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Introduction 

Recent advances on the molecular basis of  cancer have indicated that transformation is 
not solely a matter of  increased cellular proliferation [60]. It has become widely ac- 
cepted that more than one genetic alteration is necessary for a cell to become cancer- 
ous [80]. This is due to built-in cellular mechanisms that can detect abnormalities and 
activate genetic programs to remedy them, making single adverse events less likely to 
cause significant problems. For example, tumor suppressor genes are best known for 
their ability to halt cell cycle progression and allow time for repair and maintenance of 
genomic integrity [83]. Malfunction of this system constitutes a second defect that can 
lead to malignant transformation [80]. 

More recently, a second protective mechanism known as apoptosis has been iden- 
tified as important in deleting potentially dangerous cells from an organism [28]. Pro- 
grammed cell death (PCD) is a genetic program that initiates a series of events result- 
ing in cell suicide. This process leads to apoptosis, a morphologically distinct form of 
death with physical characteristics such as nuclear fragmentation, membrane blebbing, 
and DNA degradation [86]. Apoptosis plays a vital role in the normal development of an 
organism. Its many functions include regression of the tadpole tail in frogs [44] as well as 
the removal of self reactiize lymphocytes in the formation of mammalian immunity [72]. 

DNA damage and the improper expression of  oncogenes have been shown to in- 
duce programmed cell death [28]. This is presumably a safeguard against cancer. Ge- 
netic defects that permit a cell to constitutively block apoptosis confer a selective 
growth advantage to that cell. Thus, it makes sense that this is an essential step in the 
progression to cancer. The discovery and characterization of several apoptosis modu- 
lators have verified that this is indeed often the case. Improper regulation of these 
genes can increase cell survival and provide tumor resistance to traditional forms of 
cancer treatment (radiation and chemotherapy) that function by activating PCD [32]. 
This generally leads to poor clinical prognosis. 

Fortunately, these same pathways that block cell death represent a potential target 
for the rational design of  new therapies. In this review, we will introduce the factors 
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regulating apoptosis in cancer and discuss possible areas for intervention. We will also 
provide an example of such intervention, in which an adenovirus is used to deliver a 
pro-apoptotic gene, bcl-x s. 

Programmed cell death 

PCD is best understood in the nematode Caenorhabditis elegans, where the fate of all 
1090 cells have been tracked. Of these cells 131 undergo cell death during develop- 
ment, and genetic studies revealed the master controls behind this phenomenon. A gain 
of a function mutant of the ced-9 (ced for cell death abnormal) gene caused all 131 
cells that are normally eliminated to survive, while loss of function ced-9 mutations 
caused more than the usual 131 cells to die [38]. In contrast to ced-9, the ced-3 and 
ced-4 genes cause cell death [27]. In ced-4;ced-9 and ced-3;ced-9 double mutants all 
cells live, which suggests that Ced-3 and Ced-4 are cell death effectors, and Ced-9, 
which fun.ctions upstream, is an antagonist of these proteins. It is known that Ced-4 
binds to Ced-3 resulting in activation of the caspase [42, 85]. Ced-9 binds to Ced-4, 
blocking its ability to activate Ced-3 [73, 85]. This apoptosis machinery has been well 
conserved throughout evolution. We now know that Bcl-2 family members are mam- 
malian homologues of Ced-9 [39] and the caspases (or ICE proteases) are homologues 
of Ced-3 [90]. No homologue of Ced-4 has yet been identified, but the apparent inter- 
changability of these proteins between nematode and mammalian systems has facili- 
tated the ordering of these genes [14, 15, 84]. 

Improper growth stimulation leads to apoptosis 

The expression of key genes is involved in the signal to proliferate. Due to their mito- 
genic properties many of these are proto-oncogenes and have been implicated in hu- 
man carcinogenesis, since uncontrolled growth is one of several steps along the path 
towards cancer. Recent evidence suggests that inappropriate expression of these genes 
leads not only to proliferation but to activation of the PCD pathway. 

Deregulated expression of the c-rnyc gene occurs in up to 30% of human cancers 
[61]. In normal ceils, expression of the c-myc proto-oncogene is rapidly up-regulated 
when a cell initiates proliferation [2]. Although all of the functions of c-Myc are not 
completely understood, it is a transcription factor that, when highly expressed, is able 
to overcome growth arrest and to block differentiation [5, 6, 25, 62]. Interestingly, c- 
Myc, whos e expression is so tightly linked with cell growth, has also been shown to 
induce cell death. When c-Myc is highly expressed in cells that are deprived of growth 
factor, they undergo apoptosis [29]. Therefore, the consequences of c-Myc expression 
depends on the context of other proliferative signals. 

A similar story holds true for the c-fos/jun proto-oncogenes. Their protein products 
associate to form a transcription factor called activator protein-1 (AP-1) [17]. Like c- 
Myc, AP-1 is induced upon mitogenic stimulation and appears to be involved in medi- 
ating cell cycle progression [1]. c-Fos and Jun expression have also been correlated 
with PCD in response to unfavorable growth conditions or cell injury [10, 23]. Further 
implicating c-Fos in apoptosis were experiments demonstrating that ectopic expression 
of c-Fos led to cell death under conditions in which cells were normally quiescent [63]. 
The converse experiment (inhibition of c-Fos expression) increased cell survival under 
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conditions which normally led to mass apoptosis [23]. This supports the hypothesis 
that c-Fos somehow regulates apoptosis. 

At first these two opposing functions of both c-Myc and AP-1 may appear to be 
contradictory. However, closer scrutiny reveals that induction of apoptosis by growth 
effectors may be an important safety means by which proliferation can be halted if 
such factors are expressed at inappropriate times. This can selectively eliminate cells 
with potentially carcinogenic alterations, which often result in proliferation regardless 
of the external signals provided by their environment. The mechanism by which this 
takes place is as yet unknown. It is possible that the proto-oncogenes that induce pro- 
liferation also inherently produce a continuous death signal that can only be stopped 
under favorable growth conditions. For example, certain growth factors apparently 
function to inhibit the cell death pathway [12, 21, 34]. On the other hand, apoptosis 
may be the result of conflicting growth and quiescence signals within the same cell. 

In addition, some tumor suppressor genes also function by regulation of PCD. One 
of the most common abnormalities in human malignancy is a mutation of the p53 tu- 
mor suppressor gene [79]. Up to 50% of human cancers harbor such mutations, p53 
exerts its tumor-suppressing effects in two ways: cell cycle regulation and apoptosis. 
p53 controls the cell cycle through transcriptional activity. Putative p53 DNA binding 
sites have been identified and can direct mRNA synthesis upon activation of p53 [43, 
64]. Several genes have thus far been shown to be under the direct transcriptional con- 
trol of p53. One of these, p21 (also called waft or cip-1) is activated by p53 in re- 
sponse to cellular damage [26]. Elevated levels of p21 can cause growth arrest by 
binding to cyclin-Cdk complexes and inhibiting kinase activity [51 ]. In addition, p53 
has been implicated in the repair of radiation-induced DNA damage and transcriptional 
repression [49, 70]. 

Perhaps more importantly, p53 has been shown to induce apoptosis under several 
conditions. Sometimes the simple restoration of p53 in a transformed cell is enough to 
cause cell death [89]. In another example, mouse thymocytes lacking p53 are resistant 
to apoptosis caused by radiation and various forms of chemotherapy, while p53-posi- 
rive cells die when treated in the same way [18, 52]. This suggests that p53 is a major 
downstream effector of current methods of cancer treatment. 

The ability of p53 to induce apoptosis usually does not require transcription, and 
some p53 mutants that cannot bind DNA and stimulate RNA synthesis are still able to 
activate the cell death pathway [36, 82]. Therefore, in some systems the apoptotic 
function of p53 can be separated from the cell cycle regulation, which does require 
transcription. However, it should be noted that p53-mediated apoptosis is not always 
transcription independent. Some studies indicate that p53 promotion of cell death can 
be transcription dependent [67]. This is further supported by the finding that the Bcl-2 
family member (see below) Bax, which is pro-apoptotic, has a promoter containing 
p53 binding sites and is transcriptionally activated by p53 [55]. 

Members of the bci-2 family regulate apoptosis 

The bcl-2 gene was discovered at the breakpoint of a t(14; 18) translocation that com- 
monly occurs in B cell lymphomas [20, 76]. Bcl-2 was shown in culture to suppress 
apoptosis normally induced by a variety of factors including growth factor withdrawal, 
y-irradiation, and chemotherapeutic drugs [58, 69]. The protective effects of Bcl-2 are 
not universal, as T cell deletion still occurs in the presence of Bcl-2 overexpression 
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[69]. When constitutively expressed in transgenic mice, Bcl-2 led to an accumulation 
of B cells [53]. The expansion of the B cell population was not due to enhanced cell 
proliferation but to decreased cell death. The enhanced B cell life presumably allowed 
secondary genetic abnormalities to accumulate, and eventually ended in lymphoma. 
Further investigation demonstrated that Bcl-2 knockout mice were subject to increased 
apoptosis and loss of mature lymphocytes [78]. Nevertheless, these mice were able to 
survive through development, implying a functional redundancy with respect to Bcl-2. 

During the past few years several homologues of Bcl-2 have been identified. Mem- 
bers of this family of proteins contain one or more of four Bcl-2 homology (BH) re- 
gions termed BH1, BH2, BH3, and BH4. Bax, Bad, Bak and Bik negatively regulate 
apoptosis, apparently by antagonizing Bcl-2 [8, 16, 31,46, 59, 87]. Another Bcl-2 fam- 
ily member, Bcl-x, can be present in one of two forms depending on how the primary 
RNA transcript is spliced [7]. The larger of the two Bcl-x proteins, Bcl-XL, contains all 
four BH regions and exhibits the highest homology to Bcl-2. In culture Bcl-XL displays 
remarkable similarity to Bcl-2 in ability to block apoptotic response to a range of ex- 
ternal signals. The smaller protein, Bcl-x s, contains BH3 and BH4 regions and can ac- 
tually accelerate apoptosis in certain situations, such as cytokine withdrawal from in- 
terleukin-3-dependent cell lines. In addition, Bcl-x s abrogates the protective functions 
of both Bcl-2 and Bcl-x L. The relative levels of Bcl-XL and Bcl-xs appears to be an im- 
portant factor in cell survival. 

The actual mechanism by which Bcl-2 family members carry out their actions is an 
area of intense investigation. The carboxy terminus of Bcl-2 contains a hydrophobic 
transmembrane domain that localizes Bcl-2 primarily to the outer mitochondrial mem- 
brane [48]. Removal of this targeting domain from Bcl-2 and related family members 
either abolishes or diminishes protective activity, which implies that membrane local- 
ization is important for Bcl-2 function [57, 75]. It is likely that Bcl-2 acts by inactivat- 
ing cell death effectors such as a mammalian version of Ced-4 [15, 84]. In other theo- 
ries Bcl-2 has been postulated to act by controlling the cytoplasmic level of intercellu- 
lar species such as p53, Cdks, cytochrome c, Ca 2+, or reactive oxygen species [3, 41, 
47, 50, 54, 66, 88]. How all of these processes relate is still poorly understood. 

Apoptosis  regulators - who is really in control? 

So far we have discussed the c-Myc, AP-1, p53, and Bcl-2 proteins in separate con- 
texts. However, it is obvious that proteins playing such critical roles in the cell must 
have some degree of interdependence. It is unlikely that there would be so many au- 
tonomous apoptosis pathways. A more likely scenario is the existence of multiple ways 
in which apoptosis can be triggered, all of which converge upon a group of central reg- 
ulators. 

p53 has been shown to activate an apoptosis program not only in response to dam- 
age caused by external agents, but also in response to internal cellular dysfunction. 
This raises the question of whether improper expression of genes such as c-myc and 
fos/jun induce apoptosis in a p53-dependent fashion. Evidence exists that this is the 
case. c-Myc-induced apoptosis is not apparent in several cell lines devoid of functional 
p53, but is restored upon the introduction of wild-type p53 [40, 82]. Similar expe/i- 
ments have shown that this p53 dependence also holds true with c-Fos [63]. Therefore, 
it appears that p53 acts downstream of Myc and Fos and at least in some cases is an in- 
termediate through which the Myc and Fos cell death signals act. 
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Bcl-2 and Bcl-x L can inhibit both c-Myc- and p53-induced apoptosis [4, 30, 33, 68, 
77, 81]. This, in addition to the multitude of other death signals that can be antago- 
nized by Bcl-2, suggests that the Bcl-2 family acts downstream of most apoptosis ef- 
fectors and is one of the final resorts in stopping PCD. Because alteration of Bcl-2 
family regulation can block most forms of apoptosis, this represents an efficient man- 
ner in which cells could become transformed. Thus, it is logical that Bcl-2 family 
members might play a role in many cancers. It is currently thought that in up to 60% 
of all cancers, apoptosis is inhibited through overexpression of a Bcl-2 family member 
[11, 13, 22, 24, 71]. 

Therapeutic targeting of apoptosis pathways in transformed cells 

Our increased understanding of the hierarchical ordering of apoptosis regulators may 
be useful in targeting treatment of transformed cells. Since it appears that the majority 
of cell death pathways converge and are under the control of Bcl-2/Bcl-x L, negative 
regulators of Bcl-2 and Bcl-x L would probably allow a cell to act upon apoptotic sig- 
nals. The delivery of such a gene to cancerous cells would relieve the protection pro- 
vided by elevated expression of an apoptosis inhibitor. High expression alone might 
kill the cells, and lower expression levels could increase cellular sensitivity to radia- 
tion or chemotherapy. 

To test this hypothesis, our laboratory constructed a recombinant, replication-in- 
competent adenovirus vector expressing the bcl-xs gene, a functional inhibitor of Bcl- 
2 and Bcl-xL [19]. This vector was able to efficiently introduce the gene into a wide va- 
riety of cell lines and deliver high levels of expression. As expected, virtually all ep- 
ithelial-derived transformed cell lines that we have tested to date are killed by the bcl- 

x s virus via apoptosis. Cancer cells derived from patients with neuroblastoma, kaposi's 
sarcoma, and breast, colon, ovarian, and head and neck cancers all undergo apoptosis 
when cells express high levels of Bcl-xs protein [19]. This is true both for primary can- 
cer cells and established, transformed cell lines. Low level expression of Bcl-x s sensi- 
tizes cells to both chemotherapy [74] and radiation therapy. On the other hand, normal 
fibroblasts and hematopoietic stem cells are relatively resistant to bcl-x s adenovirus-in- 
duced apoptosis. 

The use of an adenovirus to deliver bcl-x s has potential clinical utility. Results from 
our laboratories indicate that resistance of hematopoietic stem cells to the virus is at 
least in part due to the inability to infect such cells. High-dose chemotherapy and au- 
tologous hematopoietic stem cell transplantation is increasingly being used to treat 
both breast cancer and childhood neuroblastoma [35, 45]. Unfortunately, the autolo- 
gous stem cells used to rescue the patient from lethal doses of chemotherapy are fre- 
quently contaminated with cancer cells [9, 37, 65]. The selective killing of the cancer 
cells by cytotoxic adenovirus vectors makes such agents ideal for eliminating cancer 
cells contaminating the stem cells collected for re-infusion. Studies from our laborato- 
ries have demonstrated the feasibility of this approach. The bcl-x s adenovirus was able 
to eliminate 1.5 x 104 cancer cells contaminating 10 6 normal bone marrow cells, 
whereas the normal human hematopoietic stem cells exposed to the virus were still ca- 
pable of engrafting the bone marrow of SCID mice [19]. 

This virus may also be useful for the treatment of cancers in other settings. Because 
non-replicating viruses will only diffuse for limited distances in solid tissues, they can 
best be delivered to cells in a cavity. Two diseases in which this virus may be useful 
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are bladder and ovarian cancer. Early bladder cancer arises in the bladder and ovarian 
cancer initially spreads in the peritoneal cavity. Furthermore, early bladder cancers are 
superficial tumors which arise focally or diffusely initially penetrating only a few cell 
layers of  the bladder luminal epithelium. Similarly, early in the course of ovarian can- 
cer, or after initial chemotherapy, there are often microscopic loci of  tumor cells re- 
maining. In both of these cases, it is quite possible that all of the cells can be infected 
and killed by an adenovirus vector. 

One area of concern is whether normal, non-transformed cells will be adversely af- 
fected by the introduction of Bcl-xs overexpression. Circumstantial evidence from our 
laboratory indicates that the virus will preferentially kill transformed cells. This sug- 
gests that Bcl-x s itself does not cause apoptosis. Rather, Bcl-xs may function by al- 
lowing other stimuli to initiate an apoptotic pathway without the interference of  Bcl-2 
family members. Since transformed cells, by virtue of  their genetic lesions, are more 
likely to deliver these signals than their normal counterparts this may explain the se- 
lectivity of Bcl-xs-mediated killing. This mechanism will only become clearer when 
we better understand the mode of  Bcl-x s action and the role of the Bcl-2 family in sur- 
vival of normal and transformed cells. 

Summary 

Transformation is a complex cellular process that requires several genetic abnormali- 
ties. In many cases, one of these abnormalities is an inhibition of PCD, which provides 
a selective advantage for tumor cells. This has been recently shown in an in vivo 
model, where overexpression of Bcl-x L is a crucial step in the progression from hy- 
perplasia to neoplasia and is accompanied by a significant decrease in tumor apoptosis 
[56]. 

Frequently, overexpression of a member of the Bcl-2 family results in a block in 
cell death and appears to nullify many built-in cellular defense mechanisms against 
cancer. Such a block presents a problem because radiation and chemotherapy, standard 
cancer treatments, ultimately exert their effect by induction of apoptosis and would 
also be made less effective. Therefore, to better treat cancer it may be necessary to de- 
velop novel methods to overcome the effects of  the Bcl-2 family. One way to approach 
this problem is to target the cause - the molecular machinery that allows a cancer cell 
to survive. Advances in our understanding of apoptosis has identified the Bcl-2 family 
as a mediator of  most apoptosis pathways, including those initiated by oncogenes, tu- 
mor suppressor genes, growth factor withdrawal, and external damaging signals. 
Therefore, functional inhibition of  Bcl-2 family members is lethal to many cancer 
cells. Using gene transfer technology, we can now deliver genes that accomplish this 
goal. Further investigation will reveal whether this translates to improved therapy in 
the future. 
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