Technical Report # UM-MEAM-91-10

Reconstructing Curved Solids From
Two Orthographic Views

Debasish Dutta*
and
Y. L. Srinivas!

Design Laboratory
Department of Mechanical Engineering
The University of Michigan
Ann Arbor, MI 48109

€4 KM

VRS

Submitted to the Journal of Computer Aided Desig

Reconstructing Curved Solids From Two Orthographic
Views

Debasish Dutta®
and

Y. L. Srinivas!

Design Laboratory
Department of Mechanical Engineering
The University of Michigan
Ann Arbor, MI 48109

July 24, 1991

Abstract

It has long been known that the two-view orthographic representation
of a mechanical part is ambiguous. Existing literature addresses recogni-
tion/reconstruction of solids, mostly polyhedral, from either one-view (per-
spective) drawings, or from three orthographic views. In this paper, we
present algorithms for reconstructing curved solids from only two ortho-
graphic views. First, we reconstruct all polyhedral solids that correspond
to the pair of prespecified orthogonal views and then develop the associ-
ated third views. For each solid, we analyze the three views simultaneously
and reason about the possibilities of including circular arcs in the newly
generated third view. This corresponds to the inclusion of solids that are
bounded by quadrics. Application areas include computer-aided design,
machine vision and automated inspection systems.

*Supported in part by NSF Grant DDM 90-10411

"Supported by the University of Michigan Rackham Award and by NSF Grant DDM 90-
10411

1 Introduction

1.1 Two-view Orthographic Representation

The use of parallel projections for unambiguous representations of solid objects
was developed by the French mathematician Gaspard Monge, in mid-18th cen-
tury. It has since formed the basis of what is now referred to as engineering
drawing, multiview drawing, and orthographic drawing. In this paradigm,
every three dimensional object can be completely described by a set of three
orthographic views (projections) on mutually perpendicular planes. Of the six
possible orthographic views (obtained when the object is thought of as enclosed
in a transparent box) the ones most commonly used in engineering are the front.
top and the right-side views. While simple objects such as cylinders. bushings
and bolts can typically be described by only a pair of orthographic views. the
precise description of complex machine elements often require sectional and/or
auxiliary views in addition to the three views.

In this paper we are interested in the inverse problem. that of developing
solids whose orthographic views are given. In particular, we consider the problem
where only two of the three views are given. There are two aspects of this
problem that contribute to its complexity. First, it is well known that a pair
of orthogonal views (e.g., the front and top) will, in general, correspond to
more than one solid. each giving rise to a unique third view (i.e.. the right-side
view). Thus, the two-view representation of most objects is ambiguous. Second,
straight lines in one of the two views can correspond to curves in the missing
third view, giving rise to solids bounded by non-planar surfaces.

Fundamental in engineering graphics and descriptive geometry, and usually
encountered by students in their first engineering drawing/graphics course. is
the missing-view problem: Given two views, generate the third view(s). This
problem can be surprisingly complicated. It is so because every correct solution
to this problem first requires the visualization of a solid corresponding to the two
given views. The third view can then be determined. Therefore. vizualization in
3-dimensions is requisite, and that in itself is cause for frustration. Furthermore,

since a two-view representation is non-unique the completeness of the solution
can be difficult to verify.

If an object has several features that project to a single line in one or more
views, the reconstruction of the same object starting from the three views can be
very complicated. Lines and points on the given views must be systematically
analyzed in the process of developing a correct solid. When only two views are
given, the problem is clearly more difficult. For a simple object, it is best to
visualize it partially from the two given views and then complete the process
by adding consistent right side views. one by one. However. if the given views

are complex, powers of spatial visualization become inadequate in guiding the
analysis which is inherently combinatorial. That there has been no reliable way
to determine exactly how many solids correspond to a given pair of orthogonal
views is therefore not surprising.

In this paper, we present an algorithm for reconstructing all solids bounded
by planes and quadrics when only two orthographic views are given. First,
the algorithm generates all polygonal third views (i.e., composed of straight
lines only) that correspond to a given pair of orthogonal views. It does so by
reconstructing all polyhedral solids that correspond to the orthogonal views.
The three views are then analyzed to identify the line segments in the right view
which can be replaced by circular arcs (other conics can be included easily).
Finally, the non-polyhedral solids are generated from the modified three views.

Akin to the gift wrapping method of generating convex hulls. our reconstruc-
tion procedure begins from a vertex and faces are added one by one. until a solid
is generated. Considering every valid triple of vertices, the algorithm evaluates
all candidate faces for inclusion. It considers all valid configurations of faces and
determines the complete set of valid solids corresponding to the given views. An
empty solution set proves that the given views are inconsistent.

We conclude this section by reviewing prior work in generating solids from
line drawings, and mentioning potential applications. In section 2, we analyze
the problem and discuss the algorithm. Sections 3 and 4 contain the algorithms
for polyherdal and curved solid generation. Examples are shown in Section 5.

1.2 Previous Work

Motivated by the use of digital computer for image processing, various aspects of
automatic recognition and reconstruction of line drawings have been researched
since the 1960s. In particular, two variants of our problem, viz., reconstruction
from single-view and three-view drawings. have received attention thus far.

An excellent survey of the research on machine interpretation of line drawings
can be found in the first few pages of the text by Sugihara [Sugihara 1986]. In
his book, Sugihara addresses, in particular, the recognition of polyhedral objects
and scenes described by single-view line drawings (also referred to as perspective
drawings). An important subclass of this problem is the interpretation of multi-
view line drawings.

Idesawa presented a method to reconstruct solid models from three ortho-
graphic projections [Idesawa 1973]. The method. however. was capable of pro-
ducing invalid objects. Lafue developed heuristics to detect such invalid ob-
jects by imposing a prespecified input format [Lafue 1976]. In 1980. Wesley and
Markowsky developed an algorithm for producing orthographic views from wire-

frame models of mechanical parts [Wesley and Markowski 1980]. They further
extended the method to construct polyhedral solids from the three orthographic
projections [Wesley and Markowsky, 1981]. Methods for extracting 3-D infor-
mation from orthographic views can also be found in [Preiss 1981] and [Aldefeld
1983). In [Sakurai and Gossard 1983}, the Wesley and Markowski approach was
extended to include circular arcs in the orthographic views. The resulting solids,
therefore, could include quadrics and toroidal surfaces.

The problem of generating all solids from only two views, to the best of our
knowledge, was first examined in [Wilde 1991]. Wilde examined the difficul-
ties involved in spatial visualization, and in particular, in the reconstruction of
solids from two orthogonal views. In this paper, we present algorithms for the
reconstruction of polyhedral and curved solids from two views.

1.3 Applications

An automatic procedure to generate solids from line drawings has many appli-
cations in engineeering. For example, one can then verify the consistency of
complicated engineering drawings automatically. Such an algorithm can also be
part of an interactive system to assist a designer during the development of new
product designs. Moreover, drawings continue to be the most natural way of
conveying geometric information for designers. Therefore. a system to automat-
ically convert engineering drawings into solid models can be very useful. The
conversion of engineering drawings into solid models is a task many industries
have to address in the process of adopting solid modelling systems. Recogniz-
ing orthographic projections will also have applications in machine vision and
automated inspection. ‘

2 Analysis of the Reconstruction Problem

2.1 Canonical Orientation

It is a common practice in engineering drawing to orient the object such that it
yields the simplest orthographic views. It is easy to see that a simple object can
produce complicated orthographic views if it is not oriented in the best possible
way. For example, a cube standing on its vertex would produce a rather com-
plicated set of orthographic views, with all edges foreshortened. However, when
three sides of the cube are parallel to the three principal planes of projection
the orthographic views are three squares. In the latter orientation, there is no
foreshortening of edges and they appear in their true lengths. We refer to that
orientation of an object which maximizes the number of egdes appearing in true

lengths in all three views. as the object’s canonical orientation. However. not all
objects can be oriented such that the edges comprising the three views appear
in their true lengths (e.g., an equilateral tetrahedra).

2.2 Edge and Vertex Multiplicities

When three orthographic views are provided. there is enough information in
the drawings to deduce which lines appear in true lengths. Reconstructing the
solid is not difficult thereafter. However. when only two views are provided. the
reconstruction procedure requires a systematic analysis of the views. Central to
this analysis is the detection of line multiplicity which is achieved by reasoning
about vertex multiplicities. [t is easy to see that more than one edge of a solid
can project to the same line in one orthographic view. We consider such lines as
multiple lines. The multiplicity m of a line [in any view refers to the mazimum

number of edges that can project onto [while being consistent with the other
view.

Detection of multiple edges is enabled by reasoning about multiple vertices.
since each edge must correspond to a pair of vertices. Therefore. multiplicity m
of vertex v refers to the mazimum number of distinct vertices it can conceal,
consistent with the views. The multiplicity of vertex v in the top/front can be
obtained by counting the vertices in the front/top view that lie on the vertical
line through v. The following is intuitive.

Proposition 2.1

If vertices with multiplicities > 1 exist in two orthographic views. the pair cor-
responds to more than one valid solid.

2.3 A Combinatorial Analysis

An important difference between our problem and its two well known variations
(i.e., generating solids from a perspective view and from three orthographic views) ‘
is that our problem has multiple solutions. whereas the other two have exactly
one solution each. In other words. it is necessary for us to determine both
correctness and completeness of the solution. whereas the other two problems are
solved by a correct solution. It is this difference that leads to the combinatorial
nature of our problem.

A bound on the number of right views (and hence distinct polvhedral solids)
corresponding to a pair of orthographic views can be derived by analyzing the
standard technique employed in engineering drawing to develop third views from
two given views. We illustrate the procedure in Figure 1 but omit discussions.
An explanation can be found in any standard text on enginecering drawing, e.g.

—

45°Mitre Line

Figure 1: Constructing a right view from top and front views

(Luzadder 1986).

In Figure 1. let us assume that the top and front views. shown in the top
quadrant (TQ) and front quadrant (FQ) respectively, were generated by ana-
lyzing a solid S with m vertices and n edges. By construction. all candidate
vertices in the right quadrant (RQ) are the intersections of the horizontal and
vertical lines drawn from the vertices in FQ and TQ, respectively. There are
O(m) vertices in TQ and in FQ. So RQ has O(m?) candidate vertices. But the
right view cannot have more vertices than its progenitor S. Thus, each correct
right view R; developed from the candidate vertices in RQ is a graph G;(V,E)
and V = O(m). (Note: Firm lines in the right view cannot intersect but at
the candidate vertices. However, intersections between firm and hidden lines
can create new vertices.) Letting \/ = m?. there are C\! possibilities for the
vertex set V. :

Let us consider a vertex set V. of cardinality m. \With m vertices. we can have
O(m!) trees. ! But, the orthographic views cannot contain any trees since trees
correspond to dangling faces and edges (i.e.. unbounded solids). Therefore, the
set of valid right views P, corresponding to vertex set V, consists of all graphs
but no trees or dangling edges. For example, every triangulation of Vj is a
topologically valid right view since it contains cycles. It is easy to see that the
cardinality of the set P will. in general. be exponential in m. Since there are
CM such vertex sets. the possibilities for right views are exponential in number.
Clearly, this is a loose bound on the number of right views since consistency
with the top and front views is the final check for a valid right view. Moreover,
inclusion of non-polyhedral solids in the above analvsis will result in an infinite
number of valid right views.

'For example, with three vertices A. B and C we can have trees like A-B-C. A-C-B, B-A-C
and so on.

6

2.4 Correctness of Procedure

We begin by asserting that a two-view representation can be unique under special
conditions.

Lemma 2.2
If at least one of the two given orthographic views has no multiple vertices. then
the two-view representation is unambiguous.

Proof

Let the top and front views be given, the former without any multiple vertices.
The top view then determines the total number of vertices in the object and
their unique connectivities (i.e.. the edges). Clearly, the top view determines
the unique topology of the solid. By definition. the front view contains the
elevation of each vertex that appears in the top view. Therefore. the given
representation is unambiguous. C

Note. that a pair of orthographic views, as per Lemma 2.2 will, in general,
not facilitate visualization. Ilowever, for the purposes of our reconstruction
algorithms they are valid inputs. If the multiplicity of a vertex is n, it could
conceal upto n—1 vertices in the view. Therefore, we account for such a vertex in
the construction procedure by considering the view in which the vertex appears
n times, once with each value of the vertex multiplicity (i.e.. 0,1,...,n — 1).

Theorem 2.3

In the reconstruction of all valid solids from a pair of orthographic views, it is
necessary and sufficient to analyze only one view and account for all vertices in
that view that have multiplicity > 1.

Proof

That it is necessary follows from Proposition 2.1: we argue for sufficiency. Ac-
counting for a multiple vertex v in a view requires consideration of n instances
of the view, once with each value of the multiplicity of v. The companion view
is used for validity checks. Clearly such and accounting procedure is exhaustive.
Sufficiency is now an immediate consequence of Lemma 2.2. O

Any procedure that does not account for all vertices with mutiplicity > 1 is,
by Theorem 2.3 incomplete. We account for multiple vertices in one view by di-
rectly constructing the solid while using the other view for verifving consistency.
The algorithm is based on an enumeration scheme. It considers all possible
configuration that can arise from the two given views. From these candidate
configurations. only those which correspond to valid representations of solids
are identified and stored. Since all candidate configurations are enumerated, the
algorithm insures that the solution set is complete. i.e., there are no solids other

than those in the solution set that will generate the given pair of orthographic
views.

e siw

? 8 9
3 4 S 6
| 2 3 4
....... ;
E 6
8 9 10 "
FRAONT Vil

Figure 2: Orthogonal views

3 Overview of Algorithm

3.1 Algorithm Input

The input to the algorithm are two vertex connectivity matrices that correspond
to the given views. Coordinates of each vertex are also supplied to the algorithm.
Each connectivity matrix is a (n X n) square matrix, where n is the number of
distinct vertices in the corresponding view. Figure 2 shows a pair of orthographic
views, and the associated connectivity matrices are shown in Figure 3.

An element C(i, j) of the matrix has a value of 0 if node i is not connected to
node j, a value of 1 if node i is connected to node j by a complete solid line. and
a value of 2 if node 1 is connected to node j by a complete or partially hidden
line. For example. in Figure 2 (Front View). vertex 5 is connected to vertex 7

11100000000 11110001000
110000000 0 1 11111000100
10111100000 1110100010
601111100010 1111001000 1
00111101000 01001120100
001111001 01 00101120010
00010011110 0001t 2210001
00001011100 10000001 1 1 1
0000011110 1 010010011 11
00010010011 00100101 1 1 1
010001001 1 1 0001001 1 1 11
Top View Front View

Figure 3: C'onnectivity Matrices

v 2

by a partially hidden line and so C'(5.7) = 2. The connectivity matrices are
symmetric.

3.2 Description of Algorithm

The algorithm works as follows. Since a vertex in any view can actually cor-
respond to the orthogonal projections of one or more lines, a vertex analysis
is first performed to detect such multiple vertices and their multiplicities are
recorded. For example, vertex 11 in Figure 2 (front view) has a multiplicity of 4
since, there are at most four vertices in the top view. viz., 6, 9, 11 and 2, whose
projections can coincide with it.

Next. the vertex with least multiplicity. sav vy, is selected. From the con-
nectivity matrices. all neighbors of v, are identified and stored in V7. Every
non-collinear triple in 1" containing ry defines a plane passing through vy. These
planes are generated and stored in . Finally. a set of faces F is created by sys-
tematically detecting all vertices. except vy and its neighbors. that lie on each
element of P. Thercfore. cach element of F is a face containing the vertex vy.

Next, we analyze the faces in F. In particular, we need to determine how
many faces of F can lead to a valid solid. A solid is considered valid only if it
corresponds to the given views. The analysis involves expanding faces of F' and
proceeds as follows. A face f; is selected from F. If f; is to be the face of a
valid solid, each edge of f; must be shared by exactly one more face. 2 The
neighbors of f; are identified and stored in ;. This process is repeated for every
face in F. The set G; includes only those faces encountered in the analysis that
do not intersect any face in G'i—1, Gi=2 Gy (i.e.. excludes non-manifolds).
Furthermore. consistency with the given orthographic views is verified prior to
adding a face in G;.

A depth first strategy is emploved and the faces of (71 are expanded next.
Concurrently with the face expansion procedure for G, the constructed solids
are checked for completeness (i.c.. bounded solid) and validity (i.e.. consistency
with the given orthographic projections). Any solid that passes this check is a
vaild solid and is stored in the solution set. The connectivity matrix correspond-
ing to the right view is then generated. The face expansion process is carried
out for all sets G;, until all faces are expanded. The algorithm then terminates.
since all solids corresponding to the given pair of orthographic views have been
identified and their right view connectivity matrix stored.

Now we have the three views for each solid. The last step is to identify from
these views. which lines in the right view can be replaced by circular arcs. (Note.
we are only concerned with introducing curves in the right view and not in the

2 . . .
We do not consider non-manifold objects

top and front views which were prespecified). We assume that the solid being
analyzed is in a canonical orientation. Once again. we analyze one view and use
the other for checking consistency. Clearly, all vertical lines in the top view are
candidates for curved edges.when viewed from the right. Furthermore, a vertical
line in the top view can only correspond to an inclined line, or a horizontal line,
in the right view. If it corresponds to an inclined line {; = (u,v), it can be
replaced directly by a circular arc C. C passes through u and v, and has I
and [3 as tangents, where [, and I3 intersect [, at u and v respectively. If the
vertical line in the top view corresponds to a horizontal line in the right view,
the corresponding solid has a sharp corner (and an edge) that is a candidate for
"rounding” or "filleting”. Further checks are done to ensure consistency with the
front view and the corner/edge in the solid is rounded. or filleted, by replacing
the appropriate vertex in the right view with a circular arc. The blend radius
can be chosen by the user and determines the point of tangencies.

4 Algorithm

The main algorithm invokes three substeps, viz., Form-Face, Expand-Face and
Curves. The first two are recursive.

4.1 Algorithm MAIN

Input: Connectivity matrices for orthographic view R and T
Output: Solids corresponding to R and T

begin

for each vertex in R, compute multiplicity

for minimum multiplicity vertex vy, while multiplicity > 0
F <« Form-Face (v;)
while F not empty, Expand-Face(F)
P « polyhedral solids: Q < right views

while Q not empty, Curves(Q)
C < Curved solids

output P and C

end

The algorithm MAIN requires that in the orthographic views there be a path
from each vertex to every other vertex (i.e., no edge loop in is properly contained
in another). This condition disqualifies solids that have holes and pockets that

10

open on planes. The algorithm can be modified to overcome this limitation by
adding dummy edges between the appropriate vertices of the disconnected loops.

A brief description of the procedures used by the program MAIN is given below.

1. Input-connectivity-matrices (top-view, front-view) :
Reads the data for both views from the input file and retruns the data in matrices
top-view and front-view.

2. Generate-multiple-nodes (top-view, front-view. multiple-node-list) :
Generates all the possible multiple nodes in the front view from the information
given in top-view and front-view matrices and returns the list of multiple nodes.
properly labelled, in multiple-node-list.

3. Get-min-mnode (multiple-node-list. min-loc) :
Determines the node in the front view that has the least number of multiple
nodes in the front view. and returns the identification of the node in min-loc.

4. Get-mnodes (min-loc, multiple-node-list, mnode-list):
Extracts all the mnodes at node min-loc in the front view f{rom the multiple-
node-list and returns the resultant list in mnode-list.

5. Get-connected nodes (mnode, connected-list):
Determines all the mnodes in the multiple-node-list that are connected to mnode
and returns the resultant set in connected-list.

6. Get-next-plane (mnode. connected-list, face):
Determines the next candidate plane in the connected-list that passes through
mnode. The previous plane. if any, is passed via face. The resultant plane is
returned in face.

. Get-nodes-in-plane (face. vertices):

Determmes all mnodes that lie in the plane defined by fm‘e and returns rhls
mnodes list in vertices.’

8. Initial-solid (solid. face):
Sets up the initial solid with a single face defined by face.

9. Output-solution():
Outputs the solution set of solids.

11

4.2 Algorithm Form-Face:

Form-face procedure recursively generates all the possible faces that can be pro-
duced from the vertex set.

Algorithm:
1. Identify all neighbors of last vertex of the face

2. For each of the vertices in this list. repeat
2.1 Add the vertex to face at the current last vertex
2.2 If face is complete and valid add to the list of possible faces
2.3 Mark this vertex as USED in the list of vertices that lie in plane
2.4 Invoke form-face() to generate the possible faces for updated face
2.5 Remove this vertex (the last vertex) from face
2.6 Mark vertex as FREL in the list of vertices that lie in the plane

3. End of preocedure: Return

The procedures used by Form-Lace are briefly described below.

1. Get-next-vertex-list (face. vertices, next-list):
This procedure returns all the FREE members of vertex list vertices that can

be connected to the last vertex of face. The list of these vertices is returned in
next-list.

2. Add-vertex-to-face (face. vertex):
This procedure expands the partially constructed face by adding verter to the
last vertex of face and updating vertez as the last vertex of face.

3. Valid-face (face):
This procedure verifies if a given face is a complete and consistent face. i.e. edges
form a closed loop and do not cross cach other.

4. Add-face (face):

This procedure stores face in the list of candidate valid faces.

5. Mark-vertex-list (vertices. vertez. value):
This procedure marks vertez in the list vertices with the value value. IF value

is USED. then vertez will not be used as a candidate in subsequent scarches. If
value is FREE. vertez will be used.

6. Remove-vertex-from-face (face. verter):
This procedure removes vertce from the end of the partially constructed face.
The previous vertex in face now becomes the last vertex.

4.3 Algorithm Expand-Face

Expand-Face() recursively expands all the edges of the face. It also checks for
the consistency and validity of the partially constructed solid and stores any
valid solids that may be encountered during the process.

Algorithm:

1. For each edges of the face repeat

1.1 Extract vertices in face that correspond to the edge

1.2 If edge is already shared by two faces go to Step 1.5

1.3 Generate list of faces that can be incident to edge

1.4 For each face in this list repeat
1.4.1 Add face to the partially constructed solid
1.4.2 If solid is complete and valid. add to solution
1.£.3 Invoke expand-facet) to expand this face
1.4.4 Remove face {rom solid

1.5 Continue until the list is completely processed

2. End of procedure: Return

The procedures used by Expand-Face are briefly described below.

1. Number-of-edges (face):
Determines the number of edges in face.

2. Extract-edge (face. i. edge):
Extracts the edge i from face. This edge is returned in the variable edge.

3. Already-shared (edge. solid):
Checks if edge is already shared by two of the faces of the partially constructed

solid. If so. if returns TRUE: else returns FALSE.

4. Get-next-face-list (edge, face. solid. face-list):
Gets the list of all other possible faces for the edge which lies on face. This
procedure checks and returns only those faces that. when added. preserve the

consistency of the partially constructed solid. The result is returned in face —
list.

5. Add-face-to-solid (solid. fuce):
Grows the partially constructed solid by adding face as one more face of solid.
It assumes that face qualifies to be a valid face of solid.

6. Valid-solid (solid):
Checks if solid represents a valid solid that can be a member of solution set.

It checks (i) if all the edges are shared by exactly two nodes and (ii) the solid
produces all the vertices and lines in the given view information. If solid passes

13

these checks, it returns TRUE. else returns FALSE.

7. Store-solid (solid):
Adds solid as a member of the solution set.

8. Remove-face-from-solid (solid. face):
Removes the face face from a partially constructed solid solid. It assumes that
the resulting partial solid is still valid (i.e.. does not contain discontinuities)

4.4 Algorithm Curves

Curves() detects the edges in the newly generated right views that can be re-
placeds by circular arcs. while remaining consistent with the specified top and
front views.

Algorithm:
1. E <« all vertical lines in top view.

2. For each element ¢; of E repeat
2.1. Find corresponding edge r; in right-side view
2.2. If r; is not horizontal replace r; by a circular arc
2.3. If r; is horizontal. repeat
2.3.1 If edges intersecting r; are vertical. replace r; by circular arc
2.3.2 Else, for each vertex u; of r; repeat
2.3.3 If u; has vertical and horizontal neighbours. blend u;

3. Output valid solids; STOP

This algorithm identifies the surfaces of the solid which can be curved. At present
it replaces with circular arcs only. However. extension to include all conics is
straightforward; e.g., using Liming’s method [Faux and Pratt 1987, page 31].
The input to the algorithm are the three connectivity matrices corresponding t6
the three orthogonal views of the solid. It is required that these views consist
entirely of straight line segments only (i.e.. we assume that projections-of the
curved surfaces are stright lines in the top and front views). The algorithm then
determines the edges in the right view that can be curved. The limits on the
parameter values of the circular arcs can be adjusted such that no two curves
overlap or intersect and the solid remains valid.

The procedures used by Curves are brieflv described below.

1. Get-vertical-edges (cdge-list):
Generates a list of edges that correspond to the vertical edges in top and front
views. These edge project as either straight lines of points in both these views.

14

The list is returned in edge-list.

2. Horizontal (edge-list. i):
Determines if 7 th edge in the edge-list is horizontal. It returns TRUE if the
edge is horizontal. Otherwise. it returns FALSE.

3. Mark-parametric-curve (edge-list. i):
Records that the i th edge in the edge-list can be replaced by a family of circular
arcs that can be represented in the parametric form.

4. Get-descrete-points (right-view. point-list):
Identifies all the points in the right-view that have their projections as horizontal

lines in both front and top views. The list of resultant points is returned in point-
list.

5. Valid-descrete-curve (cdge-list. i. point-list, jj:
Determines if edge ¢ can be replaced by a circular arc that spans upto the point
J- Returns TRUE if the edge can be replaced.

6. Mark-descrete-curve (cdge-list. i. point-list, j):
Records that edge i in the cdgc-list can be replaced by a circular arc that spans
upto point j in the point-list.

7. Get-tangent-nodes (right-view. edge-list):
Identifies all the nodes in the right-view that can be removed and replaced by a

set of parametric arc that are tangent to the edges that joint at that node. The
result is returned in node-list.

8. Mark-tangent-node (node-list, i):
Records that node i in the node-list can be removed and replaced by a set of
parametric tangent curves.

5 Examples

We illustrate the working of our algorithm by three examples. The algorithm was
implemented in C and run on an Apollo DN 4000 workstation. Tle first example

solves for polyhedral solids only. while in the second and third we generate solids
bounded by quadrics.

5.1 Polyhedral Solids

The first example has been borrowed from [Wilde 1991] where ten solids were
generated corresponding to the pair of orthographic views shown in Figure 2.
Using our algorithm we generated the complete set of solids (sixteen) and the
corresponding right-side views. They are shown in Figure 1. On the Apollo DN

13

4000. it took 2.6 seconds to generate all right view connectivity matrices (from
which the right views were drawn).

While solving the above problem we made the assumption that every solid has
a planar (rectangular) base. the boundary of which corresponds to the boundary
(i.e., the outer edge loop) on the top view in Figure 2. This assumption disallows
any prismatic protrusions below the base. When this restriction is removed,
(i.e., prismatic protrusions below the base that do not affect other views are
allowed) the number of solutions increase rapidly. The reader can visualize the
new solids when, for example, triangular prisms are attached to the bottom face

of the solutions 9, 10, 11. 12, 15 and 16 such that the top and front views are
unaffected.

5.2 Solids bounded by Curved Surfaces

Here we illustrate the reconstruction of curved solids from a pair of orthographic
views (straight lines only). The top and front views were intentionally chosen
to be simple. They permit us to demonstrate the working of our algorithm. and
most importantly show the large number of possible solutions. In Figure 5 and
Figure 6. instead of drawing the complex curved solids. we have shown two right

views for each case, viz.. a polygonal right view and a right view with circular
arcs.

In Figure 3, the top and front views are given, as shown. The corresponding
five right views are shown in the numbered boxes alongside. This simple example
took less than a second each. for polygonal right views and curved right view
on the Apollo DN 4000. Note. all views do not permit curves. For example,
the replacing sharp corner « by any circular curve is impermissible if one is to
remain consistent with the dimensions in the top and front views. Views 4 and
5 are similar.

In Figure 6 the top and front views are given, as shown. [For this set, the
algorithm identifies 14 polvgonal right views in 3.2 seconds. and the correspond-
ing curved right views in 2.1 seconds. on the Apollo DN 4000. As before. not all
right views permit curves.

User interaction. such as in Example 1 (Figure 1) is helpful in the recon-
struction of the solids. The search process can then be guided to include. or
exclude, certain features on the solid. .\lso. in Examples 2 and 3. the radius for
rounding and filleting can he chosen by the user. Furthermore. using Liming’s
method the circular arcs can easily be replaced by other conics such as elliptical.
parabolic or hyperbolic arcs: e.g.. see [Faux and Pratt 1979, page 31].

16

@

d -

®

©
v @ ® "
v @ @ %
AR 4R AN
AR AR

Figure -I: Example 1: Polvhedral solids

Top View

“ront View

|R)

ANV
ARV

S]]

Figure 5: Example 2: Curved Solids

\3|: < ¢

A A

|

O

o

dYARS
7 7 144

N

[igure 6: Example 3: Curved Solids

19

6 Summary

We have presented an algorithm that reconstructs all solids. bounded by planes
and quadrics, that correspond to a pair of prespecified orthogonal views. As
a byproduct, the missing third views are also obtained. The algorithm insures
completeness by considering all candidate faces for inclusion in the solid. Con-
sistency with the given views guarantees validity of the generated solids and
* correctness of the algorithm.

Visualization in three dimensions is a difficult task. For complex solids,
even when all three views are provided. a manual reconstruction process can
be very complicated. It requires ascertaining correspondence between the given
views and then construction of the solid based on the views. The reconstruction
problem considered in this paper is more difficult because of the combinatorial
nature of the solution brought about by the incomplete specification. The so-
lution procedure can benefit extensively from user interaction (as in Example
1). Since. a two-view representation tvpically corresponds to multiple solids. the
search process can be guided to exclude classes of solids that the user deems
unnecessary.

Acknowledgements

We thank Professor Doug Wilde of Stanford University for suggesting this prob-
lem for further study.

7 References

L. Aldefield. B., (1983) “Automatic 3-D reconstruction from 2-D geometric
part descriptions.” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition 1983. pp.G6-72.

2. Faux. I.D. and Pratt. M.J.. (1979) Computational Geometry for Design
and Manufacture, Ellis Ilorwood Publishers.

3. Harlick. R. M.. and Shapiro. L. G.. (1982) “Understanding Engineering
Drawings™ Computer Graphics and Image Processing Vol. 20. pp. 214-258

4. Idesawa. M.. Soma. T.. Goto. E.. and Shibata. S.. (1975) “Automatic Input
of Line Drawings and Generation of Solid Figure from Three-View Data”
Proceedings of International Computer Symposium. Vol 11, pp. 304-311

5. Lafue. G.. (1976) “Recognition of Three-Dimensional Objects from Ortho-
graphic Views™ Computer Graphics Vol. 10, No. 2

20

10.

11.

12.

. Luzadder, W.J.. (1986) Fundamecntals of Engineering Drawing, Ninth Edi-

tion, Prentice Hall

. Markowsky G.. and Wesley, M. A.. (1980) “Fleshing out Wire Frames,”

IBM Journal of Research and Development Vol. 21, No. 5, pp. 582-597.

. Markowsky G.., and Wesley. M. A.. (1981) “Fleshing out Projections.” IBM

Journal of Research and Development Vol. 24, No. 6. pp. 934-954.

. Preiss, K., (1981) “Algorithms for automatic conversion of a 3-view draw-

ing of a plane-faced part to the 3-D respresentation.” Computers in Indus-
try vol. 2, pp. 133-139.

Sakurai, II.. and Gossard D.C.. (1983) “Solid Model Input through Ortho-
graphic Views™ Computer Graphics vol. 17. No. 3. pp. 213-247.

Sugihara. K (1985) Machine Interpretation of Line Drawings. MIT Dress

Wilde. D. J.. (1991) “The Geometry of Spatial Visualization: Two Prob-
lems.” manuscript. To be presented at Sth IFTOM World Congress Prague.,
August 1991.

