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Abstract

The Marketing literature has shown how difficult it is to profile market segments derived with finite mixture

models, especially using traditional descriptor variables (e.g., demographics). Such profiling is critical for the

proper implementation of segmentation strategy. We propose a new finite mixture modelling approach that

provides a variety of model specifications to address this segmentation dilemma. Our proposed approach allows

for a large number of nested models (special cases) and associated tests of (local) independence to distinguish

amongst them. A commercial application to customer satisfaction is provided where a variety of different model

specifications are tested and compared.
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1. Introduction

Finite mixture models have been popular for deriving market segments (cf. Wedel and

Kamakura 2000). In typical Marketing applications, one often investigates the relations of

these derived market segments with a set of specified concomitant variables. This is

particularly useful if segments are identified on the basis of core or basis variables that are

costly to obtain such as needs, purchase, or life-style data. If the derived market segments

are profiled with concomitant variables that are cheaper to collect or widely available (such

as demographic data), once the segments are identified, new consumers can be classified

using the demographic data only. However, profiling segments derived with finite mixture

models using these concomitant variables has proven to be difficult.
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The contribution of this research is intended to be primarily methodological. We identify

limitations in the assumptions on which existing finite mixture or latent class techniques

for simultaneous segmentation and description are based, and propose a general approach.

We first review the finite mixture models that deal with the simultaneous identification and

description of market segments. Then, we provide a more general way to formulate and test

finite mixture models with concomitant variables, and provide a commercial application

involving an analysis of customer satisfaction data. Our approach is intended to contribute

to resolving some of the difficulties of simultaneously deriving and profiling market

segments using finite mixture models with concomitant variables.

2. Finite Mixture Models for Segmentation

Table 1 provides an overview of two models, the standard mixture model and the

concomitant variable mixture model that have been used for simultaneous identification

and description of market segments. To establish notation, we use y for the core or basis

variables, x1 for the predictor variables, and x2 for concomitant or profiling variables. We

denote the latent variable as z, with z a discrete variable with s¼ 1, . . ., S classes=market

segments. f(�) denotes a density function, the distribution of z is assumed to be multinomial

with probabilities ps, and fs(�) is a conditional distribution given segment s, denoted as:

f(� j z¼ s). In attempting to profile the segments identified with a mixture model with

concomitant variables, several authors have included the y- and x2- variables simultaneously

within the mixture framework. This approach is fairly common in latent class modeling (i.e.

mixture models for discrete core variables) and is usually taken if there are no theoretical

reasons to separate the variables into two types that are used to identify or discriminate

segments. An application of this approach is LADI by Dillon and Mulani (1989). Other

authors have proposed models that directly incorporate the concomitant variables into the

specification of the mixing probabilities, the first being Dayton and McReady (1988).

Similar models include those by Dillon, Kumar, and Smith de Borero (1993), Kamakura,

Wedel, and Agrawal (1994), and Gupta and Chintagunta (1994). These restricted or

reparameterized latent class models have been called concomitant variable mixture models.

Table 1. Comparison of Mixture Models with Concomitant Variables

Standard Mixturea Concomitant Variable

Model equation
P

ps fsðyÞfsðx2Þ
P

psjx2
fsðyÞ

Parameterisation of class sizes None psjx ¼ expðg0s þ x02gsÞ=
P

s expðg0s þ x02gsÞ

Independence relations y?x2jz y?x2jz

Factorisation of the likelihood f ðyjzÞf ðx2jzÞf ðzÞ f ðyjzÞf ðzjx2Þf ðx2Þ

Inference valid for Repeated sampling Sample values of x2

Classification rule Discriminant rule Logistic rule

a y denotes the core, x the concomitant, and z the latent variables.
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It can be shown that both classes of models assume the y- and x2- variables to be

conditionally independent given z, due to the fact that the respective likelihoods factor in a

similar way. The major difference between the two approaches is that in the concomitant

variable model, inference is conditional upon the observed values of the x2-variables in the

sample, which makes it more relevant to the data at hand; while for the standard mixture

model, inferences are valid under repeated sampling due to the distribution assumptions

made on the concomitant variables. The standard mixture model identifies groups of

observations and, at the same time, discriminates between such groups akin to discriminant

analysis, while the concomitant variable mixture model does so analogous to logistic

regression. However, an important limitation of the models is that they are both based on

the assumption of conditional independence of the y- and x2-variables, given the latent (z)

variables. This assumption hampers a complete investigation of the nature of the relation-

ships of identified classes and the concomitant variables.

2. Profiling Segments with Concomitant Variables

We assume that one has collected empirical data on both predictor and concomitant

variables: x¼ (x1, x2), where the first affects the basis=core y-variables, and the other the

latent segment memberships (x1 and x2 are not necessarily mutually exclusive). In many

Marketing applications, such a distinction between variable types is natural: the bases=core

variables measure behavioural outcomes, such as the choice of or preference for services

or products. The x1 predictor variables can represent variables that affect the behavioural

outcome including characteristics of the alternatives (brands) or their (perceived) benefits.

The x2 concomitant variables may present characteristics of the consumers such as general

demographic descriptors, life-styles, needs, or attitudes. Assume a sample of N consumers,

with the observations for consumer n contained in the (J	 1) vector yn. In the sequel, the

subscript n is omitted for convenience of notation. The consumers are assumed to come

from a population that is a mixture of S unobserved segments, C1, . . .,CS, in proportions

p1, . . .,pS. Segment membership for consumer n is contained in a (S	 1) vector z, with

zs¼ 1 if y 2 Cs, and zs ¼ 0 if y =2 Cs. It is assumed that z is unobserved and has a

multinomial distribution: f ðzjpÞ ¼
Q

s p
zs
s ; with p ¼ ðpsÞ: The prior probabilities ps obey:P

s ps ¼ 1 and ps > 0. Given zs ¼ 1, the observations on variable j are described by a

probability density function in the exponential family, fjsð yjjyjs; ljsÞ; with f ¼ ðfsÞ;
fs ¼ ðys; lsÞ; yjs is a canonical parameter for group s, and ljs is the dispersion parameter

for group s. Here, we assume the J measurements for each consumer are independent

conditional upon s, so that: fsðyjfsÞ ¼
Q

j fjsðyjjfsÞ: The unconditional distribution of all

observed variables is:

f ðy; x1; x2jFÞ ¼
X

s

ps fsðyjx1; x2;FÞfsðx1jx2;FÞfsðx2jFÞ; ð1Þ

where F¼ {p, f}. The assumption of conditional independence of the basis=core

variables and descriptor or concomitant variables is relaxed in this model. The conditional
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expectations, given segment s, of the basis=core variables and descriptor variables, can be

written as:

Eðyjx1; x2; sÞ ¼ g�1
y ðms þ x01as þ x02bsÞ; ð3Þ

Eðx1jx2; sÞ ¼ g�1
x1
ðns þ x02gsÞ; ð4Þ

Eðx2jsÞ ¼ g�1
x2
ðksÞ; ð5Þ

where gy (�) and gx (�) are link functions.1

The formulation above allows for a wide range of tests of dependencies. The conditional

independence of the observed variables given the latent variable can be tested via:

Starting from the saturated model, the three assumptions Al, A2 and A3 lead to eight

possible models with different conditional independence relations between the variables. In

addition, the independence of the descriptor and latent variables can be tested2 via:

Not all nested models seem particularly useful; for example, it only seems appropriate to

test B1 if A3 holds. Table 2 provides an overview of the more useful models and their

assumptions. A number of special cases seem worthwhile mentioning. For example, Model

8, M(8), in Table 2 is the standard mixture model, with all observed variables conditionally

independent, i.e., A1 to A3 all hold. Model 20, M(20), in Table 2 arises if A2, A3, B1 and

B2 hold, and is the standard mixture regression model (DeSarbo and Cron 1988). Model

15, M(15), in Table 2 is equivalent to the concomitant variable mixture regression model

(Kamakura, Wedel and Agrawal 1994), and arises from assumptions A2, A3, and B2.

4. A Commercial Application

We illustrate the proposed modelling framework and testing procedure by applying it to a

satisfaction study conducted by a financial service provider in Europe. We use a random

sample of customers of the company who were included in a satisfaction survey. This

company provided us with a moderately small, random sample of the database (N¼ 166),

Assumption Test

A1 y? x1jz as ¼ 0; s ¼ 1; . . . ; S

A2 y? x2jz bs ¼ 0; s ¼ 1; . . . ; S

A3 x2? x1jz gs ¼ 0; s ¼ 1; . . . ; S

Assumption Test

B1 x1?z ns ¼ n; s ¼ 1; . . . ; S

B2 x1?z ks ¼ k; s ¼ 1; . . . ; S
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which suffices to illustrate our proposed methodology and nested model tests. Overall

satisfaction ratings as well as ratings of satisfaction determinants (attribute ratings) were

collected from the consumers of this financial service provider. The purpose of the

company’s study was to derive market segments on the basis of the drivers of satisfaction

with the company. Therefore, overall satisfaction was used as the dependent (y) variable in

the subsequent analyses. Three satisfaction drivers were derived from previous analyses

and interpreted as satisfaction with convenience of the branch office, with design of the

branch office, and with counter service in the branch - they serve as the explanatory (x1)

variables. Further, the profitability of the customers was assessed with respect to savings

and stocks, respectively, serving as the descriptor or concomitant (x2) variables3.

Table 2. Overview of Models

M Assumptions Model Independence Properties

1 –
P

s ps fsðyjx1; x2Þfsðx1jx2Þfsðx2Þ –

2 A1
P

s ps fsðyjx2Þfsðx1jx2Þfsðx2Þ y? x1jz; x2

3 A2
P

s ps fsðyjx1Þfsðx1jx2Þfsðx2Þ y? x2jz

4 A3
P

s ps fsðyjx1; x2Þfsðx1Þfsðx2Þ x1? x2jz

5 A1A2
P

s ps fsðyÞfsðx1jx2Þfsðx2Þ y?ðx1; x2Þjz

6 A1A3
P

s ps fsðyjx2Þfsðx1Þfsðx2Þ y?ðx1; x2Þjz; x1? x2jz

7 A2A3
P

s ps fsðyjx1Þfsðx1Þfsðx2Þ ðy; x1Þ? x2jz

8 A1A2A3
P

s ps fsðyÞfsðx1Þfsðx2Þ y?ðx1; x2; zÞ; x1? x2jz

9 B1A3 f ðx1Þ
P

s ps fsðyjx1; x2Þfsðx2Þ x1?ðx2; zÞ

10 B1A1A3 f ðx1Þ
P

s ps fsðyjx2Þfsðx2Þ ðy; x2; zÞ? x1

11 B1A1A2A3 f ðx1Þ
P

s ps fsðyÞfsðx2Þ y?x2jz; ðy; x2; zÞ? x1

12 B2A2 f ðx2Þ
P

s ps fsðyjx1Þfsðx1jx2Þ y?x2jðz; x1Þ; x2?z

13 B2A3 f ðx2Þ
P

s ps fsðyjx1; x2Þfsðx1Þ x2?ðx1; zÞ

14 B2A1A3 f ðx2Þ
P

s ps fsðyjx2Þfsðx1Þ y?x1jz; x2?z

15 B2A2A3 f ðx2Þ
P

s ps fsðyjx1Þfsðx1Þ ðy; x1; zÞ?x2

16 B2A1A2 f ðx2Þ
P

s ps fsðyÞfsðx1jx2Þ y?x1jz; ðy; zÞ?x2

17 B2A1A2A3 f ðx2Þ
P

s ps fsðyÞfsðx1Þ y?x1jz; ðy; x1; zÞ?x2

18 B1B2A3 f ðx1Þf ðx2Þ
P

s ps fsðyjx1; x2Þ ðx2; x2Þ? z

19 B1B2A1A3 f ðx1Þf ðx2Þ
P

s ps fsðyjx2Þ ðy; x2; zÞ? x1; x2?z

20 B1B2A2A3 f ðx1Þf ðx2Þ
P

s ps fsðyjx1Þ ðy; x1; zÞ? x2; x1?z

21 B1B2A1A2A3 f ðx1Þf ðx2Þ
P

s ps fsðyÞ ðy; zÞ?ðx1; x2Þ
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We assume all variables to be approximately normally distributed in the analysis, based

on checks of the empirical distribution functions, and skewness and kurtosis measures4.

All variables were standardized prior to analysis. The respective means and other

descriptive statistics are not provided for reasons of confidentiality.

We estimate all mixture models by maximizing the likelihood function using numerical

algorithms. We use 10 random starting values for the parameters for each model to identify

potential local optima. All models that we report are fully identified as evidenced by

positive eigenvalues of the information matrix. We investigate the appropriateness of

various numbers of segments S based on the full-saturated latent classification, M(1). The

CAIC statistics (Bozdogan 1987) show that the S¼ 2 segment solution has the smallest

CAIC value (S¼ 1: CAIC¼ 1744.13, S¼ 2: CAIC¼ 1741.63; S¼ 3: CAIC¼ 1768.29;

S¼ 4: CAIC¼ 1834.79), and thus provides the most parsimonious representation of this

data set. Given the relatively small size of the sample (N¼ 166), S¼ 2 seems a reasonable

solution that we explore further to illustrate the various model tests.

Table 3 shows the likelihood ratio (LR) statistics for the various models investigated. We

start from the saturated model without any conditional independence assumptions, M(1).

Imposing the independence assumptions A1 and A3 result in a significant deterioration of

fit as evidenced by the LR test statistic. However, imposing A2 does not, providing

evidence that y?x2jz : overall satisfaction is conditionally independent of profitability, as

reflected in M(3). Adding A1 or A3 to M(3) yields significant LR test statistics, so that

models M(5) and M(7) cannot be selected over M(3). Thus, there is no evidence for

conditional independence of overall satisfaction and the satisfaction indicators, nor of the

satisfaction indicators and profitability. Note that the tests of M(5) against M(2), and M(7)

against M(4), also reveal that A2, which assumes conditional independence of satisfaction

and profitability indicators, cannot be rejected. Thus, M(3) seems to provide the best

description of the data. Further, we test x2?z : independence of profitability and the latent

segments, by testing M(12) against M(3), which does yield a highly significant LR value

indicating that B2 does not hold. Thus, this test shows that the profitability indicators are

useful as segment descriptors. M(15), which is the concomitant variable mixture model,

arises from M(12) by assuming conditional independence of the profitability indicators and

Table 3. Model Tests for the Satisfaction Data for S¼ 2

Model Assumpt. #Par ln-L M(1)a M(2) M(3) M(4) M(5) M(6) M(7) M(12)

M(1) – 37 �757.746

M(2) Al 31 �781.632 47.77*

M(3) A2 33 �759.545 3.60

M(4) A3 25 �784.957 54.42*

M(5) A1A2 27 �784.324 5.38 49.56*

M(6) A1A3 19 �793.777 24.29* 17.64*

M(7) A2A3 21 �786.960 54.83* 4.01

M(8) A1A2A3 15 �796.985 25.32* 6.42 20.05*

M(12) B2A2 31 �780.045 41.00*

M(15) B2A2A3 19 �783.051 47.01* 7.82* 6.01

aCell entry is the LR test statistic, *denotes p < 0.05.
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the satisfaction drivers (x1?x2jz). It does not provide a significantly worse fit than M(12),

but it does fit significantly worse than M(7), from which it arises by imposing B2: x2?z;
independence of the profitability variables and the latent segments. Thus, the standard

mixture model M(8) and the concomitant variable mixture regression model M(15) are

rejected in favor of model M(3). The latter model implies that the profitability descriptors

do not directly relate to overall satisfaction, but that satisfaction and profitability are

conditionally independent given the segments. Thus, the various model tests substantiate

the appropriateness of profitability as a segment descriptor (rather than as an outcome)

variable. The model reveals that at the aggregate level, there is a relation between

satisfaction and profitability that disappears if one takes the segments into account.

While there are significant differences in satisfaction and profitability among segments,

within a segment these two sets of variables are independent. Thus, there is a set of

common variables that drive both satisfaction and profitability, but conditioning on those

makes satisfaction and profitability independent. However, overall satisfaction is affected

by the drivers in each segment, and the their effects differ across the segments.

Table 4 provides the parameter estimates of model M(3). The size of the first segment is

0.185, that of the second segment 0.815. Table 4 shows that in Segment 1, overall

satisfaction is significantly affected by branch design, while in Segment 2 it is influenced

Table 4. Parameter Estimates for the S¼ 2 Solution of M(3)

Segment 1 Segment 2

Estimate A.S.E.a P-value Estimate A.S.E. P-value

y-model

m1 0.037 0.385 0.461 0.067 0.088 0.222

a1 �0.086 0.189 0.324 0.160 0.084 0.029

a2 0.860 0.266 0.001 0.090 0.093 0.167

a3 �0.425 0.394 0.141 0.455 0.095 0.000

b1 0.000b – – 0.000 – –

b2 0.000 – – 0.000 – –

x1-model

n1 1.594 0.388 0.000 �0.150 0.090 0.048

g11 0.659 0.163 0.000 0.106 0.122 0.194

g12 0.395 0.405 0.165 0.164 0.082 0.022

n2 1.696 0.379 0.000 �0.186 0.091 0.021

g21 0.904 0.174 0.000 0.052 0.130 0.344

g22 �0.213 0.445 0.316 0.171 0.084 0.021

n3 2.307 0.406 0.000 �0.256 0.090 0.002

g31 0.506 0.178 0.002 0.177 0.120 0.069

g32 1.064 0.413 0.005 0.102 0.081 0.104

x2-model

k1 �1.373 0.161 0.000 0.312 0.084 0.000

k2 �0.755 0.132 0.000 0.172 0.081 0.017

aA.S.E.¼Asymptotic Standard Error.
bConstrained to zero based on nested model tests.
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by satisfaction with convenience and counter service. In neither of the two segments is

there an association between overall satisfaction and profitability. However, the profitability

indicators are associated with the satisfaction indicators in each segment. In Segment 1,

satisfaction with convenience, design and counter service are all significantly and

positively associated with profitability from savings: consumers from whom more profit

is derived from savings are more satisfied with each of those three dimensions. In addition,

satisfaction with counter service is positively affected by profitability of stock market

investments. In Segment 2, however, the profitability of customer investment in stocks and

bonds is positively related to satisfaction with convenience and design. No effect of

profitability on satisfaction with counter service is found for this segment. Note from the

intercepts that this segment is on average less satisfied with each of the three dimensions:

the segment specific intercepts of the three satisfaction dimension are all negative. The

profitability means in the two segments reveal that Segment 1, the smallest segment,

provides the lowest profits from savings and stocks, while the profits derived from Segment

2 are substantially higher (note that the variables were standardized prior to analysis).

5. Conclusion

Profiling derived market segments with descriptor variables is instrumental in the

implementation of marketing strategy since it makes segments accessible. In spite of

several efforts in the marketing literature, profiling segments derived with finite mixture

models using demographic and socioeconomic variables has often been unsuccessful. We

have presented a new general approach for post-hoc market segmentation studies based on

finite mixture models that addresses this problem. We show how several previously used

finite mixture models can be seen as nested models with varying assumptions of the

conditional independence amongst the x, y, and z random variables. We provide a

maximum likelihood based framework for model testing that provides insight in the

interrelationships between basis=core variables, predictor variables, descriptor variables,

and latent segment membership. In addition to segment description, the concomitant

variables can be used to classify new observations. For example, in the application

provided, a satisfaction survey may have been conducted only for a restricted sample of the

customers of this financial service provider. Based on the profitability indicators, other

customers not included in the survey may be classified into the two segments that were

identified on the basis of the satisfaction variables, and their satisfaction profile may be

inferred.

Hierarchical Bayes’ (HB) methods provide an alternative approach to deal with

heterogeneity in consumer response, and may also include concomitant variables (e.g.

Ainslie and Rossi 1998). HB models have proven to be powerful tools to model customer

response and enable one to obtain individual level inferences. But, in this paper we focus

on the substantive problem of market segmentation that is better accommodated through

finite mixture models. Future research aimed at comparing the performance and usefulness

of these competing approaches should provide meaningful insights as to the appropriate-

ness and usefulness of each approach in modeling consumer heterogeneity.
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Notes

1. Note that for this formulation to apply, the x1 variables need to be assumed stochastic. If the variables are not

stochastic and are fixed in the design of the study (e.g., as is the case in conjoint analysis), equation (4)

vanishes.

2. Note that if, say, the predictor variables, x1, are independent of the latent variable z, the likelihood contains the

distribution f(x1). In for example, standard mixture regression formulations one usually conditions on the

observed values of x1 rather than including their marginal distribution. However, both formulations lead to the

same MLE’s.

3. An alternative approach would be to model profitability as an outcome of satisfaction, rather than as a segment

descriptor. Although it might be argued that customer profitability is driven by satisfaction, the company that

provided the data was interested in the heterogeneity in the effect of satisfaction drivers and wanted to profile

the derived segments with profitability. This makes sense in view of future applications of the results. For other

customers, the bank has profitability information, but not satisfaction information. Thus, our model would

enable the bank to predict the satisfaction segment of customers based on profitability. Therefore, after

discussion with the client company that provided us with the data, we decided to use the profitability variables

as segment descriptors.

4. Note that these assumptions render our model equivalent to a mixture of recursive simultaneous equation

models (Jedidi, Jagpal and DeSarbo 1997).
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