text{O}_8\) hollandite between 9 and 10 GPa at 900°C. Dom anik and Holloway (2000) noted that their hollandite was damaged by the electron beam but did not correct for elemental migration. Their low K site occupancies probably represent an analytical artifact rather than a vacancy substitution. Examination of their assemblies suggests progress of the reaction muscovite + coesite/stishovite = K\(\text{AlSi}_3\text{O}_8\) hollandite + kyanite + fluid, as well as more complex reactions that involve magnesite, garnet and OH-topaz. Konzett and Fei (2000) reported K\(\text{AlSi}_3\text{O}_8\) hollandite as one of the breakdown products at 20–23 GPa and 1,773–1,973 K in peralkaline and subalkaline rock compositions. Quench experiments by Tutti et al. (2001) showed that K\(\text{AlSi}_3\text{O}_8\) hollandite is still stable at pressure as high as 95 GPa, consistent with previous suggestions that K\(\text{AlSi}_3\text{O}_8\) hollandite is an important host for potassium in the lower mantle (Ringwood 1975; Prewitt and Downs 1998). Occurrences of natural K\(\text{AlSi}_3\text{O}_8\) hollandite and Na\(\text{AlSi}_3\text{O}_8\) hollandite (Na\(\text{AlSi}_3\text{O}_8\) with hollandide structure) have been reported in shocked meteorites (Akaogi 2000; Gillet et al. 2000; Langenhorst and Poirier 2000; Tomioka et al. 2000; Kimura et al. 2003). Sueda et al. (2004) demonstrated that K\(\text{AlSi}_3\text{O}_8\) hollandite transforms to a new high-pressure phase (K\(\text{AlSi}_3\text{O}_8\) hollandide II) at ~22 GPa at room temperature using in situ X-ray diffraction. They related this transition to the abrupt enrichments of Ca and Na components in K\(\text{AlSi}_3\text{O}_8\) hollandite coexisting with a potassic basalt melt at ~22.5 GPa observed by Wang and Takahashi (1999). In situ X-ray diffraction study by Nishiyama et al. (2005) confirmed that this transition happens at pressures of 20–23 GPa and temperatures of 300–1,000 K. Collectively, the experimental studies suggest that K\(\text{AlSi}_3\text{O}_8\) hollandite has an important role in transporting potassium during subduction of oceanic crust into the deep mantle.

The thermodynamic properties of several phases are in need of further study in order to accurately determine the phase equilibria in the system K\(2\text{O}–\text{Al}_2\text{O}_3–\text{SiO}_2\), although some measurements have been made. The enthalpy of Si-wadeite and K\(\text{AlSi}_3\text{O}_8\) hollandite was determined by Geisinger et al. (1987) and Akaogi et al. (2004) using high-temperature solution calorimetry. The high-temperature heat capacity of Si-wadeite was measured by Fasshauer et al. (1998). They generated an internally consistent thermodynamic data set for several phases but did not include K\(\text{AlSi}_3\text{O}_8\) hollandite in their evaluation. Akaogi et al. (2004) measured the high-temperature heat capacity data of K\(\text{AlSi}_3\text{O}_8\) hollandite and reevaluated the phase relations in the system K\(2\text{O}–\text{Al}_2\text{O}_3–\text{SiO}_2\) by combining thermodynamic with experimental data. However, an approach totally independent of the experiments has not been applied to this system because the lack of low-temperature heat capacity data, and hence lack of entropy and Gibbs free energy, of the high-pressure phases. In this study, the low-temperature heat capacity of K\(\text{AlSi}_3\text{O}_8\) hollandite was measured using a physical properties measurement system (PPMS, produced by Quantum Design®), and the entropy of K\(\text{AlSi}_3\text{O}_8\) hollandite was calculated from the measured heat capacity data. The entropy of Si-wadeite was estimated from Holland (1989), and phase relations in the system K\(2\text{O}–\text{Al}_2\text{O}_3–\text{SiO}_2\) were calculated based on the new thermodynamic data. Several reactions involving K\(\text{AlSi}_3\text{O}_8\) hollandite were also investigated in the system K\(2\text{O}–\text{Al}_2\text{O}_3–\text{SiO}_2–\text{H}_2\text{O}\).

Experimental procedures

Sample synthesis and characterization

The K\(\text{AlSi}_3\text{O}_8\) hollandite was synthesized using a 1,000-ton Walker-type multi-anvil device at the University of Minnesota. Tungsten carbide anvils with 8 mm truncations, cast MgO–Cr\(_2\)O\(_3\) octahedra with 14 mm edge lengths and pyrophyllite gaskets were used for this study. K\(\text{AlSi}_3\text{O}_8\) glass from Craig Manning at UCLA was used as the starting material. It was powdered and loaded into a cylindrical Re capsule, which also acts as the furnace. After being held at 14 GPa and 1,673 K for 24 h, the starting material was quenched at 14 GPa and slowly recovered to ambient pressure. Temperature was controlled by a W\(_2\)Re\(_9\)/W\(_{25}\)Re\(_{75}\) thermocouple oriented vertically with respect to the heater.

The run product was confirmed to be K\(\text{AlSi}_3\text{O}_8\) hollandite by X-ray diffraction and EMP analysis. The tetragonal lattice parameters of the synthesized K\(\text{AlSi}_3\text{O}_8\) hollandite were determined using the Scintag Crystallography program as \(a=9.313(5)\) Å and \(c=2.723(3)\) Å, which are in good agreement with the values, \(a=9.315(4)\) Å and \(c=2.724(3)\) Å, by Zhang et al. (1993) and deviate only slightly from the data, \(a=9.3244(4)\) Å and \(c=2.7227(3)\) Å, of Yamada et al. (1984). The EMP analyses were performed using Cameca SX-100, and the average values for 25 runs of K\(\text{AlSi}_3\text{O}_8\) hollandite are shown in Table 1. The column conditions were: accelerating voltage 15 kV, beam current 4 nA, peak and background counting times each 10 s, and beam scan area 5×5 mm\(^2\). The low current was used because preliminary analyses showed the sensitivity of hollandite to an electron beam. The standards used for Na, Mg, Fe, Al, Si, and K are Tiburon albite, synthetic Mg\(\text{TiO}_3\), synthetic Fe\(\text{SiO}_3\), K-feldspar from St. Gotthard, respectively. The small amounts of Na, Mg, and Fe are around the detection limits, and their effects on the heat capacity measurement are negligible. Compared to previous EMP studies on synthetic K\(\text{AlSi}_3\text{O}_8\) hollandite that indicated an apparent deficiency on the K site (Irifune et al. 1994; Schmidt 1996; Dom anik and Holloway 1996, 2000; Ono 1998; Wang and Takahashi 1999), the EMP analyses in this study shows no evidence for a vacancy on that site. Less accurate TEM analyses
of natural KAlSi$_3$O$_8$ hollandite from shock metamorphosed meteorites also showed an apparent vacancy on the K site (Langenhorst and Poirier 2000). It will be assumed that the KAlSi$_3$O$_8$ hollandite in this study is pure and stoichiometric.

Heat capacity measurement

The low-temperature heat capacity at constant pressure (C_p) of KAlSi$_3$O$_8$ hollandite was measured at 1 atm using the heat capacity option of the PPMS at Salzburg University in Austria. Based on heat-pulse calorimetry (HPC), the PPMS is the first commercially available apparatus that can measure the low-temperature heat capacity of samples with milligram mass. Lashley et al. (2003) and Dachs and Bertoldi (2005) provided a detailed description of the PPMS, its use in heat capacity measurements, and an evaluation of measurement errors. The technique is summarized below.

The central part of the PPMS calorimeter is the calorimeter puck, made up of the puck frame and the puck frame. A non-linear least-squares fit to the analytical solutions of equation (1) (Dachs and Bertoldi 2005: their equations 6a, 6b) yields the heat capacity of the empty sample platform, C_p^{pl}, at the temperature T_{pl}. This procedure is then repeated at the desired temperature with the sample mounted on the sample platform during the sample run. The equations that describe the heat balance conditions in this case are:

$$\begin{cases} P(t) = C_p^{pl} \frac{dT_{pl}(t)}{dt} + K_w (T_{pl}(t) - T_b) + K_s (T_{pl}(t) - T_s(t)) \\ 0 = C_p^{pl} \frac{dT_{pl}(t)}{dt} + K_w (T_{pl}(t) - T_s(t)) - T_{pl}(t) \end{cases}$$

(2)

where K_s is the thermal conductance due to the grease between the sample and the sample platform, T_s and C_p^{pl} are the temperature and the heat capacity of the sample, respectively. Because T_{pl} can be directly measured by PPMS, elimination of T_s in Eq. 2 will generate:

$$\frac{d^2 T_{pl}}{dt^2} + \frac{dT_{pl}}{dt} \left[\frac{(C_p^{pl} K_w / K_s + C_p^{pl} + C_p^{pl} / K_s)}{C_p^{pl} + C_p^{pl}} \right] + \frac{K_w K_s}{C_p^{pl}} T_{pl} = \frac{K_s}{C_p^{pl}} \frac{dP(t)}{dt} + P(t) + K_w T_b.$$

(3)

As C_p^{pl} is already known from the addenda run, the remaining four unknowns: K_w, K_s, T_b, and C_p^{pl} are calculated by applying the same non-linear least square fitting routine to the analytical solution of equation (3) (Dachs and Bertoldi 2005: their Eqs. 10a, 10b) based on the temperature-time response curve measured during the sample run (40–200 data pairs for each measurement at a specific temperature). The standard deviation (SD), σ_{C_p}, of each measurement can also be obtained from this fitting procedure. The heat capacity contribution of the container is subtracted from the total heat capacity to give the net heat capacity of the unknown samples. Dachs and Bertoldi (2005) showed that heat capacity measurements on sealed powders by PPMS were systematically lower than low-temperature adiabatic calorimetry (LTAC) data by 1–2% in the temperature range between 100 and 300 K. At 5–20 K, where the absolute values of heat capacity are small, the measured data by PPMS may be up to 50% larger than those measured by LTAC. The entropies at 298.15 K derived from PPMS heat capacity measurements are at maximum 1–2% lower than those calculated from LTAC experiments (Dachs and Bertoldi 2005).

Table 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>SiO$_2$ (wt %)</th>
<th>Al$_2$O$_3$</th>
<th>K$_2$O</th>
<th>MgO</th>
<th>Na$_2$O</th>
<th>FeO</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAlSi$_3$O$_8$ (glass)</td>
<td>64.57</td>
<td>17.63</td>
<td>16.92</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>99.16</td>
</tr>
<tr>
<td>SD (wt %)</td>
<td>0.38</td>
<td>0.15</td>
<td>0.48</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Cations per 8 O</td>
<td>3.018</td>
<td>0.971</td>
<td>1.009</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>5.001</td>
</tr>
<tr>
<td>KAlSi$_3$O$_8$ (hollandite)</td>
<td>64.30</td>
<td>18.34</td>
<td>17.36</td>
<td>0.04</td>
<td>0.04</td>
<td>0.19</td>
<td>100.27</td>
</tr>
<tr>
<td>SD (wt %)</td>
<td>0.64</td>
<td>0.44</td>
<td>0.32</td>
<td>0.02</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Cations per 8 O</td>
<td>2.983</td>
<td>1.003</td>
<td>1.027</td>
<td>0.003</td>
<td>0.004</td>
<td>0.007</td>
<td>4.989</td>
</tr>
</tbody>
</table>
Results

Heat capacity and entropy of KAlSi$_3$O$_8$ hollandite

The measured molar heat capacity (C_p) of KAlSi$_3$O$_8$ hollandite versus temperature is listed in Table 2 and shown in Fig. 1. To obtain the entropy of KAlSi$_3$O$_8$ hollandite, a general polynomial with $C_p = k_0 + k_1T^{-0.5} + k_2T^{-2} + k_3T^{-3} + k_4T + k_5T^2 + k_6T^3$ was chosen to fit the C_p data in Table 2 using the Experimental Data Analyst Package of Mathematica®. The data were split into three temperature regions and each region was fitted individually with some overlap of data. The equation $C_p = k_0 + k_1T^{-0.5} + k_2T^{-2} + k_3T^{-3}$ was used for fitting the high temperature portion of the data, the complete polynomial given above for the intermediate temperature portion and $C_p = k_4T + k_5T^2$ is for fitting at low temperature. The C_p data below 5 K were estimated by a linear extrapolation to 0 K from the lowest measured C_p point in the form of $C_p = k_6T^3$. The resulting C_p coefficients and temperatures at interval boundaries are given in Table 3, where the final entropy value varies only insignificantly (only in the second digit) upon choosing a different splitting temperature of the C_p data (Table 3, Fit 1 compared to Fit 2). The uncertainty in the entropy at standard temperature and pressure was estimated by a Monte Carlo technique. A detailed description of error estimation is provided in Dachs and Bertoldi (2005). The entropy of KAlSi$_3$O$_8$ hollandite at 298.15 K calculated by integration of these fitted functions is 18.7 ± 0.2 J mol$^{-1}$ K$^{-1}$. That value is in striking disagreement with the value of 65.3 J mol$^{-1}$ K$^{-1}$ that was estimated by Domanik and Holloway (2000). Their estimate was derived by summation techniques based on a complex dehydration reaction involving phengite in the system K-MASH and is likely to have large errors that were not evaluated.

The high-temperature C_p data of KAlSi$_3$O$_8$ hollandite were measured by Akaogi et al. (2004) using differential scanning calorimetry. Their data were used for calculation of the enthalpy and entropy above ambient temperature (Table 4). The smooth fit of our C_p data with that of Akaogi et al. (2004) provides strong support for the STP entropy obtained in this study but not for the estimate of Domanik and Holloway (2000).

Fig. 1 Comparison of the low-T C_p of KAlSi$_3$O$_8$ hollandite measured using the PPMS calorimeter in this study with high-T C_p data from Akaogi et al. (2004)

Table 2 Heat capacity of KAlSi$_3$O$_8$ hollandite

<table>
<thead>
<tr>
<th>T (K)</th>
<th>C_p (J mol$^{-1}$ K$^{-1}$)</th>
<th>T (K)</th>
<th>C_p (J mol$^{-1}$ K$^{-1}$)</th>
<th>T (K)</th>
<th>C_p (J mol$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.06</td>
<td>0.0177(6)</td>
<td>20.87</td>
<td>1.059(20)</td>
<td>86.45</td>
<td>35.52(40)</td>
</tr>
<tr>
<td>5.52</td>
<td>0.0231(6)</td>
<td>22.68</td>
<td>1.371(25)</td>
<td>93.95</td>
<td>41.36(43)</td>
</tr>
<tr>
<td>6.00</td>
<td>0.031(1)</td>
<td>24.65</td>
<td>1.792(37)</td>
<td>102.17</td>
<td>47.91(44)</td>
</tr>
<tr>
<td>6.52</td>
<td>0.038(1)</td>
<td>26.80</td>
<td>2.307(44)</td>
<td>111.41</td>
<td>55.13(46)</td>
</tr>
<tr>
<td>7.08</td>
<td>0.049(1)</td>
<td>29.14</td>
<td>2.986(58)</td>
<td>120.78</td>
<td>63.77(46)</td>
</tr>
<tr>
<td>7.69</td>
<td>0.059(1)</td>
<td>31.68</td>
<td>3.807(73)</td>
<td>131.31</td>
<td>73.05(48)</td>
</tr>
<tr>
<td>8.36</td>
<td>0.078(1)</td>
<td>34.45</td>
<td>4.810(89)</td>
<td>142.77</td>
<td>83.25(51)</td>
</tr>
<tr>
<td>9.08</td>
<td>0.096(2)</td>
<td>37.46</td>
<td>6.02(11)</td>
<td>155.22</td>
<td>94.20(50)</td>
</tr>
<tr>
<td>9.86</td>
<td>0.123(2)</td>
<td>40.74</td>
<td>7.48(14)</td>
<td>168.72</td>
<td>106.15(51)</td>
</tr>
<tr>
<td>10.72</td>
<td>0.158(3)</td>
<td>44.29</td>
<td>9.03(17)</td>
<td>183.49</td>
<td>118.93(51)</td>
</tr>
<tr>
<td>11.65</td>
<td>0.195(4)</td>
<td>48.15</td>
<td>11.00(21)</td>
<td>199.47</td>
<td>132.06(53)</td>
</tr>
<tr>
<td>12.67</td>
<td>0.247(5)</td>
<td>52.35</td>
<td>13.25(23)</td>
<td>216.98</td>
<td>145.75(54)</td>
</tr>
<tr>
<td>13.76</td>
<td>0.310(6)</td>
<td>56.92</td>
<td>15.87(26)</td>
<td>235.83</td>
<td>159.92(59)</td>
</tr>
<tr>
<td>14.96</td>
<td>0.395(7)</td>
<td>61.88</td>
<td>18.81(29)</td>
<td>256.48</td>
<td>174.27(55)</td>
</tr>
<tr>
<td>16.25</td>
<td>0.500(9)</td>
<td>67.28</td>
<td>22.16(34)</td>
<td>278.71</td>
<td>189.62(67)</td>
</tr>
<tr>
<td>17.67</td>
<td>0.638(11)</td>
<td>73.14</td>
<td>26.05(35)</td>
<td>303.10</td>
<td>202.66(70)</td>
</tr>
<tr>
<td>19.20</td>
<td>0.818(15)</td>
<td>79.52</td>
<td>30.30(39)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The C_p data were measured with PPMS on 17.9 mg sample material.
Table 3 Coefficients of the C_p polynomial $C_p = k_0 + k_1T^{-0.5} + k_2T^{-2} + k_3T^{-3} + k_4T + k_5T^2 + k_6T^3$ derived by fitting the PPMS C_p data of KAlSi$_3$O$_8$ hollandite given in Table 2

<table>
<thead>
<tr>
<th>Formula weight</th>
<th>403.129 g/mol</th>
<th>17.91 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample weight</td>
<td>Fit 1</td>
<td>Fit 2</td>
</tr>
<tr>
<td>k_6</td>
<td>1.382E-04</td>
<td>1.382E-04</td>
</tr>
<tr>
<td>T_1</td>
<td>5.18</td>
<td>4.63</td>
</tr>
<tr>
<td>k_0</td>
<td>3.8615E+00</td>
<td>-5.7192E+00</td>
</tr>
<tr>
<td>k_1</td>
<td>-9.3952E+00</td>
<td>1.2055E+01</td>
</tr>
<tr>
<td>k_2</td>
<td>4.0668E+01</td>
<td>-3.7451E+01</td>
</tr>
<tr>
<td>k_3</td>
<td>-7.4326E+01</td>
<td>5.7584E+01</td>
</tr>
<tr>
<td>k_4</td>
<td>-1.5636E-01</td>
<td>3.3438E-01</td>
</tr>
<tr>
<td>k_5</td>
<td>3.8436E-03</td>
<td>-1.3217E-02</td>
</tr>
<tr>
<td>k_6</td>
<td>8.4027E-05</td>
<td>3.2994E-04</td>
</tr>
<tr>
<td>T_2</td>
<td>33.55</td>
<td>24.83</td>
</tr>
<tr>
<td>k_2</td>
<td>-5.1104E+02</td>
<td>1.0604E+02</td>
</tr>
<tr>
<td>k_4</td>
<td>-7.3461E-02</td>
<td>-1.3806E-01</td>
</tr>
<tr>
<td>k_5</td>
<td>7.2435E-03</td>
<td>9.0294E-03</td>
</tr>
<tr>
<td>k_6</td>
<td>-1.8727E-05</td>
<td>-3.0671E-05</td>
</tr>
<tr>
<td>T_3</td>
<td>122.36</td>
<td>91.31</td>
</tr>
<tr>
<td>k_0</td>
<td>6.4504E+02</td>
<td>6.3640E+02</td>
</tr>
<tr>
<td>k_1</td>
<td>-8.2990E+03</td>
<td>-8.1192E+03</td>
</tr>
<tr>
<td>k_2</td>
<td>3.6393E+06</td>
<td>3.3807E+06</td>
</tr>
<tr>
<td>k_3</td>
<td>-1.3325E+08</td>
<td>-1.1687E+08</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>298.15</td>
<td>298.15</td>
</tr>
<tr>
<td>C_p at 298</td>
<td>200.3(7)</td>
<td>200.2(7)</td>
</tr>
<tr>
<td>S^o_{298}</td>
<td>147.45(19)</td>
<td>147.49(18)</td>
</tr>
</tbody>
</table>

At the bottom of the table, heat capacity at 298.15 K and standard entropy S_o are additionally given (numbers in parenthesis is 1SD and apply to the last digits). Fit 1 and Fit 2 only differ by the choice of temperatures T_1, T_2 and T_3 at which the C_p data have been split into subsets.

Entropy of Si-wadeite and phase equilibria in K$_2$O–Al$_2$O$_3$–SiO$_2$ system

High-pressure experimental studies on the phase transitions in KAlSi$_3$O$_8$ were carried out by Yagi et al. (1994) and Urakawa et al. (1994) on the following reactions:

2sandine = Si-wadeite + kyanite + coesite. (4)
Si-wadeite + kyanite + coesite = 2KAlSi$_3$O$_8$ hollandite. (5)

Si-wadeite + kyanite + stishovite
= 2KAlSi$_3$O$_8$ hollandite. (6)

The experimental results are shown in Fig. 2. The experiments by Yagi et al. (1994) were revised by Akagi et al. (2004) because the original pressure calibration was mainly on the coesite–stishovite transition by Yagi and Akimoto (1976), which is 0.3–0.4 GPa higher than the most recent work by Zhang et al. (1996). The results after recalibration are comparable to the in situ X-ray experiments of Urakawa et al. (1994), which were based on a NaCl pressure scale.

Thermodynamic calculations were undertaken with the computer program Perple_X (Connolly and Kerrick 1987; Connolly 1990) using a modified Holland and Powell (1998) data base, and including the new data from this research for KAlSi$_3$O$_8$ hollandite and Si-wadeite. Table 4 shows the sources of phase properties involved in this study. For the solid phases, the temperature dependence of the molar volume, V°(T), is given by

$$V^o(T) = V^o_{298} \left(1 + \int_{298}^{T} \alpha dT\right),$$

where α and V^o_{298} are the thermal expansion and molar volume at standard state, respectively. The pressure dependence of the molar volume was calculated using the Murnaghan equation of state:

$$V(T, P) = V^o(T) \left(1 + \frac{K_{0T}}{K_{0T}'} \frac{P}{T}\right),$$

where K_{0T} and K'_{0T} are the isothermal bulk modulus and its pressure derivative, respectively. The compensated-Redlich-Kwong (CORK) equation from Holland and Powell (1991, 1998) was chosen for the PVT-behavior of H$_2$O.

Unfortunately, the entropy of Si-wadeite has not been determined calorimetrically. Fasshauer et al. (1998) estimated a value of 232±10 J mol$^{-1}$ K$^{-1}$ for S^o_{298} of Si-wadeite, about 33 J mol$^{-1}$ K$^{-1}$ larger than that calculated by Geisinger et al. (1987) from spectroscopic data. This is partly supported by the systematically higher C_p observed by differential scanning calorimetry (DSC) at $T<500$ K than that derived from vibrational spectroscopy (Fasshauer et al., 1998). Thermodynamic calculations using Perple_X also favor a larger value for S^o_{298} of Si-wadeite. The calculated phase relations using $S^o_{298(wad)} = 232±10$ J mol$^{-1}$ K$^{-1}$ are shown in Fig. 2 (dashed lines). Unfortunately, large discrepancies remain between the calculated phase boundaries and the experimental data of Yagi et al. (1994) and Urakawa et al. (1994). An even larger value for S^o_{298} of Si-wadeite is necessitated to fit the experimental data with thermodynamic calculation.

The S^o_{298} of Si-wadeite was therefore estimated from Holland (1989) as follows:

$$S^o_{298(wad)} = (3S[SiO_4]^8 + S[SiO_6]^6 + SK_2O_{(a)}) + k[V^o_{298(wad)}$$
$$\times -\left(3V[SiO_4]^4 + V[SiO_6]^6 + VK_2O_{(a)}\right)]$$
$$= kV^o_{298(wad)} + 3(S - kV)[SiO_4] + (S - kV)[SiO_6]$$
$$+ (S - kV)K_2O_{(a)}$$
$$= 108.44 + 3 \times 17.45 + 10.49 + 79.59 \approx 251$$
$$\pm 4 \text{ J mol}^{-1} \text{ K}^{-1}$$

where $k = 1.0$ J K$^{-1}$ cm$^{-3}$, which corresponds to solid-solid reactions involving no change in coordination state that have $dP/dT = 10$ bar K$^{-1}$. The values of $(S-kV)[SiO_4]$ and $(S-kV)K_2O_{(a)}$ can be found in Holland (1989), which are calculated from the
Table 4 Phase property data used for phase boundary calculation

<table>
<thead>
<tr>
<th>Phase</th>
<th>H^f_{298} (kJ mol$^{-1}$)</th>
<th>S^c_{298} (J mol$^{-1}$ K$^{-1}$)</th>
<th>$C_p = c_1 + c_2 T^{-0.5} + c_3 T^{-2} + c_4 T^{-3}$</th>
<th>V^o_{298} (cm3 mol$^{-1}$)</th>
<th>$x = a_0 + a_1 T$</th>
<th>K_0T (Gpa)</th>
<th>K_0T</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAlSi$_3$O$_8$ (hol)</td>
<td>-3803.50a</td>
<td>166.2(0.4)d</td>
<td>3.896 -1.823 -12.934 16.307f</td>
<td>71.28h</td>
<td>3.300 f</td>
<td>180f</td>
<td>4n</td>
</tr>
<tr>
<td>K$_2$Si$_4$O$_9$ (wd)</td>
<td>-4301.2(5.7)b</td>
<td>251(8)f</td>
<td>4.991 -4.350 0 0b</td>
<td>108.44f</td>
<td>2.950 f</td>
<td>90m</td>
<td>4n</td>
</tr>
<tr>
<td>KAlSi$_3$O$_8$·H$_2$O(keyym)</td>
<td>-4238.00c</td>
<td>284.0e</td>
<td>4.812 -2.981 -9.931 14.165g</td>
<td>114.37g</td>
<td>1.816 2.129k</td>
<td>45.1g</td>
<td>1.3g</td>
</tr>
</tbody>
</table>

The numbers in parentheses are 2SD

aModified from Akaogi et al. (2004)

bFasshauer et al. (1998)

cModified from Fasshauer et al. (1997)

dThis study

eEstimated from Holland (1989)

fAkaogi et al. (2004)

gFasshauer et al. (1997)

hYamada et al. (1984)

iSwanson and Prewitt (1983)

jSwanson and Prewitt (1986)

kCalculated from Fasshauer et al. (1997)

lZhang et al. (1993)

mGeisinger et al. (1987)

nAssumed

oAll the other phases involved in this study are from a modified Holland and Powell (1998) data base, called hp02ver.dat. More detailed information about hp02ver.dat can be found in http://www.perplex.ethz.ch/
regression of a set of 60 experimentally measured entropies and volumes of silicates and oxides. \((S - kV)_{SiO_2}\) and \((S - kV)_{KAlSiO_4}\) correspond to the tetrahedral coordination for \(SiO_2\) and framework sites such as in feldspars for \(KAlSiO_4\), respectively. However, the value of \((S - kV)_{SiO_2}\), which represents the octahedral coordination for \(SiO_2\), is not included in that study. Here this value was calculated using stishovite data from Holland and Powell (1998) data base. The phase boundary of reaction (Eq. 4) calculated with the revised entropy of Si-wadeite fits the experimental data of Yagi et al. (1994) and Urakawa et al. (1994) reasonably well (the lower solid line in Fig. 2). A small modification from \(\Delta H_{f,298}^o = -3,801 \pm 8 \text{ kJ mol}^{-1}\) to \(\Delta H_{f,298}^o = -3803.5 \text{ kJ mol}^{-1}\) that is within the error of \(\Delta H_{f,298}^o\) of KAlSi_3O_8 hollandite was applied to bring the calculated phase boundaries of reaction (Eq. 5) and (6) into better agreement with the experimental data of Yagi et al. (1994) and Urakawa et al. (1994) (the upper solid line in Fig. 2). The calculated boundary for the decomposition of sanidine into kyanite, coesite, and Si-wadeite in Fig. 2 is almost identical to that determined by Akaogi et al. (2004), and reasonable consistency is obtained with the experimental results of Yagi et al. (1994) and Urakawa et al. (1994) above 1,100 K. The difference between the experimental data and the calculated phase boundary below 1,100 K can be explained either by sluggish reaction rates or by remaining uncertainties in the thermodynamic properties (Akaogi et al. 2004). The phase boundary of Si-wadeite + kyanite + SiO_2-polymer (stishovite or coesite) = 2KAlSi_3O_8 hollandite intersects the coesite–stishovite transition boundary at about 1,575 K and 9.5 GPa (Fig. 2), which generates reaction (Eq. 5) at temperatures >1,575 K and reaction (Eq. 6) at temperatures <1,575 K, respectively. The calculated locus of reactions (Eq. 5) and (6) is 0.3–0.4 GPa higher than that of Akaogi et al. (2004). Choosing 8.7 GPa at 1,273 K for the phase boundary from Akaogi et al. (2004) might be a source of the difference. Nonetheless, the result of this study and that of Akaogi et al. (2004) are consistent with the experimental study of Yagi et al. (1994) and Urakawa et al. (1994) within expected errors of a few kilobars.

Using the estimated values of entropy and the refined enthalpy data of Si-wadeite and KAlSi_3O_8 hollandite and as well as the modified Holland and Powell (1998) data base, a \(P-T\) diagram for the system \(K_2O-Al_2O_3-SiO_2\) was calculated with Perple_x (Fig. 3). Fasshauer et al. (1998) suggested that sanidine would disproportionate first to kalsilite (KAlSiO_4) + coesite at around 5 GPa when temperature is above 823 K, and this assemblage would remain stable until pressure reaches 6–7 GPa. However, the calculated \(P-T\) phase diagram in this study does not include a region where reaction (Eq. 4) is
metastable. The reaction kalsilite + sanidine = kyanite + Si-wadeite has been identified both by Fasshauer et al. (1998) and in this study, although the location of the boundary varies somewhat between the two works. For reactions with Si-wadeite, discrepancies between this study and Fasshauer et al. (1998) are mainly caused by different values of S_{298}^o for Si-wadeite. A calorimetric determination of S_{298}^o of Si-wadeite will be necessary to resolve remaining discrepancies in this system. Additional reactions involving corundum (Al$_2$O$_3$), which Fasshauer et al. (1998) did not include in their study, have also been identified and located provisionally. The reaction kyanite = corundum + stishovite is located at about 13–14 GPa at 1,100–1,400 K and represents the upper stability of kyanite. The calculated phase boundary is 0.1–0.2 GPa lower than the experimental results of Schmidt et al. (1997) (Fig. 3, triangles) at temperatures above 1,500 K. The disagreement is certainly within expected experimental errors, especially those related to pressure calibration of multi-anvil apparatus. Errors in the calculation may derive from difficulties in extrapolating the C_p data of stishovite to such high temperatures.

Phase equilibria in K$_2$O–Al$_2$O$_3$–SiO$_2$–H$_2$O

At high pressures and in the presence of water, K-feldspar reacts to form a hydrated phase KAlSi$_3$O$_8$H$_2$O, called “K-cymrite” (Massonne 1992) or “sanidine hydrate” (Thompson et al. 1998). A detailed crystal structure study of KAlSi$_3$O$_8$H$_2$O by Fasshauer et al. (1997) suggests that it is indeed isostructural with BaAl$_2$Si$_2$O$_8$H$_2$O cymrite, although the Al and Si atoms are highly disordered in KAlSi$_3$O$_8$H$_2$O whereas in cymrite the Al and Si atoms are ordered. In this study the informal name K-cymrite will be used for the synthetic phase KAlSi$_3$O$_8$H$_2$O. Seki and Kennedy (1964) placed the phase boundary of the following reaction at around 1.8–2.8 GPa and 700–1,000 K for K-cymrite based on synthesis experiments of the following reaction:

$$\text{sanidine} + \text{H}_2\text{O} = \text{K-cymrite.} \quad (9)$$

However, experiments by Massonne (1992) on this reaction yielded a much flatter slope at around 2.5 GPa, and this result was confirmed by reversed experiments of Fasshauer et al. (1997), Thompson (1994) and Thompson et al. (1998). Fasshauer et al. (1997) applied a Bayesian method to evaluate the thermodynamic properties of the phases in reaction (Eq. 9) and derived the standard enthalpy of formation and entropy for K-cymrite. They treated the order-disorder relations of microcline to sanidine with a Landau formalism following Carpenter and Salje (1994). We recalculated the entropy and enthalpy of formation for K-cymrite to best fit the experimental reversals by Fasshauer et al. (1997) and Thompson et al. (1998). The revised thermodynamic data are shown in Table 4 and the best fit phase boundary is shown in Fig. 4. The revised enthalpy of formation and entropy for K-cymrite are \approx5 kJ mol$^{-1}$ more negative and \approx8 J mol$^{-1}$ K$^{-1}$ more positive than the respective values of Fasshauer et al. (1997). They added a footnote that their enthalpy of K-cymrite should be changed by -7 kJ mol$^{-1}$ to bring the enthalpy of microcline into accord with the data of Robie and Hemingway (1995). The enthalpy calculated in this study is in disagreement with the revised value of Fasshauer et al. (1997) by +2 kJ mol$^{-1}$, a relatively small error for such a calculation. The cause of the large discrepancy in the estimated entropy of K-cymrite is unclear, because the compressibility and thermal expansion data of Fasshauer et al. (1997) for K-cymrite were used in the present calculations. The phase boundary for reaction (Eq. 9) calculated with the revised values of this study is in agreement with experimental reversals of Fasshauer et al. (1997) and Thompson et al. (1998). It is located at <3 GPa at $T<1,100$ K (Fig. 4).

The pressure needed for the formation of K-cymrite is less than the peak pressure of many ultrahigh-pressure metamorphic (UHPM) rocks (e.g., Schertl et al. 1991; Sharp et al. 1993; Kaneko et al. 2000; Chopin 2003; Yoshida et al. 2004). In nature the a_{H_2O} may be reduced from unity in the presence of other components such as CO$_2$ or NaCl, in the absence of a fluid phase, or in the presence of a melt (e.g., Edwards and Essene 1998; Valley et al. 1990). Reaction (Eq. 9) is successively shifted to higher pressures as a_{H_2O} is reduced (Fig. 4), but even at an a_{H_2O} of 0.5 K-cymrite is still stable at UHPM conditions. It is expected that sanidine will hydrate to form K-cymrite during UHPM processes, although K-cymrite has not yet been reported in nature.

![Fig. 4](image-url) Calculated P–T diagram for the formation of K-cymrite. The open and closed triangles represent the experimental reversals by Fasshauer et al. (1997) and Thompson et al. (1998), respectively. The dashed line represents the microcline-sanidine transition boundary. **Keym** K-cymrite, **Mic** microcline.
Hwang et al. (2004) discovered a new polymorph of K-feldspar, kokchetavite, in the UHPM Kokchetav terrane of Kazakhstan. Reminiscent of the experiment by Thompson et al. (1998), who reported a hexagonal KAlSi3O8 phase (probably isostructural to kokchetavite) when K-cymrite is dehydrated at $T > 1,273 \text{ K}$ and ambient pressure, Hwang et al. (2004) suggested that kokchetavite could represent the dehydration product of K-cymrite during exhumation. Massonne and Nasdala (2003) also described inclusions in garnets made up of quartz, K-feldspar and micaceous material that possibly formed as pseudomorphs after K-cymrite in a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. K-cymrite probably dehydrates rapidly to sanidine during exhumation of K-rich UHPM rocks, especially in those that attained relatively high metamorphic temperatures (973–1,173 K).

Harlow and Davies (2004) inferred a negative P/T slope for the breakdown of K-cymrite based on two experimental runs: 9 GPa at 1,473 K and 8 GPa at 1,523 K for the reaction

$$\text{K-cymrite} = \text{KAISi}_3\text{O}_8 \text{ hollandite} + \text{H}_2\text{O}. \quad (10)$$

However, the calculated phase transition boundary shows a slight positive P/T slope, which lies 0.4–1.4 GPa higher than the two experimental runs by Harlow and Davies (2004) (Fig. 5). A calorimetric study of K-cymrite and reversed experiments are indicated to address this discrepancy and better constrain the phase transition boundary of reaction (Eq. 10).

Faust and Knittle (1994) documented the breakdown of a natural muscovite, $\text{KAlSi}_3\text{O}_{10(\text{OH})}_2$, to KAISi_3O_8 hollandite at pressures between 10.9 and 12 GPa around 1,073 K via the following reaction:

$$\text{muscovite} = \text{KAISi}_3\text{O}_8 \text{ hollandite} + \text{corundum} + \text{H}_2\text{O}. \quad (11)$$

The PT location of reaction (Eq. 11) was calculated with Perple-x and the thermodynamic data in Table 4 (Fig. 6). This reaction is located at about 10.1 GPa at 1,073 K and 10.5 GPa at 1,600 K, ~1–2 GPa lower than the experimental results by Faust and Knittle (1994). Considering the large pressure uncertainties in the laser-heated diamond cell experiments by Faust and Knittle (1994), the calculated phase boundary is considered to be in reasonable agreement with their experiments. The calculated reaction curve has a significantly different slope than that of Sekine et al. (1991) (dashed line in Fig. 6). The discrepancy may result from their placement of the then less well constrained reactions (Eq. 4) and (6), that were used to extrapolate the thermodynamic data of KAISi_3O_8 hollandite. Experimental data on the breakdown reaction of phengite (a K-rich mica) by Schmidt (1996) are in good agreement with our calculations in this study and are plotted in Fig. 6 for comparison (dotted line).

Sekine et al. (1991) and Faust and Knittle (1994) reported two other decomposition reactions of muscovite:

$$\text{muscovite} = \text{K-cymrite} + \text{corundum.} \quad (12)$$
$$2\text{muscovite} = \text{Si-wadeite} + 2\text{kyanite} + \text{corundum} + 2\text{H}_2\text{O}. \quad (13)$$

These two reactions are thought to occur at low pressures. However, the present thermodynamic calculations show that reaction (Eq. 12) only proceeds above 1,700 K, and reaction (Eq. 13) is metastable, as it is located at pressures > ~11 GPa, where muscovite has already dehydrated to KAISi_3O_8 hollandite + corundum + H_2O.

Fig. 5 Calculated P–T diagram for the dehydration reaction of K-cymrite into KAISi_3O_8 hollandite. Closed triangles represent two experimental runs by Harlow and Davies (2004).

Fig. 6 Calculated P–T diagram for the dehydration reaction of muscovite into KAISi_3O_8 hollandite + Al$_2$O$_3$ + H$_2$O. The solid line represents the calculated phase boundary in this study. The dashed line shows the calculated phase boundary by Sekine et al. (1991). The dotted line represents the breakdown reaction of phengite (a K-rich mica) by Schmidt (1996).
Discussion

The calculated PT locations of reactions (Eq. 5) and (6) constrain the lower stability limit of KAlSi_3O_8 hollandite at 9–10 GPa for $T > 1,000$ K. The occurrence of KAlSi_3O_8 hollandite with stishovite in melt veins of the shocked meteorite Zagami (Langenhorst and Poirier 2000) supports this calculation. Although Tutti et al. (2001) showed that KAlSi_3O_8 hollandite is stable up to 95 GPa, representing a depth of 2,200 km in the mantle, a study by Sueda et al. (2004) puts the upper P-stability limit of KAlSi_3O_8 hollandite at 22–24 GPa, where it transforms to a new phase, hollandite II. The locations of reaction (Eq. 10) and (Eq. 11) confirm that KAlSi_3O_8 hollandite is stable at pressures above 10 GPa. It appears KAlSi_3O_8 hollandite is stable down to depths of 400–660 km in the transition zone of the Earth’s mantle, followed by hollandite II at greater depths.

Besides occurrences in shocked meteorites, KAlSi_3O_8 hollandite has also been reported as an experimental run product between 8 and 11 GPa in bulk compositions corresponding to average continental crust, subducted terrigenous and pelagic sediment, basalts, and metapelites (Irfune et al. 1994; Domanik and Holloway 1996, 2000; Schmidt 1996; Ono 1998; Wang and Takahashi 1999). However, Si-wadeite has not yet been identified in any of these experiments or in natural occurrences. Wang and Takahashi (1999) argued that K might be selectively partitioned into pyroxene and/or garnet in potassic basalt, thus inhibiting the formation of Si-wadeite in that bulk composition. In the presence of water, reaction (Eq. 9) will take place at much lower pressure than reaction (Eq. 4), which also prevents the formation of Si-wadeite from sanidine.

Acknowledgements

The authors are grateful to C. Manning of UCLA for providing 2 g of sanidine glass for use in this study. They also thank Z. Page and C. Henderson for their help in EMPA analysis, and R.C. Rouse for his help with XRD measurements. The authors acknowledge M. Akaogi and J. Konzett for their constructive reviews of the manuscript. This work was partly supported by Scott Turner Research Grant by the Department of Geological Sciences, University of Michigan to the senior author, and by NSF grants EAR96-28196, 99-11352, 00-87448 and 05-37068 to EJE. NSF grants EAR 03-10142 and 00-79827 to Geological Sciences, University of Michigan to the senior author, supported by Scott Turner Research Grant by the Department of Geology, and by NSF grants EAR-96-28196, 99-11352, 00-87448 and 05-37068 to EJE.

References

Fasshauer DW, Chatterjee ND, Marler B (1997) Synthesis, structure, thermodynamic properties and stability relations of K-cymrite, $\text{KAlSi}_3\text{O}_8\cdot\text{H}_2\text{O}$. Phys Chem Minerals 24:455–462

