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Abstract. A model for volume hologram formation in thick dichromated gelatin fih-ns is 
given. Using the model and a few basic film measurements, we can quantify the index 
modulation vs. exposure curve. The effects of saturation and dynamic absorption increase 
during exposure are considered in the generation of spatial harmonics. The effects of 
exposure with non-unity beam-ratio and multiple incoherent exposures are predicted 
and experimentally verified. The thick transmission grating diffraction efficiencies resulting 
from first- and higher-order index modulations are calculated and compared to experiments. 
The methods and conclusions are applicable to other phase materials. 

Index Codes: 42.65, 42.30 

Hardened dichromated gelatin is a holographic phase 
material that is essentially lossless after development 
and can be made to yield volume holograms of very 
high index modulation. It is the purpose of this paper 
to develop a model for dichromated gelatin which, 
together with a minimum number of measured 
parameters, will quantify the dependence of index 
modulation on exposure under various exposure 
conditions. Because some of the film properties we 
report can also be seen in tests of other materials, it is 
expected that many of the predicted effects and our 
analytic methods will apply in general to a large class 
of holographic films. 
The model presented is both a mathematical and 
physical one. The form of the equations chosen to 
represent various film quantities is based on our 
macroscopic observation that the absorption vs. 
exposure curve and the first-order index modulation 
vs. exposure curve both have the form of saturating 
exponential functions (which saturate at different 
rates depending on the film preparation conditions). 
It is these functional forms that prompt us to give a 
mathematical treatment to the numerical values of 
the index curves. Results of past [1, 21 and present 

investigations, and knowledge of the chemistry of 
dichromated colloids also lead us to postulate as to 
the origin of the index variation in these films. 

1. Chemistry and Hologram Formation Mechanism 

The chemistry of the photo-induced hardening process 
in dichromated gelatin films was treated extensively 
by Kosar [3] and is shown in Figure 1. Briefly, a gelatin 
film is sensitized in an ammonium dichromate solu- 
tion and then allowed to dry. During exposure, light 
is absorbed to reduce the Cr +6 ion to Cr +3 which 
tbrms several intermediate chromium compounds. 
During development, the chromic ion, Cr § acts to 
form a crosslink bond between the carboxylate groups 
of neighboring gelatin strands. This bond gives 
rigidity (hardness) to the gelatin. 
For hologram formation, the exposure of the film is 
not uniform, as in a sinusoidal exposure resulting 
from the interference of two incident plane waves 
(Fig. 2). Highly exposed and relatively unexposed 
regions will be hardened to different degrees during 
development, causing periodic strain within the gelatin. 
When the firm is rapidly dehydrated with isopropanol 
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Fig. 2. Two plane waves expose the film. The sinusoidal exposure 
causes differential hardening resulting in the formation of small 
vacules in the gelatin. The fringes are assumed to be normal to the 
film surface 

during the last step of development, the strain is 
increased and then thought to be relieved by the 
formation of fissures or cracks in the vicinity of the 
unhardened gelatin chains [1]. We picture the 
fissures as enlarged separations between the gelatin 
strands comprising the emulsion [4]. We can represent 
the enlarged separations as small vacuoles with varying 
number density within the volume of the gelatin as 
in Figure 2. The local dielectric constant is con- 
sequently reduced in the area containing a mixture 
of gelatin and vacuoles. Extensive experiments by 
Curran and Shankoff with index matching fluids that 
wet gelatin indicate that the presence of voids within 
the gelatin is quite reasonable [1]. They have sug- 
gested that these air gaps are large in size and few 
in number (one gap/exposure fringe). We propose an 
extension of this model by assuming that the voids 
are instead small in size and large in number. This 
idea was mentioned by Curran and Shankoff and is 
consistent with nearly all of their experimental 
observations for transmission holograms, as will be 
discussed later. A model including a large number of 

small vacuoles (dimensions <2) in a gelatin matrix 
would account for the low scatter noise observed with 
this film and would allow for a smooth average index 
variation across an exposure fi'inge. As we shall see, 
a smooth index variation is consistent with experiment 
in that it would allow for the sinusoidal index variation 
necessary for our observed diffraction efficiencies 
and angular selectivities, and would produce much less 
higher-order diffraction at low exposures than would 
the square wave index modulation [1] associated 
with a single crack/fringe. 
For small vacuoles embedded within a dielectric 
medium, the change in the local dielectric constant is 
given by the Lorentz-Lorenz formula [5, 6] which for 
small modulations becomes 

8(x)/e o = 1 + c' ~ N(x)c~p(x). (1) 

The local dielectric constant at a position x depends 
on the product of the number density N(x), and the 
polarizability ap(x) of the vacuoles. (The polarizability 
is proportional to the volume, shape, and relative 
dielectric constant of the vacuole [6, 7].) The local 
index of refraction is then n(x)= ]/e~j. 

2. The Model 

To model the film response as a function of exposure, 
we now consider and quantify the dynamic absorption 
increase of the sensitized film during exposure, the 
photo-induced hardening of the film, and the resultant 
index modulation. Following this, we relate first- 
and second-order index modulation to diffraction 
efficiency at the first- and second-order Bragg angles 
and compare our predicted results with experiments. 

2.1. Dynamic Absorption 

It is well known that during exposure, the sensitized 
dichromated gelatin film slowly changes from a 
bright orange-yellow to a darker color, with an 
accompanying increase in absorption. The photo- 
induced color change and absorption increase is due 
to the formation of the intermediate chromium 
compounds in Figure 1 [3]. Thus, we can relate the 
absorption to the number density of exposed chromate 
complexes, Qe- We write the absorption coefficient as 

c~ = cq + 3Qe, (2) 

where ~a is a bulk absorption (due to dark reaction, 
total dichromate concentration, etc.). Because ~e 
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increases with exposure E, we write in general the 
differential equation 

do~ = ko~dE, (3) 

where k depends on the quantum efficiency of the 
exposure reaction and 0, is the density (number/ 
volume) of unexposed chromates. For an absorbing 
material, the exposure will decrease with depth in the 
emulsion, so that by integrating (3), we get 

I ( Oe(z) = 0o 1 - exp - kEe -s~ (4) 

where E =  lot and 0o = 0, + 0e- This is correct if ~ is a 
very slowly varying function of 0e. In general, since 
the absorption coefficient varies considerably with 
exposure and hence with depth, we must integrate 
numerically to find 0E(z, E) and ,(z, E). 

2.2. Film Hardening and Index Modulation 

Because we can measure the absorption vs. exposure, 
we can find ~oE in terms of macroscopic observables. 
Since it is the exposed chromates that initiate cross- 
link bonds ultimately resulting in hologram formation, 
it is convenient to express the term ~ N% in (1) in 
terms of 0e. (For low exposures, 0e is linearly related 
to exposure and we could use the two interchangably.) 
We start by observing the first-order diffraction 
efficiency DE 1 for sinusoidal exposures of the form 

E = Eo(1 + m cos ~cx). (5) 

where t< = 2re f ,  and f is the grating frequency. 
From the DEI(E ) curve and the 0~(E) curve, we can 
obtain the first-order index modulation n,(E) or 
nl(~)E) [83 (see Fig. 5). 
With knowledge of the shape of the index curves and of 
film hardening properties, we can postulate as to the 
microscopic origin of the index modulation. Because 
vacuole formation is thought to result from the stress 
associated with differential hardening of the film, we 
assume the term ~ NO~p to  be proportional to the 
differential hardness H = H ( m a x ) - H ( x )  across an 
exposure fringe. (The proportionality factor would 
contain any spatial frequency response--al though we 
observe a uniform response from 800-12001/mm.) 
Since the film hardness is related to the number of 
crosslink bonds and the first bonds have more effect 
on film hardness than later bonds [9], we assume a 
form for the hardness 

H = Ho[1 - e x p ( -  knoE)], (6) 

where Ho will depend on the dichromate concentra- 
tion and preparation conditions. Inserting the above 
into (1), we obtain 

~(x) 
= l_CHo[( l_e -k~Q~(max) )_( l_e  k~Q~(~))], (7) 

g0 

where the constant C is a positive number and the 
minus sign preceeding it reflects the negative relative 
polarizability of a vacuole. For an exposure of the 
form of (5), (7) will give an index distribution which can 
be expanded in the form 

n = ~ nq cos q~cx. (8) 
q 

For small exposures, only no and nl will be appreciable 
and we can expand the exponentials in (4) and (7) 
to obtain the depth averaged coefficients (for film 
thickness D) 

n o = e~[1 - (21mEo] (9) 

and 

n 1 =eo~?lmEo (10) 

with 

(21 = �89 CHokHkOo [1 - exp(~lD- ~ID)] .] (11) 

It should be emphasized that although we gave 
physical arguments leading up to (7), it is our ex- 
perimental observation that the first-order index 
modulation curve has the form of a saturating ex- 
ponential function that initially lead us to the form 
of (7). We note that the ~o~(max) term is a bias term that 
assures that there are no vacuoles at the maximum 
exposure position on a fringe (where the film is 
hardened the most). We also note that the form of (7) 
correctly predicts that when the film receives a large, 
spatially uniform bias exposure and then a small 
modulated exposure, that 

~(x) 
= 1 - CHokr~e-k~~ (7a) 

~o 

That is, the spatially uniform response (bonding) from 
the bias exposure causes an exponential decrease in 
sensitivity to the modulated exposure. This response 
has been observed experimentally [121. 
Thus from our observations, we arrive at a simple form 
for the modulation of the dielectric and hence index of 
refraction. 
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Fig. 3. Index of refraction vs. position across one fringe�9 Upper curve 
(left scale) is a high exposure (E0=650mJ/cmZ); lower curve 
(right scale) is a low exposure (E 0 = 4 mJ/cm z) 

2.3. Spatial Harmonic Generation 

Because the form of the total index curve (7) was based 
on our observations of the shape of the first-order index 
modulation curve, we will expect good numerical 
agreement between predicted and measured values of 
n~(E). A better test of our model is to see how well it 
predicts higher-order index modulations. 
Our model includes two mechanisms for the generation 
of spatial harmonics: absorption distortion and hard- 
ness saturation�9 In absorption distortion, the absorp- 
tion increase in highly exposed areas near the front 
surface of the emulsion shields the deeper regions of 
the emulsion (for that same x position) from exposure. 
This effect is greatest at the fringe maxima and occurs 
to a lesser degree in lower exposure areas across the 
fringe. The resulting exposure for the deeper layers of 
the emulsion is distorted and is no longer a single 
frequency sinusoid, resulting in harmonic genera- 
tion. 
Hardness saturation also occurs most rapidly at the 
exposure maxima causing a decreased ability to 
respond to further exposure at these positions. For  
high exposure levels, the resulting differential sensi- 
tivity at different positions across a fringe causes a 
nonlinear response to increased exposure, which 
results in harmonic generation. 
We can graphically see the results of the combined 
effects if we look at the computed shape (see next 
section for computation method) of one fringe at 
different exposure levels. For  low level, sinusoidal 
exposures, where we have a linear response, the lower 
curve in Figure 3 shows a sinusoidal index variation 
as a function of position. For high exposures, the Upper 
curve in Figure 3 shows a flat-top index profile caused 
by saturation and absorption distortion. The upper 

curve, of course, will have a great deal of harmonic 
content and considerable higher order diffraction�9 

2.4. The Computer Model 

Because of dynamic absorption, saturation effects, 
and sinusoidally varying exposures, the values of 
Ce, H, and hence n(E) vary with depth, exposure and 
transverse position. In order to accurately compute 
the index n(x, z), we have written a computer program 
for the following steps. Beginning with the pre- 
exposure initial conditions QF(x, z, E =  0) = 0, and e =.cq, 
we write the lowest exposure E l = / ~ l ( l + c o s ~ x  ). 
Dividing the thick emulsion into a series of thin slabs 
(Az=0.5 gin) in the z direction and narrow channels 
in the x direction (Ax=1/32 fringe), we insert E1 
into (4) and compute CE(x,z=0.5gm, Ea) for all 
positions x over one interference fringe. Using these 
values and (7), we compute n(x, z = 0.5 gin, El) and then 
expand it into its x dependent frequency components 
(8). We repeat this process for all z planes and then 
obtain the averages over z 

1 
no = ~ F, no(Z, E~)~z 

1 
nl = ~ ~, nl(z, E1)Az . . . .  (12) 

We next increase the exposure by a small amount to Ez 
and use the previous values of 0R(x, z, El) with (2) 
to compute the absorption coefficient for use in (4). 
The entire computation is continued to find no(E2), 
nl(E2) , nz(E2), etc. 

2.5�9 Diffraction Efficiency 

We cannot measure n 1 and n 2 directly to compare with 
our model but instead must measure diffraction 
efficiency (DE) and relate this to the spatial index 
modulation. At the first-order Bragg angle, we have 
[83 

�9 2{nnlO\  
DE1--sln (131 

where nl is averaged in depth [-13] as in (10) and (12) 
and 2 is the free-space wavelength. 
For  readout at the second-order Bragg angle, 
(2 sin O2B=22f/no), both single diffraction.from the 
harmonic grating n 2, and double diffraction from the 
fundamental grating n 1 contribute to the DE so that 
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in general, an equation of the form of (13) is not 
adequate. A three wave analysis has shown [141 

�88 {[C0S/~' - -  COS (3~2 -1- ~)]2 DE2 

+ [A s i n g -  sin(~2 72 + ~)]2} , (14) 

where 

71--  
r~n 1 D ~n2D 

/~ 1//~OS~22B ' 72 - -  fl~ COS 02B ' 

rt2 f 2D 72 

no(1 + c o s  02B ) ' 2 

and 

z=l/X +2 l . 

The frequency dependenc e (see the ~ term) is due to the 
double diffraction mechanism. For the high exposure 
levels required to obtain appreciable DE 2, three 
output waves are observed. Because some of the 
energy goes into a first order, DE 2 cannot be made 
arbitrarily to reach 100% (see Fig. 8) [14]. 
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Fig. 4. Average absorption coefficient as a function of exposure 
(for 5 % sensitizer solution) 

with a spatial frequency of l l801/mm. We have 
assumed the emulsion thickness to be 16lain, a 
number obtained from angular selectivity measure- 
ments of the developed gratings. 

2.6. Initial Parameters 

Our last remaining task is to determine the param- 
eters for our various equations. We have two saturating 
exponential equations (absorption and index) and an 
intitial absorption coefficient, so that five independent 
parameters must be determined. From measurements 
of the slope and intercept of the low exposure absorp- 
tion curve with 

E= % + fl~ok [_1 - exp( -  cqD)] (15) 
[ cqD J 

and the saturation level absorption g = ~ l  +flOo, we 
can find three parameters. These can be used with 
the measurements of hi(E) for low exposures (10 
and 13) and for the saturation value of nl(E) to find 
the two remaining parameters. 

3. Experimental Investigation 

We are now ready to check our mathematical model 
with our experiments. The dichromated gelatin films 
used in this investigation were prepared from Kodak 
649-F plates [15, 16]. Unless otherwise noted, a 5% 
ammonium dichromate solution was used as the 
sensitizer and the film was exposed at 2=4880A 

3.1. Absorption Tests 

Using a 5% sensitized plate, we measured the trans- 
mittance of the film as a function of exposure and 
used this data to find Y vs. E. Figure4 shows the 
measured and computed values of g in the exposure 
range of interest for hologram formation. The intial 
value of g shows that only 42 % of the incident light 
reaches the back layers of the emulsion. At high 
exposure levels, 25% of the light is transmitted. The 
absorption can be decreased by using a lower sensitizer 
concentration or a longer exposure wavelength [17, 
18]. 

3.2. Index Modulation 

On the same plates, we record plane wave gratings 
with 100% modulation (m= 1). From measurements 
of DE vs. exposure, we use (13) to find nl(E ). Inserting 
our measured parameters into our computer program, 
we compare the measured and predicted first-order 
index modulation in Figure 5. The data points are 
taken from five different plates and thus represent 
the reproducibility of the process. We notice that over 
the lower two decades of exposure, the film responds 
quite linearly and then gradually decreases in sensi- 
tivity as the film begins to saturate. 
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Fig. 7. First order index modulation (�9 n~) and second-order index 
modulation (A = -n2 )  vs. exposure for 1�89 sensitizer 

In Figure 6, we show the computed and measured 
first-order DE resulting from the index modulations 
in Figure 5. The DE has been corrected for surface 
reflection losses. There is a negligible ammount of 
absorption after development so that nearly 100% 
of the incident energy can be diffracted into the 
first-order. Conjugate and higher orders for read out 
at the first-order Bragg angle contain at most 2% 
of the energy for our particular exposure conditions 
(Q = 2rc).f2D/no = 45) [8]. 

3.3. Spatial Harmonics 

To test our model for harmonic generation, we look at 
data from a plate sensitized with 1�89 ammonium 
dichromate solution and exposed with plane waves 
at f--8601/mm. At this sensitizer concentration 
(compared to 5%), the absorption coefficient is 
considerably reduced and the gratings are of nearly 
uniform modulation (in depth, z). This is desirable 
because (14) was derived assuming uniform index 
modulation. (In fact, observations of the minima 
of the first-order angular selectivity curves [13, 19-1 
for low and high exposure gratings indicate that the 
modulation gradient does not become greatly exag- 
gerated at high exposure levels. This may be because 
the first-order index modulation in the front layers 
begins to saturate while that in the back layers 
continues to increase until the modulation becomes 
more nearly uniform.) 
For read out of the gratings at the first and then the 
second-order Bragg angles, followed by the use of 
(13) and (14), we can find nl(E ) and na(E ). Using the 
computer model, we can also compute the values of 
nl(E) and n2(E ). Figure 7 shows the good agreement 
between theory (solid line) and experimental data 
points. We note that nlmax for the 1�89 sensitizer has a 
lower value than that for the 5 % sensitizer. As expected, 
n 2 begins to have appreciable values in the exposure 
region where n~ begins to deviate from linearity. At 
high exposures, n 2 contributes appreciably to the 
total index modulation (Inai =0.5nl). 
By keeping terms in 0~ for a low exposure expansion 
of the index, we find the form n 2 = -g22E 2. From the 
slope of the n 2 curve (Fig. 7), we see the E 2 dependence 
and from the inversion of DE2 data with (14) we see 
that n~ is negative relative to nl. 
Figure 8 shows the good agreement between the 
measured DE's for this plate and the DE computed 
using the solid lines in Figure 7 and (13) and (14). 
The position and magnitude of the peak (DE2) in the 
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second order differs with sensitizer level because the 
generation of n2 is related to the saturation of n(E) 
and the absorption distortion, both of which change 
with sensitizer level. From observations of a number 
of gratings and computer study, we find that saturation 
is the most important consideration in spatial har- 
monic generation with absorption distortion providing 
a smaller contribution (~15%). Because saturation 
is the dominant effect and the 1�89 film saturates 
at a lower value of index modulation (see Figs. 5 and 7), 
we find that for a given value of nl, the 1�89 % film will 
have a larger value of n2 than will the 5 % film. As a 
result, DE2 peaks earlier (relative to the DE~ curve) 
for the lower sensitizer concentration films because 
saturation effects come into play at lower modulation 
levels. (However, it should be remembered that the 
maximum index modulation is higher for the 5% 
film and thus at high exposure levels it will achieve 
larger values of both nl and n2.) 
We have also observed third-order generation in these 
films and have measured 70% DE at the third-order 
Bragg angle for high exposure (E= 2300 mJ/cmZ). 
The DE equation at the third-order Bragg angle 
would be considerably more complex than (14) 
and in general it is easier to compute the DE numeri- 
cally [20]. If the spatial frequency is sufficiently high 
and the emulsion sufficiently thick so that only two 
orders are significant, the analysis of Su and Gaylord 
can be used [21]. 
One of the most striking features of Figure 8 is that the 
first-order DE peaks near 100% and then decreases 
for increasing index modulation [as predicted by 
(13)] but does not come down to zero (near E=650) 
before starting to increase again. A very careful 
study of the angular selectivity for the gratings with 

E>650 indicates that their index modulation is 
less than that of gratings recorded at E = 650 mJ/cm 2. 
We also notice that nl(E ) in Figure 7 increases mo- 
notonically until E~650  and then decreases as is 
evident in both the theory and the data. A decrease 
in modulation with increased exposure (an effect 
similar to solarization in silver based materials) 
occurs at very high exposure levels. We can under- 
stand this by referring to the shape of one fringe in 
Figure 3. After a certain exposure, the effective hard- 
ness at ~:x=0 will have saturated. Further exposure 
can still increase the hardness in the areas near the 
minimum exposure position (~cx= _+ ~) however. The 
net result is to make the hardness modulation com- 
ponents (and the resultant index modulation) more 
nonlinear. Because nz(E) is just the first term in the 
Fourier series expansion of n(x, E), as n(x, E) begins 
to saturate and look more like a square wave (with 
altered duty cycle), the high frequency components of 
modulation will increase while the low frequency 
terms will maximize (saturate) and for sufficiently 
high exposures, begin to decrease. Thus, an index 
modulation decrease with increased exposure is 
possible even under optimum exposure conditions. 
This effect occurs for materials other than dichro- 
mated gelatin and can even be seen in photoresists 
(a relief material) [15]. It should be noted that a 
decrease in modulation with increased exposure 
can also be caused by a slow, uniform fringe drift 
during exposure, or reduced fringe contrast during 
exposure (due to high frequency vibrations, beam- 
ratio E15] or pathlength difference), although in our 
experiments we believe this not to be the case. 

3.4. Beam-Ratio 

Up to this point, we have assumed that the incident 
plane waves used to expose the film were of equal 
irradiance. If the waves are of unequal irradiance, 
then the modulation m, see (5), is reduced. In Figure 9, 
we show the first-order index modulation curve for a 
5 % sensitized plate exposed with beam-ratio = BR= 4 
(lower curve) and the corresponding BR= 1 curve 
from Figure 5 (upper curve). For BR = 4, our modula- 
tion is reduced to m = 0.8 and we see that in the linear 
region (Fig. 9), our predicted and observed index 
modulation is reduced by the same factor. In the 
lower portion of the index curve, if we desire a given 
index modulation n~, and a higher BR (to take 
advantage of the greater SIN available at higher BR 
[15]), we can compensate for the reduced fringe 
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of the two gratings diffracts as if it were a Single 
exposure grating. Thus, for far separated gratings, we 
can to good approximation apply (13) to relate the 
index modulation of each grating to its corresponding 
DE. 
In order to predict the effect of multiple incoherent 
exposures on the film, we first look at the case where 
the film receives a sinusoidal first exposure and then 
a second exposure that has uniform spatial intensity 

E = El(1 + cos Kx) + E 2 . (16) 

Inserting this into (4-8), we see that for low exposures, 

nl _ 1 = (21mE1 (17) 
i 

which is the same as (10). Thus in the region where the 
film responds linearly, there is no effect on the first 
exposure due to the second exposure. For higher 
exposures, where the film saturation becomes im- 
portant, the "bias build-up" associated with higher 
overall exposure will inhibit cracking and will reduce 
the modulation n 1_ 1- 
We now consider two sinusoidal exposures with far 
removed Bragg angles. Since we compute the modula- 
tion at successive z = constant planes, we write 

E = E1 [1 + cos(~clx + ~b l(z))] 

+ E 2 [ 1 + cos(~c2x + ~bz(z))], (18) 

where q~l(z) and q~z(Z) describe the changing overlap 
of the two two sets of fringes with distance z. In the 
low exposure, linear response region, insertion of (18) 
into (4-8) will again show that the index modulation 
of n l_ t  of the first exposure is unchanged by the 
presence of the second. For equal exposure times, the 
index modulation of the second exposure, hi_z,  is 
slightly less than nz_ a both because the film absorp- 
tion increase due to the first exposure acts to effectively 
reduce the second exposure, and because the film is 
closer to saturation for the second exposure. 
For  higher exposure levels, the problem becomes more 
complex in that saturation effects are dependent on 
the exact location of the fringes in any z=cons tan t  
plane. In general, for high exposures, we can let our 
computer program keep track of the exposure densities 
~E~ and QE2 and then compute nl_ t and n~-2. For a 
thick emulsion and large angular offset fringes (so that 
the fringe patterns cross many times), if we follow the 
fringes n I _ ~ through the emulsion, we will average 
cos(~czx+O2(z))  through many cycles so that the 
effect of the second exposure is equivalent to the 
uniform bias of (16). 

modulation by increasing the total exposure. Satura- 
tion effects will, of course, lower the maximum 
available index modulation. 
The effect of index modulation maximization and 
then decrease with increased exposure is quite evident 
in the high BR experiments. In dichromated gelatin 
data reported by Colburn et al. E15] with BR=50,  
the DE (and corresponding index modulation) is seen 
to peak near 25% and then decrease for increasing 
exposure. 

3.5. Mu l t i p l e  Exposures  

In earlier works [20, 22, 23], we have investigated the 
diffraction effects of propagation through a thick 
material that has been multiply exposed. For that 
investigation, we assumed that the film had a 
sinusoidal first-order index modulation for each of 
two gratings (n1-1 and • 1 - 2 )  and proceeded to 
predict the diffraction efficiencies resulting from these 
overlapping modulations, In the present investigation, 
we wish to find the effect of multiple exposures on 
the film itself so that we can predict the first-order 
modulations nl_ ~ and n~ 2 as a function of exposure. 
We can then combine the effects of film properties 
and wave propagation to relate the DE to exposure 
under multiple exposure conditions. 
We have shown that a way to avoid interaction between 
two gratings exposed on one film is to angularly 
separate the gratings during exposure such that 
their Bragg angles are far removed from one another 
[23]. Under these conditions, we observe that each 
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In Figure 10, we show the predicted first-order index 
modulation per grating for a double exposure film 
(lower curve) with equal exposures for each grating. 
The upper curve is the single exposure curve from 
Figure 5 for reference. The triangles in Figure 10 
represent the measured index modulation [obtained 
from DE data and (13)1 of a double exposure film 
that received a sinusoidal first exposure and then a 
uniform second exposure. The circles represent the 
index modulations of a double exposure film that 
received two sinusoidal exposures with large angular 
separation. The upper and lower circles at a given 
exposure represent the first and second exposures. 
Clearly, we can see that for low exposures, where the 
film is in the linear region, each exposure responds as 
if it were the only exposure on the film. For higher 
exposures, we begin to see the effects of saturation. 
In order to reach a given index modulation in each 
of the two gratings, we will now have to expose each 
grating at a higher level than we would to make an 
equivalent single grating reach that modulation level. 
Of course, this compensation can only be carried out 
over a limited range because we see that the index 
modulation/grating saturates at a lower level in the 
double exposure case. In fact, each of the two gratings 
has a maximum modulation approximately equal 
to half of the maximum modulation of a corre- 
sponding single grating. 
In Figure 11, we compare the predicted and measured 
DE for each of the two gratings on the double exposure 
film. The predicted DE is the average of the first and 
second exposures obtained by using the index curve 
from Figure 10 and (13) modified to this construction 
geometry. We note empirically that the maximum 
value of DE for each of the two decoupled gratings 
is near 100% and that the exposure/grating to reach 
this level is approximately twice that required for a 
single exposure grating to reach 100% DE. The exact 
compensation required, of course, depends on the 
index modulation level we are trying to reach. If 
we could modify the response properties of the 
film to extend the linear portion of the curve (by 
changing the sensitizer concentration, exposure wave- 
length, absorption properties, etc.) we might be able 
to improve both the maximum index modulation and 
the compensation required for multiple exposures 
[243. 
We have also made triple exposures at far removed 
Bragg angles. The results at low and high exposures 
are similar to those for double exposures. We achieved 
a saturation level DE of approximately 75 % for each 
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Fig. 10. Comparison of single exposure (upper curve) and double 
exposure (lower curve) index modulation/grating vs. exposure/ 
grating. Data points are from double exposure gratings; sinusoidal 
exposure + uniform exposure (A); two incoherent sinusoidal 
exposures (O) 
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Fig. 11. Diffraction efficiency/grating as a function of exposure/ 
grating for uncoupled double exposures. Theory ( - - )  

of the three decoupled gratings (at an exposure/ 
grating~220mJ/cm2). The maximum modulation/ 
grating is roughly 1/3 that of an equivalent single 
grating. 

4. Discussion 

4.1. Bulk Index 

The chief objection to the physical basis of this model 
(by previous investigators [11) is that the mixture of 
gelatin and air vacuoles would lower the average index 
of refraction of the film. To see if a change in the bulk 
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I,om 
Fig. 12. Interferogram showing the decrease in bulk index in the 
exposed (circular) region 

index is realistic, we placed a grating in a Mach- 
Zehnder interferometer to observe any bulk phase 
shift between an exposed and the unexposed region. 
To compensate for thickness variations between 
exposed and unexposed portions of the gelatin [2], 
we cemented a flat cover plate over the gelatin surface 
using an optical cement that was index matched to 
the unexposed gelatin. In Figure 12, we see the inter- 
ferogram of an exposed circle containing a 10001/mm 
plane wave transmission grating. The grating has 
slightly less than 100% DE (although we are not at 
the Bragg angle for this test). Since the decrease in 
bulk index in this exposure range is approximately 
equal to the amplitude of the index modulation nl, 
see (9 and 10), we predict that the total phase dif- 
ference between the exposed and unexposed region 
should be slightly less than �89 wave, which is what we 
observe. As we interferometrically observed the grat- 
ings from which we obtained the data for Figure 5, 
we saw that for the lowest exposures, very little 
phase shift occurred while the highest exposures had 
a shift greater than one fringe. The fringe shift was in 
the direction indicating a decrease in the bulk index, 
in agreement with our model. 

4.2. Sensitivity of Results to the Model 

As was pointed our earlier, our model is based on 
experimental observations of the shape of the absorp- 
tion and first-order index curves. From this we argued 
how differential hardening of the emulsion could 
lead to the observed index modulation. If the index 
modulation were the result of some other mechanism 
(e.g. the bonding of isopropal alcohol to the exposed 
chromate sites [25, 26]) or a combination of several 
mechanisms, then one could deduce a functional 
form equivalent to our H that yielded a mathematical 

form for the index modulation that is similar to ours. 
Thus, it is the mathematical form of the index curve 
that should be preserved. 
The variables involved in our model are consistent 
with our experimental observations. For example, 
nl (for a given exposure) is observed to increase with 
sensitizer concentration as indicated in the form of 
(11). The bulk absorption coefficient follows a similar 
trend. Our function H, which we call the hardness, 
may not be an exact representation of the hardness 
of the film. In general, film hardness should be repre- 
sented by a higher rank tensor since the planar 
orientation of the individual gelatin strands com- 
prising the emulsion [10] would allow much larger 
cracks (e.g. layer splitting [1]) for holograms formed 
with fringes aligned with the gelatin fibers (reflection 
holograms). Furthermore, the observations that thin 
sheets of gelatin swell proportionately more than 
thick sheets [27] indicates greater stressing for thinner 
emulsions (and possibly large voids). Pre-hardening 
dichromated gelatin films, preparation temperatures, 
age of the sensitizer solutions and relative humidity 
will also have an effect on hologram formation and 
the index modulation [10, 11, 16, 18, 28]. All of these 
observations lead us to believe that a completely 
general treatment of the exact mechanism for holo- 
gram formation in dichromated gelatin films would 
be qui te  intricate. We have shown, however, that a 
fairly simple mathematical approach to the formation 
of transmission holograms, using variables that are 
reasonable in a physical and mathematical sense, 
predicts results that are in good agreement with 
experiment. Through the use of the model, we are 
able to quantify linear and nonlinear film response, 
effects of non-unity beam-ratio, index decrease at 
high exposures, and modulation properties of multiple 
exposures in thick films. By quantifying the dynamic 
absorption increase with exposure and the saturation 
of the nl(E ) curve, we can use the model to predict 
the generation of harmonic-order index modulations 
which can be an important tool in studying the shape 
of fringes and thereby the modulation mechanism of a 
material. 
Finally, we note that the response afforded by a 
microscopic index variation mechanism is consistent 
with our observations of fundamental and harmonic 
order diffraction. Observations of angular selectivity 
curves also indicate that our calculations of modula- 
tion gradients within the depth of the film are accurate 
and that the entire volume of the film contributes to 
the diffraction. 
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