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1 Introduction 

In studies of unsteady (oscillatory) turbulent boundary 
layers, the mean friction velocity is a quantity useful both for 
evaluating drag coefficients and normalizing experimental 
data. While it may be measured indirectly using scalar- 
transport probes - hot-film gauges or electrochemical 
probes - these devices are known to be problematic when 
fluid flow and scalar transport are not quasi-steady, or if 
fluid flow is not unidirectional. The notion of deducing u~ by 
the Clauser technique - force-fitting a mean-velocity func- 
tion over part of a profile of U - has obvious attractions, 
though no justification exists for its extension to mean pro- 
files of unsteady flows. Using results from a recent study of 
unsteady turbulent boundary layers (Brereton and Reynolds 
1987), in which u~ could be gauged from the near-wall veloc- 
ity gradient and estimated by Clauser technique, the plausi- 
bility of extending the Clauser technique to this application 
is considered. 

2 Background 

When the Couette-flow assumption is valid near the wall in 
an oscillatory turbulent boundary layer, the mean x-mo- 
mentum equation may be written using the triple decom- 
position proposed by Hussain and Reynolds (1970): 

T 
- - ~  l + p + y  + 
T 0 

where 

(1) 

p d U  , 

"CO ~ d Y  y = 0  

Zo X / ro k dx Ox 

and 

dU 
z = p ~ y  O u ' v ' - - O ~ .  

It differs from its steady-flow form only through an addition- 
al stress due to the oscillatory motions ( -  Q ~ 9) and a modi- 
fied pressure-gradient term. If the contributions of - 0 u' v' 
and - Q ~ 17 to the shear stress are small very close to the wall 
(say y + <  7, where viscous flow dominates), u~ may be esti- 

mated from a fit of U against y which follows from integra- 
tion of (1). The Clauser technique could be applied depend- 
ably (in the form u + --1 In y + + C) over part of a profile of - - x  

U where z were approximately constant and - u ' v ' - ~  
scaled upon dU/dy and the local length scale (y) through ~, 
the Von K~rmfin constant for steady flow. 

3 Experimental procedure 

In the experiments of this study, a sinusoidal motion of 
prescribed amplitude was superimposed on an otherwise 
steady m a i n s t r e a m b e y o n d  a turbulent boundary layer 
(Reo ~ - 3200). The mean pressure gradient was adverse and 
the amplitude of the oscillatory motion in the free stream 
increased with downstream distance (at the rate at which U~ 
decreased). Thus 8 ~ / O x r  and ~ was not necessarily 
zero. For  a given amplitude of ~ ,  its frequency could be 
varied between a lower limit (quasi-steady flow) and an 
upper one at which Stokes' solution was matched. A series 
of experiments was conducted for oscillation at 0.2, 0.5, 0.8, 
1.0, 1.6 and 2.0 Hz, with mean boundary conditions of 

( /~ = 3.2 where ~ is the Clauser parameter, and the 
z o dx J 

amplitude of ~ equal to 11% of U~. 
Measurements of the boundary-layer velocity field were 

made with a two-colour laser-Doppler anemometer operat- 
ed in forward-scatter mode, in a closed-loop water tunnel. 
The lengths and diameters of the measuring volumes were 
about 0.5 mm and 0.15 mm respectively within a boundary 
layer for which 699 -~ 80 mm. 

4 Results and discussion 

The measurement techniques were applied first in steady 
turbulent boundary layers with Re o ~- 3200, at eight different 
pressure gradients in the range 0 <  fl < 6, as a check upon 
their relative accuracies. A least-squares fit of u + = y + (for 
y+ <7,  typically four or more data points) was used to 
evaluate u~ for each ease. The Clauser technique was applied 
to each profile as a least-squares fit of Coles' mean velocity 
function (Coles 1968), in which u~ and ~ were varied system- 
atically. As this function also represented the wake, it could 
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Fig. 1. Boundary-layer profiles of U in wall units, with fitted func- 

tions; �9 = ' O~ u + y+ u+=_.. ,  lny++5.5;  �9 steady flow; ~ 0.2Hz; 

[] 0.5 Hz; v 1.0 Hz; o 2.0 Hz; in all cases ~=3.2 

be applied beyond the outermost  limits of the log-linear 
region and so was used over the recommended range of 
5 0 < y  + and y/6 <0.75 (at least 10 da ta  points). When x and 
C were taken as 0.4 and 5.5 respectively in the function 

u + = ~ l n y + + C + ~ s i n 2 ( ; ~ ) x  , excellent fits resulted 
\ / 

with r.m.s, scatter less than 0.2%. The values of u, deduced 
by each technique compared  very favourably over the entire 
range of /~, with discrepancies no larger than 2%. Thus 
near-wall  measurements  of U were considered accurate and 
concerns over increased experimental  uncertainty in this re- 
gion appeared  unwarranted.  To emphasize the significance 
of such low discrepancies, the effect of replacing the values 
of ~ and C of 0.4 and 5.5 with 0.41 and 5.0 was to increase 
u~ by 4% in each case! 

F o r  t ime-averaged unsteady flow (fl = 3.2), measured pro-  
files of U are shown in Fig. 1 at several representative fre- 
quencies of oscillation, together with a steady profile at the 
same value of ~. The linear and log-linear parts  of the forced 
fits are superimposed,  for ~ =0.4  and C = 5.5. It is evident 
that  the fits to unsteady profiles are poor,  and that  smaller. 
values of both  ~ and C are appropria te .  In  fact, for systemat- 
ic var ia t ion of u~, 5, ,~ and C, the closest fits to these da ta  
were obtained with ~-~0.33 and C-~3.0, with only slight 
modifications to u~. Nonetheless the values of u~ deduced 
from these fits differed from their near-wall  counterpar ts  by 
only 3 % - 4 %  - a surprisingly good  result in view of the 
poorness  of the fit. 
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Fig. 2. Turbulent and oscillatory stresses; symbols describing 
- u '  v': (3 steady flow; zx 0.2 Hz; v 1.0 H z ; ~  2.0 Hz; filled symbols 
denote the corresponding measures of - f i  ~; in all cases/~ = 3.2 

To explain these findings more  clearly, profiles of - u '  v' 
and - ~  ~ are shown in Fig. 2. A reference profile of - u '  v' 
for steady flow at /~ = 3.2 is also included. This profile is 
similar in both  shape and magni tude  to the unsteady-flow 
profiles, which are character ized by a region of approximate-  
ly constant  stress ( - u ' v ' - f i ~ 7 - 0 . 0 0 2 5  U~) over the range 
30 < y+ < 200, the log-linear region of Fig. 1. Al though - f i  
is small within this region, it still reaches between 10% and 
20% of -u'v',  with larger values at  lower frequencies, 

As ~ (in steady flow) relates a t ime-dependent  velocity 
scale ~ to a local mean one dU/dy (via y, the only 
relevant length scale), the suitabili ty of a smaller • for this 
oscil latory flow indicates that  any augmenta t ion  by - fi ~ of 
the velocity scale is less impor tan t  than its local effect in 
increasing dU/dy. Consequently accurate values of u~ (within 
4%) generated by an ill-fitting appl ica t ion  of  the Clauser 
technique appear  to be the result of a fortuitous choice of 
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fitting range. Therefore, without prior knowledge of un- 
steady-flow values of ~ and C, this technique should be 
applied only with great caution to unsteady turbulent 
boundary layers in which the stress - ~  fi~ is present. 
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1 Introduction 

Methods to account for finite spatial resolution and 
induced downwash velocity are given for multiple-hole 
pressure probes as they are used to measure complex 
three-dimensional flow fields. Spatial resolution limita- 
tions result because pressures from different ports are not 
measured at the same physical location. As transverse 
gradients increase in magnitude, uncorrected errors then 
become larger. Because of this, most existing correction 
techniques employ schemes which depend on gradients of 
velocity or pressure (Ikui and Inoue 1970; Sitaram et al. 
1981; Eibeck and Eaton 1985; Westphal etal. 1987). A 
simpler and more sensible approach for a five-hole probe 
corrects pressures so that all appear to be measured at the 
location of the central hole by accounting for the exact 
spacing between different pressure ports. 

Induced downwash velocity is part of the secondary 
flow which occurs as a result of the blockage of blunt 
bodies within transverse gradients of mean streamwise 
velocity. Young and Mass (1936) studied this phenomena 
as it results from flat faced pitot probes, showing that 
measured boundary layer velocities correspond to posi- 
tions farther from the wall than the probe position. 
Livesey (1956) extended these results to demonstrate that 
apparent streamline displacement depends strongly on 
probe shape. In the present technical note, induced down- 

wash velocity is corrected by assuming it to be propor- 
tional to transverse gradients of streamwise velocity. 

2 Experimental apparatus and procedures 

Two five hole angle-type pressure probes are used in this 
study. One of these is a United Sensor DC-250-24CD 
conical five-hole probe with a tip diameter of 6.35 mm. 
The other is a miniature five-hole probe with a 1.22 mm 
tip diameter. The probes are calibrated in the uniform 
freestream of an open circuit blower tunnel located in the 
laboratories of the Department of Mechanical Engineering 
at the Naval Postgraduate School. Celesco model LCVR 
variable reluctance transducers with a full scale pressure 
range of 2 cm of water are used with the United Sensor 
probe. Validyne model DP103-06 variable reluctance 
transducers with a full scale range of 0.25 cm of water 
differential pressure are used with the miniature probe. 
Calibration and measurement procedures to obtain time- 
averaged measurements are described in detail by Ligrani 
et al. (1988) for the smaller probe, and by Williams (1988) 
for the larger probe. 

3 Spatial resolution correction 

Figure 1 illustrates how the present spatial resolution 
scheme is applied. Here, the x coordinate represents the 


