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Abstract 

This paper introduces a new stochastic clustering methodology devised for the analysis of cate- 
gorized or sorted data. The methodology reveals consumers’ common category knowledge as well 
as individual differences in using this knowledge for classifying brands in a designated product 
class. A small study involving the categorization of 28 brands of U.S. automobiles is presented 
where the results of the proposed methodology are compared with those obtained from KMEANS 
clustering. Finally, directions for future research are discussed. 

A wide range of methods and procedures exists for the analysis of similarity re- 
lations among stimuli. These methods range from traditional spatial multidimen- 
sional scaling methods (Shepard 1962; Kruskal 1964) to network clustering meth- 
ods (Johnson 1967; Shepard and Arabie 1979). The input to such procedures is 
typically some measure of similarity, whether obtained from paired comparison 
judgments, or derived from some similarity-based response (e.g., sorting data, 
classification errors, preference relations, or choice data). One such class of input 
proximity data is the sorting of stimuli (on the basis of their similarity) into ho- 
mogeneous subsets or categories. Sorting tasks are employed in a wide range of 
basic and applied research contexts. When subjects face a. large number of stimuli 
(Rao and Katz 1971) or have a limited ability to respond (Horton and Markm~ 
1980), a sorting task may be gainfully employed. 

Unfortunately, traditional methods may be ill-suited to this particular type of 
similarity-based response. Such methods may not capture the category percep- 
tions that underlie the sorting task or the individual differences involved. Our goal 
is to describe a new clustering methodology designed specifically for the analysis 
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of categorized or sorted stimuli. The methodology describes consumers’ common 
category knowledge, the graded structure of these common categories, and indi- 
vidual differences in the use of the categories in a sorting task. We first describe 
sorting tasks, how they reveal category perceptions, and the proposed method- 
ology. An illustration of the methodology is then presented with respect to a sort 
of 28 major U.S. automobile nameplates. 

1. Sorting tasks and category knowledge 

Sorting tasks provide researchers with a valuable alternative to traditional paired- 
comparison similarity judgments. They are particularly well-suited to studies in- 
volving large stimulus sets where exhaustive paired comparison judgments are 
infeasible (Rao and Katz 1971). Asking subjects to provide excessive paired com- 
parisons may result in fatigue and alter the basis of their judgments (Johnson, 
Lehmann, and Horne 1990). Having subjects sort the stimuli into piles of similar 
alternatives greatly simplifies the subjects’ task, 

Importantly, a sorting task should reveal consumers’ product category knowl- 
edge. These product categories vary from relatively abstract, superordinate cat- 
egories (e-g., modes of transportations, to intermediate level categories (e.g., 
sporty automobiles~~ to more concrete, subordinate level groupings (e.g., expen- 
sive Japanese sports cars). Rosch (1975) and Mervis and Rosch (1981) define a 
category as a group of items that are treated or labeled as equal even though they 
may be discriminated on the basis of their attributes. Likewise, a consumer who 
classifies brands into the same pile perceives these brands as relatively equal with 
respect to some criteria. 

Individuals may differ in their perception and use of subordinate level distinc- 
tions. At the same time, perceptions should be more consistent across individuals 
at more intermediate or basic levels of cafegorization (Rosch 1977). Put differ- 
ently, there are levels of category knowledge that are relatively universal for a 
given cuIture and are typically the first perceptual distinctions made in a sorting 
task. For example, although consumers may perceive quite different subcatego- 
ries of sporty cars they should be more consistent in their perception of sporty 
versus luxury cars. When administered across subjects, a sorting task should re- 
veal this common category knowledge. 

Meanwhile~ differences from subject to subject should help reveal the structure 
of these commonly held categories. Category membership is naturally graded. 
Some category members are relatively prototypical or good examples of a cate- 
gory (Rosch 1975; Medin and Smith 1984). Other members are more atypical of a 
category and thus may be poor examples of multiple categories. For example, an 
Escort GT may be both an economy car and a sporty car though not prototypical 
of either. A sorting task should reveal this graded, overlapping category structure 
in that prototypical members should be more consistently sorted together across 
consumers than are more atypical members. 
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Individuals also differ in their propensity to use common product categories 
(e.g., sporty versus luxury cars) as a basis for sorting stimuli. A consumer who is 
more familiar with sports cars may sort these cars into several personally relevant 
subcategories (e.g., expensive Japanese versus inexpensive Japanese sports cars) 
while lumping somewhat unfamiliar luxury cars into a single pile. Similarly, a 
consumer who is more familiar with luxury cars may form several luxury subca- 
tegories while lumping somewhat unfamiliar sports cars into a single pile. As a 
result, the weights placed on common categories in the final stimulus sorts may 
vary from consumer to consumer. 

2. A new clustering methodology for sorted or categorized stimuli 

A number of categorization studies in psychology and marketing utilize a sorting 
task procedure. Basically, the entire set of stimulus objects is placed on cards, 
one object per card. The subject is then asked to sort the cards into as many or 
few piles as he/she desires, congruent with the similarities and dissimilarities per- 
ceived among the stimuli. The subject is asked to place the cards (stimuli) that 
they view as similar in the same pile. Given such a data collection procedure, we 
are proposing a new methodology designed specifically to examine perceptual 
categorization. The data collected is “subject conditional” in the sense that sub- 
jects may utilize differing numbers of piles/groups, as well as differing numbers 
and types of objects per pile/group. The clustering methodology derives common 
category perceptions, the graded structure of the categories, and individual dif- 
ferences in the use of these perceptions in a sorting task. 

2.1. The model 

We ask consumers to subjectively group a designated set of brands into piles on 
whatever basis they desire, where the number of piles is determined by the indi- 
vidual consumer. Let: 

i= I,... , I consumers; 
j,k = 1, . . . , N brands; 

r= l;.., R latent categories or clusters; 

6ij, = 
1 if consumer i places brands j and k in the same pile, 
0 else; 

(1) 
r=1 

= the predicted similarity (Carrolland Arabie 1983) 
between brand j and k perceived by consumer i; 
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Pjr = the degree of membership of brand j in latent 
R 

category r, where cPjr= 1, Vj, and OIPj,~l, Vj, r; 
r=1 

Wi, = the salience/importance weight consumer i has for 
latent category r. That is, W, indicates the degree 
to which consumer i utilizes latent category r in 
his perceptual categorization process. 

Expression (1) is similar in form to the Carroll and Arabie (1983) INDCLUS 
model devised for the analysis of three-way, two-mode metric proximity data, 
where expression (1) is used (with additive constants) to model similarity judg- 
ments. However, their model is a special case of our since Carroll and Arabie 
(1983) restrict Pjr to be 0 or 1. The INDCLUS methodology is also inappropriate 
for the analysis of binary data. Finally, as to be shown below, INDCLUS is de- 
terministic while our specification is stochastic in nature. 

We define a latent similarity function S,, as: 

Sfj, = Sfj,+eij,, 

where: 

eijk = error - N(O&), 
COV(eijk, ei’jk) =O, Vi#i’, 
Cov(eijk, %J = 0, V(j#r, kfs). 

(2) 

(3) 

Now, we assume that: 

p(6ij, = 1) = P(SijkZti), (4) 

where ti is a consumer specific threshold parameter; here, two brands j and k must 
be perceived as “similar enough” in order to be placed in the same pile or latent 
category. 
Then: 

p(6ij, = 1) = P(eij,zti - 5 WirPj,Pk,) 
r=l 

(5) 
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since ui can be absorbed in the numerator. Here, + represents the normal cdf 
function. Similarly, 

Given an independent sample of I consumers whose categorization judgments are 
coded into these S,, (one obtains upper/lower triangular-half binary matrices) and 
assuming independence over i, j, and k subscripts, one can form a likelihood 
expression: 

L= h fl N fl(1 -$(.))%jk +(.)(l-“ijk), 
i=l j>k 

and the corresponding log-likelihood function: 

Ln L=i+, c N ~[6ijkln(l-+(*))+(l -6,jk)ln $(')I, 

j>k 

where: 

(7) 

(8) 

(9) 

Thus, given the A= ((a,,)) binary data and R, we estimate W= ((Wit)), P= 

((P,,)), and t =(ti) to maximize L or Ln L above. Here, W indicates how con- 

sumers weigh the derived latent categories in terms of their own categorization 
judgments. P indicates the membership of the N brands into R latent categories 

or clusters where fractional membership is allowed. And, t contains threshold 

information as to how fine discriminations are made between brands for different 
consumers. 

We utilize the conjugate gradient with automatic restarts procedure (Powell 
1977) for parameter estimation. We impose the following constraints in the esti- 

R 
mation: i) W,?O, ii) t,rO, iii) Pj,rl, and iv) C Pjr= 1. The non-negativity con- 

r=l 
straints are implemented by substituting squared quantities for these parameters 
(e.g., substituting W2i, and tf for their respective unsquared terms in the likelihood 
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expression - See Gill, Murray, and Wright 1981, pp. 268-269). The constraints on 
Pjr in (iii) and (iv) above are operationalized by reparametrizing: 

82 
pj,=+, 

c 0f: 
r=I 

(10) 

and estimating 0j, in order to avoid use of a constrained estimation procedure 
involving additional numerical complexity. An alternating conditional maximum 
likelihood (ACML) procedure was developed for the estimation of the model’s 
parameters (see DeSarbo, Jedidi, and Steckel 1991). 

3. Application 

3.1. Study description 

A small pilot study was conducted among a screened sample of potential con- 
sumers who stated they would be purchasing an automobile within the next six 
months (“intenders”). The purpose of this ,pilot study was to examine the basis 
of how these potential consumers perceive and categorize domestic U.S. manu- 
factured automobiles. Initially, an exhaustive list of 78 domestic automobile 
“nameplates” (excluding vans and trucks) were selected for study from the 1989 
Consumer Reports New Car Buying Guide. Given that many of these nameplates 
were similar to other nameplates produced by the same manufacturer (e.g., Ford 
Escort - Mercury Lynx), this list was reduced down to 28. Table 1 presents this 
final list of the 28 nameplates included in this study. 

Each of ten “intenders” was presented a randomized stack of 28 cards with the 
picture, name, and manufacturer of each automobile. The respondent was asked 
to sort these cards into as many or as few piles of similar automobiles as he/she 
thought necessary to reflect his/her perceptions. 

3.2. Traditional analyses 

As a means of comparison, six traditional clustering analyses were performed on 
the aggregated (over consumers) sorting frequency data: single linkage, complete 
linkage, average linkage, the centroid method, median linkage, and Ward’s (1963) 
method. As one might expect, many of the resulting dendrograms were quite dif- 
ferent with respect to shape as well as the clusters formed. In addition, Spath’s 
(1980) KMEANS procedure, which operates on dissimilarities, was also per- 
formed and will be utilized here to illustrate the results obtained from traditional 
methods. Table 2 presents the summary results for R=2, . . .,8 clusters. Based 
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Tuble 1. U.S. automobiles for the sorting task 

1. Ford Escort IS. Plymouth Acclaim 
2. Ford Festiva 16. Cadillac Seville 
3. Geo Prizm 17. Chrysler Fifth Ave. 
4. Plymouth Horizon 18. Chrysler LeBaron 
5. Pontiac LeMans 19. Eagle Premier 
6. Chevrolet Corvette 20. Ford Taurus 
7. Ford Mustang 21, Ford Thunderbird 
8. Ford Probe 22. Lincoln Continental 
9. Plymouth Laser 23. Oldsmobile Cutlass 

IO. Pontiac Firebird 24. Pontiac 6000 
i 1. Buick Skyhawk 2.5. Buick Le Sabre 
12. Chevrolet Cavalier 26. Cadillac De VilleiFleetwood 
13. Dodge Aries 27. Lincoln Town Car 
14. Ford Tempo 28. Pontiac Bonneville 

upon a visual inspection of the loss function, the sum-of-squared distances crite- 
rion (SSDC), one might select either R = 4 or 6 clusters, given a leveling off of this 
SSDC at R = 5 and 7. The R = 4 solution renders the following classification: 

Luxury: 

Sporty: 

Lincoln Town Car 
Chrysler 5th Avenue 
Cadillac DeVille 
Cadillac Seville 
Lincoln Continental 

Chevy Corvette 
Pontiac Firebird 
Ford Mustang 
Ford Taurus 
Plymouth Laser 
Ford Probe 
Pontiac Bonneville 
0ld.s Cutlass 
Ford Thunderbird 

Mid-Size: Eagle Premier 
Dodge Aries 
Chrysler LeBaron 
Plymouth Acclaim 
Pontiac 6000 
Buick Skyhawk 
Chevy Cavalier 
Ford Tempo 
Buick LeSabre 

Compact: Geo Prism 
Ford Escort 
Plymouth Horizon 
Ford Festiva 
Pontiac Lemans 

These KMEANS results appear to describe four groups of nameplates: luxury, 
sporty, midsize, and compact. Most would not argue with such a classification, 
except perhaps with respect to several of the nameplates classified in the sporty 
category such as the Ford Taurus, the Pontiac Bonneville, and the Oldsmobile 
Cutlass which might be arguably classified in the midsize category. The corre- 
sponding six cluster solution (see Table 2) retains the luxury group intact and 
creates a more consistent set of five sporty nameplates. However, there is some 
difficulty in describing the remaining four categories. Note that these KMEANS 
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solutions were different from those obtained with the six hierarchical clustering 
methods. 

Thus, different clustering procedures render somewhat different portrayals of 
the categorization process among this smaIi set of intenders. In addition, no in- 
formation concerning individual differences in categorization is provided from 
such methods, given the use of aggregated frequency data. Finally, ail of these 
clustering solutions fail to capture either the prototyp~cal~ty of the automobiles 
within clusters or potential multiple category membership of any of the name- 
plates. 

An analysis of 2-5 clusters or latent categories (as referred to here) was performed 
with the proposed methodology. Table 3 presents the various goodness-of-fit mea- 
sures for these solutions. These various measures appear to indicate that the R = 4 
category solution appears “best” in parsimoniously describing the structure in 
these data. 

Table 4 presents the P matrix for these 28 nameplates for the four derived cat- 
egories. Upon examina~on of the modal values by nameplate, we see evidence of 
the compact, sport, midsize, and luxury categories similar to that from the 
KMEANS clustering. However, additional information is to be gained from a 
careful examination of these “probabilities of membership.” An asterisk has been 
placed in each category (column) to denote the nameplate with the highest prob- 
ability of membership, i.e., the most prototypical element. For the compact cat- 
egory, Ford Escort (.765) appears to be the most prototypical nameplate. This is 
not surprising given the traditional popularity of this particular automobile and 
the large amount of advertising Ford commits to this brand. For the sporty cate- 
gory, the Ford Mustang (.739) appears to be the most prototypical nameplate in 
the list. For the luxury category, the Lincoln Town Car and the Chrysler Fifth 
Avenue share the highest values (.743) as the most prototypical nameplates. Note 
an interesting finding for the midsize automobiles - the highest value in this col- 
umn is substantially smaller (584 for Eagle Premier) than those for the previous 
three categories. This is consistent with recent U.S. automob~e manufacturer po- 
sitioning strategies which downptay the “midsize” Label due to the relatively large 
number of competitive automobiles in this category. 

Another interesting aspect of the probabilities (Pj,) in Table 4 is that they allow 
for fractional membership in multiple categories (i.e., fuzzy categories). For ex- 
ample, the Chevy Corvette has fractional membership in both the sporty and lux- 
ury car categories. Similarly, the Buick Skyhawk is a fractional member of both 
the compact and midsize categories. As another example, Ford Thunderbird has 
almost the same degree of membership in the sporty category as in the midsize 
category, reflecting the previous history of the automobile as well as its mature, 
sporty positioning. Note, multiple category membership may also capture a lack 
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Tuhkta 3. Summary goodness-of-fit statistics 

Number of 
categories (R) D.F. Ln L Pbc Phi Match A.I.C. 

2 58 - 1824.59 .306 ,171 .773 3765.17 
3 96 - 1557.76 ,482 .387 .817 3307.52 
4 134 - 1279.96 .629 .557 .86O 2827.91” 
5 172 - 1257.57 648 .57? .865 2859.13 

*Minimum A.I.C. 

Table 4. The four category solution 

Compact sporty Midsize Luxury 

I. Ford Escort .sx” .16S .060 .007 
2. Ford Festiva A02 .069 .132 .197 
3. Geo Prizm .437 .I28 .259 ,176 
4. Plymouth Horizon 602 .069 .132 ,197 
5. Pontiac Lemans .45O .fOS .255 ,187 
6. Chevy Corvette .132 .497 ,064 ,308 
7. Ford Mustang .I07 .739” .121 .034 
8, Ford Probe .156 .507 .299 .03& 
9. Plymouth Laser .lSf 473 .326 .040 

10. Pontiac Firebird .i31 A72 ,165 .232 
I). Buick Skyhawk .33? .I10 .489 .067 
12. Chevy Cavalier ,329 .175 ,446 .050 
13. Dodge Aires ,300 ,076 ,444 .I79 
14. Ford Tempo .256 .I84 .526 .035 
15. Plymouth Acclaim ‘309 ,077 ,439 .I75 
16. Cadillac Seville .0.56 .I07 ,252 S8.5 
17. Chrysler 5th Ave. .058 .091 ,108 .743* 
1% Chrysler LeBaron ,153 .133 .489 .225 
19. Eagle Premier ,133 .235 ..584 ,049 
20. Ford Taurus .072 .346 .546 ,037 
2 1. Ford T-Bird .06? ,433 .445 .056 
22. Lincoln Continental .0.x ,103 .I42 .699 
23. Olds Cutlass .083 .17? .448 .292 
24. Pontiac 6000 .240 .0.58 .424 27-l 
25. Buick LeSabre .086 .14& .49& .276 
26. Cadillac DeVille .056 ,095 .248 .608 
27. Lincoln Town Car ,057 ,090 .llO .743” 
28. Pontiac Bonneville ,083 .1&3 ,401 ,332 

*Denotes most prototypical nameplate 
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Tub/e 5. Number of sorted groups, normalized subject weights, and threshold coefficients 

Intender 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Sorted 
groups 

6 
3 
8 
6 
8 
5 

10 
4 
4 
8 

Compact Sporty Midsize Luxury ti 

.452 .484 ,522 .53J 3.582 
,775 ,431 ,290 .360 3.132 
.464 ,220 .621 ,592 3.983 
,374 ,437 .379 .72s 3.393 
.418 .I89 ,762 ,457 3.120 
.530 .453 .589 .409 4.669 
,620 ,391 ,584 ,348 3.791 
,578 ,305 .669 ,354 2.425 
.130 ,157 .llO .973 3.139 
.536 ,558 .430 .465 2.832 

of familiarity, as might be the case for the relatively new Plymouth Laser and Geo 
Prism. 

Finally, Table 5 presents the number of groups sorted by each intender, the 
normalized W matrix, and the ti threshold coefficients reflecting individual differ- 
ences amongthe ten intenders. Intender 2 appears to stress the compact category 
in his/her categorization scheme, whereas Intender 9 appears to find the luxury 
category more salient. Other intenders tend to possess higher variance among 
their set of weights across the four categories. Rougher distinctions among the 28 
nameplates appear to be made by Intenders 6 and 9 whose threshold coefficients 
are largest among the small sample of intenders. Thus, this methodology renders 
information concerning the gradient structure of a categorization scheme as well 
as individual differences in perception. 

4. Conclusion 

We have presented both a conceptualization of stimulus sorting and a mathemat- 
ical model for the analysis of sorted stimuli based on this conceptualization. The 
technical details of the stochastic, individual differences clustering methodology 
have been provided, as well as a small illustration conceI-ning automobile name- 
plate sorts. We have shown how this methodology can derive a latent categori- 
zation scheme among a set of subjects, including a quantification of the nature of 
individual differences - an aspect lacking in most traditional clustering tech- 
niques. 

Future research should be pursued along a number of lines. Rigorous Monte 
Carlo testing of the proposed methodology should be undertaken to examine the 
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performance of the estimation algorithm as a number of data, model, and error 
factors are e~perime~taily manipuiated. Algorithm performance could be mea- 
sured in terms of computational effort (e.g., CPU time), parameter recovery (e.g., 
compare B versus $), and overall goodness-of-fit (e.g., the simple matching coef- 
ficient). Generalizations of this methodology to multidimensional scaling can be 
made where_P would represent a continuous space in R dimensions with no con- 
straints imposed on the rir elements, Finally, more extensive applications should 
be attempted utilizing the sorting data collection method and this stochastic clus- 
tering methodology. 
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