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Abstract. A method of analyzing optical propagation in thick holographic gratings by 
decomposition of the thick material into thin gratings is discussed. The method is readily 
applicable to study propagation in multiple gratings of arbitrary spatial frequency and 
orientation recorded in the same thick emulsion. Applied to the double grating case, 
the method predicts strong cross-coupling between the two gratings for proper relative 
slope of the gratings. Results are given. 

Index Headings: Thick holographic gratings Optical propagation 

The theory of optical propagation in a holographically 
produced grating recorded in a thick emulsion has 
been developed by several authors [1--4]. When 
valid, Kogelnik's closed form solution using the 
coupled-wave approach is perhaps the most useful [-2]. 
However, the method requires strong Bragg effects so 
that only the zero order and the one strong diffracted 
wave need be considered. The matrix theory developed 
by Burckhardt [3] and Kaspar [4], which does not 
require the assumptions made by Kogelnik and is 
theoretically capable of providing exact results, in- 
cluding the energy exchange among higher orders, 
requires finding the eigenvalues and eigenvectors of 
an infinite matrix by means of a digital computer. In 
practice the matrix must be truncated, but the error 
introduced is small. Kogelnik has included the 
possibility of sloped fi'inges while the latter two 
assume that the fringes are perpendicular to the plane 
of the emulsion. Neither of these methods applies to a 
grating structure composed of two or more sets of 
fringes of arbitrary spatial frequency and orientation 
recorded in the same emulsion. Such gratings are 
complicated by the possibility of light diffracted from 
one fringe structure subsequently being diffi'acted by a 
different set of fringes. 
We describe here a new, intuitively simple method for 
analyzing optical propagation in general grating 

structures holographically recorded in a thick emul- 
sion. The approach is particularly well suited to treat 
several sinusoidal fringe structures of arbitrary fre- 
quency and orientation recorded in the same emulsion. 
Even for the single grating case, the conceptual 
simplicity and ease of implementation of this approach 
offers advantage over the theories given by Burck- 
hardt and Kaspar. While, like the matrix theory, the 
method is numerical, it requires only matrix multi- 
plication. The method proceeds by decomposing the 
thick material into a series of thin slabs, each of which 
acts simply as a thin grating. Very general appli- 
cability can be obtained because all that need be 
specified are the properties of the thin gratings which 
may be absorption, phase or mixed. Because the effect 
of higher orders is included, exact results are possible 
and there is no need to require strong Bragg effects. 
Multiple fringe structures can be considered by 
allowing each thin grating to have several basic 
spatial frequencies and appropriate fringe slant factors. 

1. Description of the Method 

For simplicity we describe the method for a single 
grating structure although extension to the multiple 
grating case is straightforward. We consider the 
grating produced holographically, as shown in Fig. 1. 
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Fig. 1. Construction of single thick grating by interferring plane 
waves R and S. The emulsion thickness is D 

The film emulsion of thickness D is perpendicular to 
the z axis and is assumed to be of infinite extent in 
the x and y directions. We limit the analysis to one 
lateral dimension. Plane wave R of amplitude a 1 
incident at angle 01 (angles measured inside the 
emulsion and the sign convention is that of Goodman 
[7]) with respect to the z axis and S of amplitude a 2 
at 02 interfere to produce a grating throughout the 
volume of the emulsion. The exposure E = I~ (I is the 
total intensity and �9 is the exposure time) can be 
written as [5] 

E(x,  z)= ~Io{1 + r cos [2~z f ( x  - x~)]} , (1) 

where f = ( s in01-  sin02)/2, 2 is the free space wave- 
length, x z = z  tanq~, ~b--(01 + 02)/2 is the slant of the 
fringes, I o = a 2 + a 2 and r = 2al az/(a 2 + a2). For any 
plane z = constant, the fringes are sinusoidally modu- 
lated with frequency f .  However, because of fringe 
slant (when the construction beam directions are not 
symmetrical about the z axis) the fringes at z are 
shifted by x~ relative to those at z = 0 which introduces 
a relative phase shift of - 2 r c f x ~ .  (We stress that f is 
the frequency of the fringes in any z = constant plane 
and not the inverse of the perpendicular distance 
between fringe planes.) 
We examine the properties of optical propagation in 
the thick grating of Fig. 1 by decomposing it into a 
series of thin slabs of thickness A z. The magnitude 

of A z must be sufficiently small so that each slab acts 
as a thin grating. A reasonable upper limit on A z to 
meet this condition is that for the given readout 
wavelength and grating frequency, Kogelnik's Q factor 
(Q~2~2Az f 2 )  [2] for the thin grating be on the 
order of one. Each of the thin gratings, therefore, 
exhibits no Bragg effects and its angular distribution 
of diffracted light is accurately predicted by thin 
grating theory. We also assume that the actual 
diffraction process takes place discretely at the planes 
z = n A z ,  n =  1, 2 . . . . .  To determine the amplitude 
transmittance of each of the thin gratings that results 
from the exposure given in (l), we must specify the 
type of recording material. Here we consider a pure 
phase material (for example, dichromated gelatin). We 
also assume a linear relationship between the total 
index of refraction change A n, relative to the bulk 
emulsion index no, and the exposure E, A n = m E .  
The phase shift resulting from the index change for a 
plane wave passing through the thin grating at 
arbitrary angle Oi is (2TEA nA z)/)~cosOi. Therefore, the 
amplitude transmittance resulting from the exposure 
given by (1) for a plane wave at Oi is [6] 

T a (x, z) = exp [(] 2 ~ m ~ I o A z/)~cos 01) 
(2) 

�9 {1 + rcos [2 Tc f (x - Xz)]}] �9 

Using a familiar expansion [6], the amplitude trans- 
mittance of the n th grating can be written as 

T A (x, n) = exp {j27c mz I o A z/2cos Oi} 
(3) 

(j)q Jq(b) e x p [ j 2 r c q f ( x  - x,)] ,  
q =  - -cJo  

where Jq(b) is the qth order Bessel function, 
b = (21rA zm'crlo)/)~ cos01 = (2~A znl) /2 cos 0 i and 
x, = n A z tan~b, nl = m r r l o  is the index modulation 
of the grating. The n TM thin grating can therefore be 
represented by an infinite superposition of amplitude 
gratings of spatial frequency q f  with diffraction 
amplitudes given by the Bessel function of order q. 
The exponential outside the summation sign in (3) 
represents an unimportant common phase factor and 
will be dropped. Note that the diffraction amplitudes 
depend upon the thickness of the thin slab and the 
wavelength and direction of the incident plane wave 
as well as upon the index modulation nl. Also the qth 
frequency component is shifted in phase by 
- 2~z q f n  A z tan~b because of fringe slant. The effect 
of this phase shift is important because it is the means 
by which angular selectivity about the Bragg angle 
results. 
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To find the effect of the n TM slab upon an incident plane 
wave of arbitrary spatial frequency we use the results 
of thin grating theory. Consistent with such theory the 
effect of each thin slab can be divided into two parts. 
First, the propagation of the incident wave over the 
interval A z which is described by the free space 
transfer function [7]. Second, the separation of the 
incident wave into the various diffracted waves at 
z = n A z as dictated by the amplitude transmittance 
function in (3). Therefore, for an input plane wave of 
spatial frequency f~, amplitude Ai and phase ~i at 
z = ( n - 1 ) A z ,  the field at z=nAz(i.e., out of the n TM 

grating) is 

A(x, nAz)=exp(j~b~)A~ ~. (j)qJq(b) 
q - - - - o O  

"exp(- j2~zqf  xn) 

-exp {-(J2rc~ 9 A z )  (1-22 f/2f/~ l (4) 

. exp fj 2 ~z( f + q f)x] . 

For each plane wave incident upon the n th slab there 
is a countable infinity of plane waves of spatial 
frequency ( f  + q f )  produced. The amplitude of the 
qth wave is the product of the input amplitude and the 
strength of the qth grating frequency component 
[Jq(b) in this case]. The phase shift of each wave is 
given by three factors. The term exp(-2~zqfxn)  in (4) 
represents the phase shift for the qth order of the 
grating that results from the lateral shift of the n TM 

grating. The term exp {[(]2rcn o A z)/2] (1 - 2 2 f / 2 f / z }  

gives the spatial frequency dependent phase shift due 
to propagation over the longitudinal distance A z. 
In addition, because the emulsion is a phase material, 
there is the phase factor (j)q. Because each plane wave 
output from the n th slab is input to the (n + 1) slab, 
(4) shows that for an incident plane wave of frequency 
f at z = 0  only plane waves of spatial frequency 
( f  + q f )  are present inside the thick grating. 
Suppose we illuminate the thick grating at z = 0 with 
a plane wave of spatial frequency f and amplitude Ai. 
We represent the amplitudes of each of the possible 
plane waves that exit from the n TM grating by (o) 

A 1 
A n :  " , l integer_>0 

Az 
i , 

where A~ is the total amplitude of the plane wave of 
spatial frequency [ f~ - ( l+ l ) f / 2 ]  for l odd and 
(f~ + If~2) for l even. Because (4) is valid for an input 
plane wave of arbitrary spatial frequency, we can 
relate the total amplitude of each of the plane waves 
at z = n A z  to its value at z = ( n -  1)Az by 

A, = ,H A,_ 1, (5) 

where the matrix of coupling coefficients ,H~j, de- 
termined from (4) describe the amplitude and phase 
shift effected by the n TM thin grating in diffracting the 
j th  plane wave into the k th one. ,Hkj is non zero only 
if the thin grating has an amplitude frequency compo- 
nent equal to the difference between the input and 
output spatial frequencies. The functional form of the 
coupling coefficients which we have derived for a pure 
phase material, c a n  always be determined from thin 
grating theory and depend upon the type of grating- 
phase, amplitude or mixed and upon the assumed 
relationship between exposure and film response. 
The subscript n on the coupling matrix emphasizes 
the fact that because of fringe slant the coupling 
coefficients depend upon the longitudinal position of 
the thin grating slab. The coupling matrix for the 
pure phase case is expressed explicitly in Appendix A. 
If we now use the initial condition at z = 0 to write 

then the amplitudes at z = nA z are 

A, = , H . . .  1H A 0 . (6) 

The amplitude of each of the plane waves at the 
exit plane z = D are given by (6) for n =  N = D/A z. 

2. Results for a Single and Double Grating 

Generally for practical exposure values the argument 
b of the Jq (b) is sufficiently small so that for large q 
the Jq(b) are negligibly small, and the H matrices can 
be truncated with little loss in accuracy. We have 
written a simple computer program to perform the 
matrix multiplication of (6). To check the accuracy 
of the results predicted by this approach for a single 
grating, we compare our results with those of Kogelnik. 
Using the matrix theory, Kaspar has shown that 
Kogelnik's results are accurate for gratings of low 
modulation and large thickness [4]. We therefore 
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Fig, 2. Diffraction efficiency of the first order versus the angle of the 
readout beam for single grating. The construction beams are at 0 ~ 
and 30 ~ )~ = 0.6328 ~tm and D = 50 lain 
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Fig. 3. Construction of double grating structure by interferring plane 
waves R and $1 and then R and S 2 
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apply  this m e t h o d  to a gra t ing cons t ruc ted  on a 
50 g m  emuls ion  with cons t ruc t ion  beams  at 0 ~ and  
30 ~ and  2 = 0 . 6 3 2 8  gin. The index of  refract ion 
m o d u l a t i o n  nl used is that  which accord ing  to Ko-  
gelnik would  give 100 % diffract ion into the first o rder  
for r eadou t  at the Bragg angle (30~ In Fig. 2 we p lo t  
the ca lcula ted  diffract ion efficiency of the first o rder  
versus r eadou t  angle. The results  are in good  agreement  
with those  p red ic ted  by Koge ln ik  for the case of  the 
r eadou t  wave po la r i zed  pe rpend icu la r  to the p lane  of  
incidence (i.e., a long the gra t ing  lines). The intensi ty  
of the h igher  orders  was found to be essential ly 
zero. 

To demons t r a t e  the general  appl icab i l i ty  of this 
a p p r o a c h  we give some new results for the case of  a 
gra t ing  made  with two fringe structures.  As an inter-  
est ing case we consider  the gra t ing in Fig. 3 made  by 
an incoherent  superpos i t ion  of  interferr ing p lane  
waves $1 and R and then S 2 and R. There  is no inter- 

Fig. 4. Diffraction efficiency of the first (o) and cross-coupled (x) 
orders versus the relative index modulation nl /n  ~ for a double 
grating constructed as in Fig. 3. n o is the index modulation which 
would give 100% diffraction efficiency in the first order in the 
absence of the second grating. The two gratings have equal index 
modulation, R is in the z direction, 01 = 30 ~ 02 = - 25 ~ D = 24 gm 
and 2 = 0.6328 pm 

ference between S 1 and S 2. There  are two dist inct  
but  over l app ing  fringe pa t te rns  recorded  th rough-  
out  the vo lume of  the emulsion.  Therefore  each thin 
gra t ing  has two basic  f requency componen t s  and  
co r r e spond ing  la teral  shift factors due to fringe s lope 
as well as h igher  o rde r  ha rmonics  of each basic  
frequency. The poss ible  p lane waves inside the 
emuls ion  therefore  include those  that  are diffracted by  
one fringe s t ructure  and  then subsequent ly  by the 
other.  The  coupl ing  matr ices  are expanded  in a s t ra ight-  
fo rward  way to include such coupling,  No te  tha t  each 
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fringe structure has the construction beam R in 
common. We apply this method for a read-out beam 
incident at the angle of S~. w e  find as a result that, 
in addition to a strong diffracted beam in the direction 
of R, there is also a strong diffracted beam in the 
direction of $2. Because the readout beam S~ is at the 
Bragg angle of one fringe structure and its diffracted 
beam R is at the Bragg angle of the other structure, 
we might expect this doubly diffracted wave, which 
we call the cross-coupled order, to become quite 
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Appendix A 

We show below the form of .H for a single thick grating in a pure 
phase material. 

/ eJ~~ J0(b0) 

,H  = { - j e  j~~ J_ dbo)e -j~'~176 
l jeJ~o Jl(bo)e+JO,( ,~ 

JeJ~' Jl(bl)eJO~(") -JeJ~2 J-l(b2)e-J~'l(") 'l 
e j~l Jo(bO - eJ~2 j_2(bz)e-Ja2(.) 

-- e j~' J2(bl)e j~ e j~z J0(b2) 
/ 

strong. Indeed, it does. In Fig. 4 we plot the diffraction 
efficiency of the first and cross-coupled orders versus 
grating index modulation nl. Each fringe structure 
was assumed to have the same index modulation. 
The cross-coupled order becomes strong at the 
expense of the first order which would be 100% for 
nl/n ~ = 1 if the second fringe structure was not present. 
The presence of the second grating limits the maximum 
diffraction efficiency of the first order; however, the 
cross-coupled order can become 100% efficient (i.e. all 
the incident light is diffracted into this order) for 
sufficiently high index modulation. 
This rather interesting result demonstrates the im- 
portance of cross-coupling of energy between muliple 
gratings recorded in the same thick emulsion and rules 
out the possibility of treating the effect of each grating 
independently. It also shows the flexibility of the 
above method in treating optical propagation in 
multiple grating structures. Other results such as the 
effect of offsetting one fringe structure with respect to 
the other (such that they no longer have a common 
construction beam and cross-coupling is reduced) and 
of varying the relative modulations of the two structures 
as well as the angular selectivity curves in such cases 
will be reported in a subsequent paper. 

where 

f l =  I f ~ - ( l + l ) f / 2  Iodd 
[ f i  + l f~2 1 even 

2 ~ A z n  1 
bl ;d/1 _,~ft 2 

2~A_znol/1 
~ I  - -  ,~ V - -  2 2  f 1 2  

as(n ) = - 2 = q f  n tan~b, 

where 2 is the free space wavelength of the readout wave, fi is its 
spatial frequency, ~ is the slope of the fringes with respect to the z axis 
and no is the bulk refractive index of the emulsion. 

References 

1. E.N.Leith, A.Kozma, J.Upatnieks, J.Marks, N.Massey: Appl. 
Opt. 5, 1303 (1966) 

2. H.Kogelnik: Bell Syst. Tech. J. 48, 2909 (1969) 
3. C.B.Burckhardt: J. Opt. Soc. Am. 56, t502 (1966) 
4. F.G.Kaspar: J. Opt. Soc. Am. 63, 37 (1973) 
5. R.J.Collier, C.B.Burckhardt, L.H.Lin: Optical Holography, 

(Academic Press, New York 1971) p. 231 
6. J.Upatnieks, C.D.Leonard: IBM J. Res. Devel. 527 (1970) 
7. J.W.Goodman: Introduction to Fourier Optics (McGraw-Hill, 

New York 1968) p. 54 


