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Abstract Using a controlled-tem- 
perature shear cell mounted on a po- 
larizing microscope, we observe the 
behavior of nematic 4,4'-n-octyl-cy- 
anobiphenyl (8 CB) during start-up 
and reversal of sheafing in a tor- 
sional parallel-plate geometry and 
correlate this behavior with rheolog- 
ical measurements. During the start- 
up, a sequence of bireffingent rings, 
or "twist walls", are observed that 
originate at the sample edge and 
propagate radially inward. Each 
twist wall is a thin region in which 
the director is twisted out of the 
plane of the velocity and velocity- 
gradient directions. The radial varia- 
tion of in-plane orientation can be 
explained by the variation of strain 
in the parallel-plate device. A high- 

Ericksen-number solution of the 
Leslie-Ericksen equations predicts a 
damped oscillatory shear stress re- 
sponse which agrees quantitatively 
with the measured stress oscillations 
out to an edge strain of around 50. 
The damping of the stress oscilla- 
tions is due to the nonuniformity of 
strain in the paralM-plate geometry. 
On reversal of the flow, if the 
strain, 7, is smaller than about 500 
units, the damping of stress oscilla- 
tions is reversed; this correlates with 
an outward radial migration of twist 
walls. When 7 >500, disclinations 
nucleate and spoil the reversibility 
of stress damping. 
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Introduction 

Recently, we investigated the shear-flow behavior of a 
small-molecule liquid crystal with a3 > 0 (4,4'-n-octylcya- 
nobiphenyl or 8 CB) in mechanical and optical rotational 
rheometers (Gu et al., 1993; Gu and Jamieson, 1994; 
Mather et al., 1996). In the mechanical measurements, 
the time-dependent shear stress after start-up of a shear- 
ing flow with initially homeotropic director orientation 
showed an oscillatory behavior, in agreement with predic- 
tions of Ericksen's transversely isotropic fluid (TLF)mod- 
el. A representative result is reproduced in Fig. 1. The ob- 
served damping of shear stress (or apparent viscosity) 
with strain is distinctly different from the damping asso- 
ciated with elastic torques, as calculated by Burghardt and 
Fuller using the Leslie-Ericksen theory (Burghardt and 

Fuller, 1990), in that there is no accompanying gradual 
rise in the shear stress, or apparent viscosity, with in- 
creased strain. Prior to the current work, explanations 
for the damping of the shear stress oscillations included 
rotation of the director away from the shear plane (Rey, 
1993), the plane containing the velocity and velocity-gra- 
dient directions, and/or the creation of randomly located 
disclinations. However, no direct observations support- 
ing these explanations were made. Optical observations 
on transient shear flow of 8 CB reported here indicate an- 
other explanation, described shortly. 

Previous work on torsional shear flow of 8CB 
(Skarp et al., 1981; Carlsson and Skarp, 1986) has re- 
vealed that, under certain conditions, a pattern of con- 
centric walls is generated from the successive creation 
of "twist walls" at the sample edge which move radi- 



486 Rheologica Acta, Vol. 36, No. 5 (1997) 
© Steinkopff Verlag 1997 

.-. 0 . 80 [  

J°-"t 

io.o  

0.0 

I 

I I I '" I I ,I 
S,0 10,0 15.0 20.0 25.0 30.0 35.0 

STRAIN 

Fig. 1 Apparent viscosity measured during shear start-up of homeo- 
tropically aligned 8 CB in a cone and plate rheometer (symbols) along 
with a fit of the data using Ericksen's transversely isotropic fluid 
model (from Gu and Jamieson, 1994) 

ally inward until a steady state is achieved. The authors 
interpreted these walls as defect surfaces where an in- 
plane tumbling instability 1), takes place such that the 
wall defect, or "twist wall", separates regions with dif- 
ferent director profiles. After cessation of flow and sub- 
sequent application of an a.c. electric field normal to 
the plates (the dielectric anisotropy for 8 CB is positive) 
the pattern transforms into bright and dark rings of sim- 
ilar width when viewed between crossed polarizers. The 
authors interpreted the dark rings as regions between 
the twist walls which had relaxed to the homeotropic 
anchoring condition with the aid of the applied field. 
The bright rings were interpreted as twist walls which 
had relaxed and broadened, under the applied field; tak- 
ing on director orientations out of the plane of shear. 
The authors noted that such a pattern occurs if a high 
rotation speed is turned on suddenly from rest. The rel- 
evant dimensionless shear rate by which "high" and 
"low" shear rates can be distinguished is the Ericksen 
number, E r = ) h  2 7 1 / K 3 ,  where ) is the shearing rate, h 
is the sample thickness, ~1 is the rotational viscosity, 
and/£3 is the Frank bend elastic constant. 

Steady-state calculations (Manneville, 1981; Carls- 
son, 1984) in which the director is constrained to the 
shear plane predict that as Er increases the director pro- 
file undergoes "tumbling transitions" where the director 
profile "jumps". These jumps occur in such a way that, 
throughout the gap, the director rotates through a finite 
angle (which depends on the vertical position) with an 
infinitesimal increase in Er in the case of a gradually in- 
creasing Er. These calculations indicate that the director 

a) By "in-plane tumbling instability" we refer to the prediction of the 
Leslie-Ericksen equations, for the case where the director is con- 
strained to the shear plane, so that the steady-state director profiles, 
0(y), undergo sudden jumps when Er is increased past certain values. 

orientation at the sample mid-plane rotates through an 
angle close to re, when a tumbling transition occurs. 

In this paper, we use in-situ shearing-flow observa- 
tions to explore the nature of twist walls formed during 
start-up and reversal of homeotropically-aligned 8CB 
and to investigate the correlation between twist-wall 
formation and rheological properties. 

Experimental 

Materials 

4,4'-n-octylcyanobiphenyl was purchased from E.M. In- 
dustries and used as received. Sample purity was con- 
firmed using clearing point measurements and the clear- 
ing point was found to be within 0.1 °C of the accepted 
value 40.1°C. The experiments were performed at 
T=37.0°C, where the material is a tumbling nematic; 
i.e. the Leslie viscosity, a3, is larger than zero. 

Rheological and optical observations 

Mechanical rheology was performed using a Rheo- 
metrics RFS 8500 fluids rheometer using paralM steel 
disks 50 mm in diameter which had been treated with 
lecithin for homeotropic alignment of the nematic direc- 
tor. Previous experience with this alignment method in- 
dicated that uniform alignment of the director could be 
achieved (for 8 CB at the test temperature of 37 °C) in 
30 min and these conditions were used for the current 
experiments. The sample thickness used was 200 gm to 
duplicate the conditions of the optical experiments. The 
lower rheometer disk was rotated at various speeds 
yielding various edge shear rates. The direction of shear 
was reversed after the accumulated strain reached var- 
ious values. 

Optical observations were performed using a custom 
rheological microscope described in detail elsewhere 
(Mather, 1994; Mather et al., 1996b). In this apparatus, 
a fluid sample was sheared between two glass disks, 
38 mm in diameter, which were thermostated using foil 
heaters. The bottom disk was rotated relative to the 
fixed top disk whose displacement from the lower plate 
was controlled using a three-micrometer kinematic 
mount. As with the mechanical experiments, the ne- 
matic director was made initially homeotropic using 
surface treatment with lecithin. Optical observations 
were made using a CCD camera with short focal-length 
lens focused on the fluid sample through an optically 
transparent radial slit of the rheometer which extended 
from the cell center to the sample meniscus. The slit 
had a width of 3.8 mm. With this set-up, the optical 
field of view covered a length of approximately 3/4 the 
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disk radius. The sample was viewed between crossed 
polarizers with the incident light being polarized in the 
flow direction. 

Polarizing light microscopy observations were per- 
formed using a long working distance 20x objective 
lens with an analyzer crossed with the polarizer, the po- 
larizer being oriented in the flow direction. Conoscopic 
observations were used to examine the director config- 
uration near the twist walls. For these observations, a 
laser beam was expanded to approximately 1.5 cm, then 
polarized 45" from the flow direction and focused 
(condensed) onto the sheared sample with a total in- 
cluded angle of approximately 25 ". The diverging cone 
of light above the sample was passed through an analy- 
zer crossed with the polarizer (135" orientation) and 
projected on an opaque screen located 5 cm above the 
sample film so that positions within the conoscopic pat- 
terns corresponded to unique light trajectories through 
the sample. This use of convergent monochromatic illu- 
mination yields a spatial resolution in the velocity- 
vorticity plane of approximately 75 pn. Each cono- 
scopic pattern, therefore, represents a pattern reflecting 
orientation over an area 75 ym in diameter. The fringe 
patterns observed in the conoscopic patterns, each cor- 
responding to an order of birefringence, were then inter- 
preted to yield the average director orientation across 
the sample thickness (Bloss, 1961; Mather et al., 
1996 a). 

Pig. 2 Full optical slit view of shear start-up at 0.05 radls: (2a) the 
first birefringent ring (see arrow) propagating inward, 15 s after shear 
start-up, (2 b) after 2 min of steady shearing, yielding an accumulated 
edge strain of 500, and (2c) several minutes after shear had stopped 
at the conditions of (2b). Sample thickness is 225 pm and vertical slit 
width is 3.8 rnm 

Results and discussion 

As discussed in a previous paper (Mather et al., 
1996c), when the angular velocity of the bottom disk 
of the parallel-plates rotational rheometer is started from 
rest at a "large" value (ErR>lOOO, where ErR is the 
Ericksen number at the sample edge), and when the 
sample is viewed between crossed polarizers with the 
incident light polarized in the flow direction, a progres- 
sion of highly birefringent rings, oriented in the flow 
direction, are observed to propagate inward from the 
edge. It was shown in that paper that under conditions 
of O=O.O5 radls, and a sample thickness of 200 ym, the 
first of the sequence of rings propagates with an initial 
velocity of 0.86 mmls, with the velocity decreasing 
with decreasing radial position. 

Shown in Fig. 2 are observations of the propagation 
of the birefringent circular rings under the same condi- 
tions described above, but with optical viewing of the 
entire radial-view slit. Again, the crossed-polarizers are 
arranged with the incident light polarized in the flow di- 
rection. With this configuration, areas where light is ex- 
tinguished by the analyzer represent regions where the 
director is either in the plane of shear or in the velocity 
gradient-vorticity plane. As seen in Fig. 2a, the first 

ring, indicated by the arrow, leaves many defects in its 
wake. These defects, appearing as white spots at this 
low magnification, quickly collapse and disappear. 
After prolonged shearing (approximately 2 min), as 
seen in 2b, many birefringent rings (appearing thinner 
in Fig. 2b than in 2a) have propagated toward the cen- 
ter and a pseudo-steady-state is achieved, with the ring 
velocities becoming negligible. Consistent with the lo- 
cal microscopic observations of the ring propagation is 
the observation that, aside from locations very close to 
the rings and wake defects, the director remains in the 
plane of shear, as evidenced by the extinction of light. 
If the rheometer disk rotation is continued for a large 
number of edge strain units, on the order of 500 or 
larger, the regularity of the concentric birefringent rings 
is disrupted and the cell becomes filled with disclina- 
tion lines, as is beginning to occur in Fig. 2b. However, 
if the rotation is stopped soon after the regular pattern 
of birefringent rings has been established, the texture 
transforms to concentric rings which are alternating 
dark/bright/dark/etc., when viewed between crossed po- 
larizers, as shown in Fig. 2c. This pattern shows the re- 
laxation of the director pattern from the predominately 
in-plane configuration during shear to a pattern that 
contains significant out-of-plane director orientation, as 
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Fig. 3 Time sequence of cono- 
scopic images revealing the di- 
rector orientation near the propa- 
gating birefringent ring. The 
sample is viewed from above with 
the lower plate moving down- 
ward, as indicated in the inset. Far 
ahead of the ring (a), the director 
is tipped and rotating in the shear 
flow direction within the shearing 
plane. As the ring propagation 
approaches the observation ra- 
dius, the director twists out of the 
plane of shear (b) with a clock- 
wise sense when viewed from 
above, and 0 increases to nearly 
n/2, while twisting away from the 
shear plane (c). Very close to the 
twist wall (d-f), the director has 
twisted to an orientation perpen- 
dicular to the shearing plane 
(4 = zc/2) with 0 increasing from 
n/2 to zc. The disk rotation speed 
is 0.011 rad/s, the sample thick- 
ness is 350 pm, and the viewing 
radius is 15 mm. Times for each 
image, relative to t=0 at shear 
start-up, are: (a) 11, (b) 20, (c) 26, 
(d) 29, (e) 31, (f) 33 s. Nail heads 
represent orientation into the page 
and the view is of the velocity 
(vertical)-vorticity (horizontal) 
plane 

evidenced by light transmission through the crossed po- 
larizers. 

The configuration of the director near the birefrin- 
gent rings was investigated using conoscopy with laser 
illumination and at a radial position 15 mm from the 
axis of rotation (4 mm from the sample edge). The 
conoscopic patterns are formed above the flow cell, 
with the bottom plate rotating counterclockwise, so that 
relative to the patterns the flow direction is downward 
and the velocity gradient direction is into the page. Be- 
cause the rings propagate radially inward, the spatially 
varying director structure near them is most easily ob- 
served by fixing the position of conoscopic observation 
and observing the changes in director orientation as a 
ring passes. Since the rings appear to propagate radially 
without changing much, the director configuration at 
fixed position and different times presumably reflects 
the spatial dependence of the director configuration at 
fixed time. This interpretation is based on the observa- 
tion that translation of the microscope at a velocity 
close to that of the ring with some fixed radial offset 
yields a conoscopic image that is relatively constant in 
time. Thus, the motion of the twist wall through the 
sample is that of a solitary wave. 

To make meaningful conoscopic observations, it was 
necessary to choose a value for Ere low enough so that 

the director was radially homogeneous over the cono- 
scopic resolution of 75 gm, yet high enough so that the 
boundary layer 2~ (Pikin, 1974) was a small fraction of 
the sample thickness. Only under these circumstances 
were we able to obtain well defined conoscopic interfer- 
ence fringes. This optimization of experimental condi- 
tions, for h = 350/pm, yields ERR_--__ 354 (0 = 0.011 rad/s). 
For this case, the boundary layer at each plate is calcu- 
lated to be 45 pm thick, such that the top and bottom 
boundary layers account for 25% of the sample thick- 
ness; i.e., the majority of the nematic fluid is uniformly 
oriented. Here, the boundary layer thickness is given by 
c~ = h (2/(Er 2. ]el) )x/4, where e = a3/a2 (Pikin, 1974). 

For the following discussion, the angles 0 and q5 are 
used to describe the director orientation, averaged 
across the sample thickness, observed as a function of 
distance from the first twist wall. Similar results are ob- 
served between successive twist walls following the 
first. Here, 0 measures the angle between velocity-gra- 
dient direction and the projection of the director onto 
the sheafing plane, while ~b measures the angle between 
the director and the sheafing plane. Prior to shear flow, 

2~ Boundary layer refers to the region near shearing surfaces over 
which the director distorts from homeotropic boundary conditions to 
the hydrodynamically prescribed orientation. 
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conoscopic images show that the sample was oriented 
homeotropically; i.e., a Maltese cross (a set of "iso- 
gyres") centered on the optic axis of the microscope 
was observed, along with a series of several concentric 
extinction rings ("isochromes") also centered on the op- 
tic axis. 

Figure 3 a shows that, far from the birefringent ring, 
before the ring has propagated inward to the viewing 
radius, the director is tipped mainly within the plane of 
shear (0>0) with only a small out-of-plane tip (¢>0). 
Closer to the twist wall (Fig. 3 b) 0 increases toward a 
value of ~/2 (as indicated by the wide spacing and up- 
ward concavity of the interference fringes), and twists 
significantly out of the shear plane (Fig. 3 c) yielding 
0~z /2 ,  ¢---rc/4. Very close to the twist wall (Fig. 3 d-  
f), the director twists to an orientation which is nearly 
perpendicular to the shearing plane (¢=rc/2) and 0 in- 
creases from re/2 toward 7c; the director has thus rotated 
within the gradient-vorticity plane toward a homeotro- 
pic orientation at the center of the propagating twist 
wall. Along with each conoscopic image shown in 
Fig. 3 is a semi-quantitative "nail" representation of the 
director orientation observed. In this representation, the 
nail head represents director orientation into the page. 
Although the nematic director is a "head-less" vector, 
i.e. -n=n ,  we find this notation convenient for distin- 
guishing between 0=re/4 and 0=37c/4, for example. The 
transition of the conoscopic patterns between Fig. 3 c 
and d occurs by both clockwise rotation and northeast 
translation of the pattern, indicating that both 0 and ¢ 
are increasing with time. The transitions of the cono- 
scopic patterns from Fig. 3 d to e and from 3 e to f fol- 
low a similar evolution, but with only minor clockwise 
rotation and eastward translation of the interference 
fringes. Because we observe that the director twists sub- 
stantially away from the shear plane near the birefringent 
ring, we henceforth refer to the rings as "twist walls". 

The times at which each of conoscopic patterns were 
recorded with respect to the start of shearing are listed 
in the caption of Fig. 3. Additionally, we have exam- 
ined the length scale over which the birefringent ring 
imparts an influence on the director orientation by com- 
puting the distance between propagating twist wall and 
the fixed observation position. These values were com- 
puted based on twist wall propagation data, modeled to 
account for sample thickness, the angular velocity of 
the shearing disk, and the critical edge strains for twist 
wall formation, explained later in reference to Fig. 5. 
The distances are (3a) 13.3, (3b) 8.53, (3c) 5.33, (3d) 
3.73, (3e) 2.67, and (3f) 1.6 mm. Since the distance 
from the sample edge to the observation radius is 
4 ram, we see that Fig. 3 a - c  represents observations 
made before the first twist wall has even formed at the 
edge of the shear cell. This means that for Er= 354, the 
presence of a twist wall is not required for significant 
twist of the director away from the shear plane. More- 

over, the length scale over which the twist wall may 
impart an influence, e.g. 3.73 mm for Fig. 3d, is sur- 
prisingly large. Therefore, it is possible that instead of 
twist walls forming at a critical strain with ¢ every- 
where near zero and subsequently relaxing to minimize 
elastic energy, the twist walls may form at the sample 
edge only when the director has developed an orienta- 
tion susceptible to twist wall formation. 

The observation that the director leaves the shearing 
plane near the defect "core" by twisting toward a cen- 
tral homeotropic configuration has led us to refer to 
these defects as "twist-walls," following the terminol- 
ogy of Carlsson and Skarp (1986) and Skarp and co- 
workers (1981). However, the sense of twist we have 
observed is entirely different than that proposed by 
Carlsson et al., who suggested that the twist walls are 
positions where the director orientation within the 
shearing plane rotates due to the in-plane tumbling in- 
stability such that a sudden increase in director orienta- 
tion is completely accommodated by director twist with- 
in the shearing plane. While the origin of the twist 
walls may be related to the in-plane tumbling instability 
on a coarse length scale, it appears that such a dramatic 
in-plane twist is not elastically favorable and a less dra- 
matic director reorientation occurs instead. Indeed, we 
observed no evidence of the formation of a singular 
wall at all. 

On the trailing (left) side of the twist wall, the direc- 
tor orientation appears to return to the shearing plane 
following the same reorientation observed in front of 
the ring but in reverse. We cannot say this with cer- 
tainty, however, as it was exceedingly difficult to exam- 
ine the difference between the phase of the in-plane di- 
rector rotation before and after the described director re- 
orientations. Nevertheless, orthoscopic observations are 
consistent with this conjecture, as we now describe. 
Shown in Fig. 4 is a micrograph "close-up" of the first 
of a series of radially propagating twist-walls (corre- 
sponding to the vertical streak in Fig. 2a) as observed 
between crossed polarizers with the polarizer oriented 
in the flow direction, with similar images for subse- 
quent twist walls. Under these viewing conditions, sig- 
nificant transmitted light corresponds to regions in the 
sample with out-of-plane director orientation, larger 
than 0 and less than 7c/2. The two bright bands shown 
in Fig. 4, therefore, are regions within the twist-wall 
where the director is rotating through orientations with 
0 < ¢ < 7c/2 (or ~/2 < ¢ < 7c). The dark band separating the 
two bright bands is a region within which the director 
is rotating through the homeotropic orientation, O=n~ 
(n=0, 1, 2 . . . ) ,  largely in the velocity-gradient-vorticity 
plane. This dark band corresponds roughly to the twist- 
wall position examined with the conoscopic image in 
Fig. 3 f  and, together, they enable a distinction of a 
homeotropic orientation from a planar orientation with 
0 = 7c/2 and ¢ = re/2. 
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Fig. 4 Photomicrograph of a twist wall propagating radially inward 
(left-to-right). The sample is viewed with the polarizer and analyzer 
crossed and the polarizer oriented in the flow direction. The angular 
velocity is 0.03 rad/s, the sample thickness is 200 ram, and the sam- 
ple is viewed near the edge (r= 17 mm), yielding Er ~ 625. The low- 
er disk is rotating counter-clockwise and viewed at an azimuthal loca- 
tion such that the flow direction is downward, viewing the cell from 
above with the bottom plate rotating counter-clockwise 

The width of brightness observed adjacent to the 
twist wall center in Fig. 4 is approximately 70 gm, in 
contrast to the length scale of close to 10 mm from the 
twist wall core shown in Fig. 3 over which the director 
was observed to rotate significantly out of the shearing 
plane. Two factors are involved in explaining this sur- 
prising difference. First, the value of Er at the observa- 
tion radius changes from 354 in Fig. 3 to 626 in Fig. 4, 
and the observed change in length scale may be a result 
of decreasing elastic effects on increasing Er, especially 
considering that in the limit of low Er (Mather, 1996c) 
the director obtains a steady out-of-plane orientation 
with ~ ~ rd2. Secondly, the length scale of director dis- 
tortion as measured from intensity distribution using 
orthoscopic optics is subject to error in that the relation- 
ship between orientation angle and intensity is non-lin- 
ear and the image contrast is sensitive to several experi- 
mental features. Conclusive evidence regarding the ef- 
fect of Ericksen number on the length scale of director 
distortion near the propagating twist walls would only 
be possible by varying Er and making conoscopic ob- 
servations as in Fig. 3. We hope to do this in the future. 

In the absence of elastic effects, two-dimensional 
(2D) Leslie-Ericksen calculations of shear flow have 
predicted that in,plane tumbling events will occur at 
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Fig. 5 Plot of dimensionless twist wall position, ~(t), versus edge 
strain, ~'R, for the first four twist walls created in torsional shear flow 
with h=200 gm and 0=0.75 rad/s, yielding a large edge shear rate of 
i=71 s -1, and an edge Ericksen number, ErR of 17500. Open circles 
are the data and the solid lines are the best fits using Eq. (2), dotted 
lines (close to solid lines) represent the best fits using Eq. (3), and 
dashed lines are best fits to the data using Eq. (2) with a = 1 and the 
constraint of matching the solid line at ~ (t) = 1 for each twist wall 
curve 

critical values of strain. If the twist wails we observe 
originate from these events, and if the condition of 
minimal elasticity holds (i.e., Er>> 1), we would except 
that the i tu twist wall should propagate such that it 
passes through the radial position, r' (t), when the strain 
has reached the critical value, 

/(t)ot (1) 
7 i . 

cnt - h ' 

yielding r i ( t ) ~  t -1. Here, r/(t) is the radial position of 
the ith twist wall in the cell, 0 is the angular velocity of 
the rotating disk, t is time, and h is the sample thick- 
ness. To test this, we video-taped twist-wall propagation 
at Er=17500 for several twist walls produced during 
the first 150 edge strain units. The video tape images  
were then digitized using a Data Translations frame 
grabbe r (DT3852) and analyzed for the radial position 
of the center of each of the bright rings as a function of 
time. The length scale of the image processing was cali- 
brated using the known width of the optical slit visible 
in the images. 

Shown in Fig. 5 are the results of the image proces- 
sing plotted in dimensionless form as ~(t) versus 7R, 
where ~(t)_= r ( t ) / R  and ~R(t) is the edge strain. For 
this case, the sample thickness was 200 gm and the 
disk rotation speed was 0.75 rad/s, which yields an 
edge shear rate of 71 s -1, and a large edge Ericksen 
number ErR=17500. The first twist wall forms after 
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Table 1 Parameters extracted 
from twist wall propagation data 
(Fig. 5) 

Twist wall ~(t) = ~ ~(t) - , . ( , )+,o 

yc a ~' ¢ 

16.9 0.93 18.8 2.0 
28.1 0.84 35.8 8.0 
38.7 0.79 52.7 14.1 
60.0 0.75 80.6 20.4 

0.25 s, which is equivalent to an edge strain of 17.45. 
In dimensionless form, Eq. (1) takes the form 

( Yc ~a (2) = \rR ( 0 )  ' 

where Yc is a critical strain for twist wall formation and 
a is an exponent near unity. The radial position of this 
first twist wall decreases with time in a manner well de- 
scribed by ~ (t) = ?c/?R (t). ff the power law exponent, 
a, is allowed to vary in the nonlinear regression of the 
data, however, an exponent a=0.933 is measured. The 
second and subsequent twist walls propagate inward 
more slowly than would be expected of the form 
Y (t) = ?c/?R (t). This is clearly seen in Fig. 5, in which 
the second twist wall, formed at t=0.394s or 
strain=28.1 units, follows a power law in edge strain 
with an exponent of 0.84. This is shown as a solid line 
fit through the data. If the twist wall were to follow 
Y(t) ~ 1/7R(t) behavior ( r ( t ) ~  1/t), the twist wall 
would propagate more quickly as is shown by the 
dashed curve forced to go through Y(t) = 1  at the criti- 
cal strain determined from the fit with Eq. (2). An even 
larger deviation is shown for the third twist wall, while 
data for the fourth twist wall are too limited to extend 
the assessment, although the trend of increasing devia- 
tion appears to be continued. 

An additional formula was found to fit the data as 
well as the power law does: 

y' 

(t) + ? '  (3) 

and the results of fitting the data in this way are shown 
as dotted lines in Fig. 5, nearly superposing with the 
curves obtained by fitting with Eq. (2). Table 1 sum- 
marizes the parameters obtained from fitting the twist- 
wall-propagation data with both Eq. (2) and (3). 
Although we are unable to ascribe precise physical 
meaning to the parameters Y'c and yo, we observe that 
the quantity ( 7 ' -  ~o) is numerically equivalent to ?c, 
as is expected on equating Eqs. (2) and (3) at Y (t) = 1, 
and that the sequence of y'~ values for twist wails one 
through four show the surprising progression of magni- 
tude ratios of 1:2:3:4. For example, the value of y'c for 
the second twist wall is twice that of the first, the value 

of Y'c for the third twist wall is three times that of the 
first, etc. 

The deviation of the rate o f  twist-wall propagation 
from the r (t) ~ 1/ t  scaling (r (t) ~ 1/y R (t) in dimen- 
sionless form) is most likely due to the influence of 
Frank elasticity. While Frank elasticity should initially 
be weak compared to viscous forces since the Ericksen 
number is large, the "winding up" of the director pro- 
duced by director tumbling leads to an accumulation of 
elastic strain which might slow down the director rota- 
tion in the bulk, and hence slow down twist-wall propa- 
gation. 

Prompted by the interesting result that shear stress 
oscillations during the start-up of shearing flow in 
cone-plate rheometry of 8CB return on flow reversal 
for not-too-high strains before reversal (Gu, Jamieson, 
and Wang, 1993), we now seek to examine whether or 
not twist-wall formation and propagation is reversible 
under analogous conditions in torsional plate-plate shear 
flow. To do this, we perform transient shear experi- 
ments in which a 200-gm-thick 8 CB sample is aligned 
homeotropically and suddenly sheared with a wide 
range of rotation speeds yielding a wide range of ErR, 
the edge Ericksen number. After shearing for a range of 
accumulated strains, YR, the direction of disk rotation is 
reversed and the sample sheared in the opposite direc- 
tion until the original azimuthal position of the disk is 
achieved. We find that for large enough ErR and for YR, 
below a critical value, the creation and propagation of 
twist walls is reversible when the flow direction is 
changed. 

Shown in Fig. 6 is a sequence of video images re- 
cording during a flow reversal experiment conducted 
with ErR=17500 and 7R=150, conditions yielding re- 
markable reversibility. Each image contains a viewing 
area of 3.8 mmx 10 mm, with the sample edge appear- 
ing at the left edge of each image and the flow direc- 
tion being first downward (left column) and then up- 
ward (right column). The time sequence begins with the 
upper left image (blackness indicating homeotropic 
sample orientation) and proceeds downward in the left 
column where strains for each image are (a) 0, (b) 33, 
(c) 66, (d) 100, and (e) 133. The shear is continued un- 
til the accumulated edge strain reaches 150, although 
no image for this strain is shown. The reversal of the 
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Fig. 6 Full-slit observations dur- 
ing the flow-reversal experiment 
for the case ErR= 17 500 and a 
final strain of yR= 150. Photo- 
graphs are of the sample viewed 
between crossed-polarizers, with 
the polarizer oriented in the flow 
direction, which is vertical. The 
viewing area extends from the 
cell edge (left) to a radial posi- 
tion which is approximately 114 
of the disk radius. The left col- 
umn shows photographs taken 
during counter-clockwise (for- 
ward) rotation of the bottom disk 
for edge strain, y ~ ,  increasing top 
to bottom: 0, 33, 66, 100, 133. 
The shear continued to 150, at 
which point the direction re- 
versed. The right column shows 
photographs taken during clock- 
wise (reverse) rotation. The 
photo at the bottom right follows 
in succession after that on the 
bottom left and the progression 
continues up the right side as the 
accumulated strain is reduced 
from bottom to top: 133, 100, 
66, 33, and 0 

shear flow is shown in the right column with time in- 
creasing upward in the column. Strains for these images 
are (f) 133, (g) 100, (h) 66, (i) 33, and (j) 0. The bright 
rings indicated by "a" arrows in Fig. 6 are twist walls, 
while the sharper, ragged bright lines are disclinations, 
indicated by "b" arrows. The distinction was made by 
viewing the sample without the analyzer in place to re- 
veal the disclination features by themselves. By the 
time the reversed flow has returned the disk to the orig- 
inal position, all of the twist walls formed by the "for- 
ward" flow have retreated to the sample edge and dis- 
appeared, with only a few "wake" disclinations remain- 
ing. 

In sharp contrast, Fig. 7 shows an analogous se- 
quence of images taken for shear flow reversal with 
ErR = 10 000 and yR = 500, conditions yielding irreversi- 
bility in the twist wall creation and propagation. In fact, 
following the flow reversal, the density of defects in- 
creases with strain in the reverse direction (decrease of 
accumulated strain). Also, no outward propagation of 
twist walls is observed following flow reversal. The 

lack of reversibility for the second case is associated 
with the large value of yR, with yR > y;;aX. While y y  
is smaller for smaller ErR, we find that for both 
ErR= 17 500 and ErR= 10000, y;;aX is less than 500; i.e., 
for ErR=17500, irreversibility is also obtained for 
yR = 500. 

Time-dependent shear-stress measurements were 
made for 8 CB in the RFS 8500 rheometer under condi- 
tions similar to those used in the rheological rnicro- 
scope, namely with parallel plates of diameter 50 mm, a 
sample thickness of 200 pm, and T= 37.0 "C. Due to ex- 
perimental limitations, the edge shear rate was restricted 
to 12.5 s-l. This yields a value of ErR=3070, which is 
lower than the values achieved in the optical experi- 
ments. Two different experiments were performed under 
these conditions, one with yR= 150 and the other with 
yR=450, as in the optical experiments which tested for 
reversibility. Shown in Fig. 8 is the result for Y R =  150, 
where the shearing direction was reversed multiple 
times. During the shear start-up portion (0 < y < 150) dra- 
matic oscillations in the apparent viscosity are ob- 
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Fig. 7 Full-slit observations dur- 
ing the flow-reversal experiment 
for the case ErR = 10 000 and fi- 
nal strain yR=500. Viewing con- 
ditions are the same as for Fig. 6 
with accumulated strain values of 
0,  50, 220, 330, 440 reading 
from top to bottom for both the 
forward (left) and reverse (right) 
cases. The left column shows 
photographs taken during coun- 
ter-clockwise (forward) rotation 
of the bottom disk for edge 
strain, y ~ ,  increasing top to bot- 
tom: 0,  50, 220, 330, 440. The 
shear continues to 500 strain 
units, at which point the direc- 
tion reversed. The right column 
shows photographs taken during 
clockwise (reverse) rotation for 
strain decreasing from bottom to 
top: 440, 330, 220, 50, and 0 

served, similar to those in the cone-plate case of the 
same material (Gu and Jarnieson, 1994). The oscilla- 
tions dampen with increasing accumulated strain and 
completely disappear at a strain of approximately 100 
strain units, yielding an apparent steady-state viscosity 
of 230 centipoise. On reversal of the torsional shearing 
direction, small oscillations in the apparent viscosity re- 
turn in a manner symmetric about the time of reversal. 
The smaller amplitude of the oscillations that return 
after reversal, as compared to the start-up oscillations, 
is probably due to the formation of disclinations, as 
shown in Fig. 6. Additionally, the ErR value of 3700 is 
probably not high enough to eliminate elastic effects, or 
Er dependencies, which are not accounted for in the 
Leslie-Ericksen calculations predicting the continued os- 
cillations in rectilinear flow. 

Shown in Fig. 9 is a plot of shear stress versus time for 
the case where yR =450, with all other conditions being the 
same as in Fig. 8. For this larger accumulated strain prior to 
reversal, no oscillations in the apparent viscosity return on 
reversal of the shearing direction. This result is consistent 

with the observation in the rheological microscope under 
similar conditions (shown in Fig. 7) that at large strains 
following shear start-up there is a large increase in defect 
density throughout the shear cell and the density continues 
to grow on reversal of the flow direction. Also it was ob- 
served that for yR= 500 no outward motion of twist walls 
on flow reversal was observed, in contrast to the case 
where yR= 150. 

We see from Figs. 8 and 9 that shear stress oscilla- 
tions present during shearing prior to reversal dampen 
rapidly, with the oscillations being completely absent 
after an edge strain of yR=75 has accumulated. This in- 
dicates that damping in torsional shearing flow occurs 
somewhat more quickly than in cone-plate flow, where 
oscillations continue up to y % 100 (Gu, Jamieson, and 
Wang, 1993). The most immediate reason for this con- 
trasting behavior is the gradient of strain present in the 
plate-plate torsional shearing geometry. In particular, it 
seems possible that the damping of shear stress oscilla- 
tions arises from interference of shear stress contribu- 
tions derived from director orientation angles (profiles) 
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Fig. 8 Apparent viscosity ver- 
sus strain for start-up and rever- 
sal of steady shearing in a paral- '~ 
lel plates rotational rheometer, ~ 0.3 

The edge shear rate is 12.5 s -1, ~'.~ 
the sample thickness is 200 gm, o 
and the plate diameter is 50 ram, N 0.2 

yielding ErR= 3070. The accumu- ,. 
lated edge strain prior to reversal 
is 150 strain units 

0.1 

150 300 

Strain 

450 

that are non-uniform in the cell. The stress at each posi- 
tion in the cell is oscillatory, but with a phase that de- 
pends on strain and therefore on position in the cell. 
The stress averaged over the sample therefore has an 
oscillatory character that dampens out as the stress be- 
comes increasingly nonuniform at high strains. 

To test this explanation, we perform numerical calcu- 
lations using the Ericksen's transversely isotropic fluid 
(TIF) model, which is equivalent to the Leslie-Ericksen 
model in the limit of large Ericksen number. In the TIF 
model, the shear stress is given as, 

0 

(4) 
and the director orientation angle, 0, assumed uniform 
across the sample thickness (negligible elastic effects), 
is given by 

00 (a3 sin20 -___ a2 cos 2 0)  . (5) 

Ot = ) a3 - az 

Here, the director orientation angle, 0, is taken as zero 
for orientation normal to the sheafing surfaces. The 
coefficients al, a2, a3, and r/b are all viscosities appear- 
ing in the Leslie-Ericksen equations. Note that Eqs. (4) 
and (5) neglect any departure of the director from the 
shearing plane. To compute the apparent viscosity, Eqs. 
(4) and (5) are discretized in time and space and the 
torque at each point in time is calculated by integrating 
shear stress radially, 

R 

T = 2z~ / r (r) r 2 dr. (6) 
, J  

0 

The apparent viscosity is then calculated from: 

3 
~/app (t) - 2zcR ~ T (t) (7) 

The viscosity coefficients appearing in Eqs. (4) and (5) 
were taken from previous work on 8CB at 37 °C. We 
found, however, that, for the best fit to the experimental 
data, minor adjustments to these previously determined 
parameters were required. 

Fig. 10 shows the results of the calculation along 
with the experimentally measured apparent viscosity. It 
is clear that the measured shear stress oscillations and 
their decay are in nearly quantitative agreement with 
the predictions, except at strains greater than 50 or so. 
This provides strong support for the idea that the damp- 
ing of the shear stress oscillations can be largely ex- 
plained by a simple in-plane TIF calculation which ac- 
counts for the gradient of strain present in the parallel 
disk sheafing geometry. Shown in Table 2 are the val- 
ues of the viscosity coefficients used in the calculation; 
while slightly different from those reported previously, 
they are within the limits of error expected for such 
measurements. 

Since the measured apparent viscosity versus strain 
can be nearly quantitatively predicted by a calculation 
that neglects out-of-plane director orientations, a ques- 
tion then arises regarding the observed twist walls and 
to what extent they affect the rheological observations. 
Plotted in Fig. 11 is the calculated (in-plane) director 
orientation angle versus strain, or radial position in the 
torsional shear cell, for sheafing time yielding an accu- 
mulated strain at the edge of 37.5. As is expected from 
Eq. (5) for a3<< a2, the director rotates more rapidly 
with increasing radius at orientations near 0, 7r, 2re, etc. 
This leads to a continuous ring-like pattern within the 
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Fig. 9 Apparent viscosity versus 
strain for start-up and reversal of 
steady shearing for conditions 
identical to those in Fig. 8, ex- 
cept using a strain prior to rever- 
sal of 450 strain units 
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Fig. 10 Apparent viscosity versus strain measured in a parallel plates 
rotational rheometer (O, same data as Fig. 9) and calculated using the 
transversely-isotropic-fluid (TIF) model accounting for the strain gra- 
dient present in the cell. Parameters used in the calculation are sum- 
marized in Table 2 

torsional sheafing cell in which at any point in time 
most of the sample is oriented near the flow direction. 
Also shown in Fig. 12 are vertical lines indicating the 
critical strain values (Table 1, Fig. 5) where the first 
and second twist walls were observed. In agreement 
with the conoscopic observations of the director rota- 
tion near the first twist wall, an instability of the direc- 
tor orientation appears to occur near 0=3zc/2, 5zd2, . . . .  
Of course, these simple calculations are not able to pre- 
dict the interesting out-of-plane motion of the director 
that occurs near these values of 0. 

Because the simple calculations predict the stress os- 
cillations and their damping with increased strain rather 
well (at least for y<50), the director field throughout 
most of the sample must be fairly close to that pre- 
dicted by the in-plane calculations. Thus, apparently, 

Table 2 Leslie-Ericksen parameters for shear stress calculation (Fig. 
lO) 

Parameter al a2 a3 /~b 

Value (poise) 0.06 -0.58 0.058 0.31 

only within the twist walls is there a large deviation 
from the in-plane prediction shown in Fig. 11. Hence, 
we infer that, at orientation angles of 3~/2, 5rd2,.. .  , 
the director is susceptible to the analog of a mechanical 
buckling instability that takes the director away from 
the shearing plane locally, but elsewhere leaves the di- 
rector field alone. The twist walls that form from the 
"buckling instabilities" are too narrow to affect the ap- 
parent viscosity very much, and so in a gross sense 
merely act as convenient markers, showing where the 
director has approached the in-plane angles 3n/2, 5zd2, 
etc. It should in principle be possible to verify this de- 
duction using more rigorous axisymmetric solutions of 
the full Leslie-Ericksen equations with prescribed home- 
otropic boundary conditions, and allowing for out-of- 
plane director orientations. 

Note, in Fig. 10, that, for 7>50, the measured stress 
oscillations die away essentially completely, even though 
the simple theory predicts that measurable oscillations 
should still be present. It is possible that, at these higher 
strains, deviations from the simple theory are becoming 
important even outside the twist walls, due to the finite 
(albeit large) Ericksen number. Indeed, according to 
Fig. 5, at a strain of 50 (t -~ 0.7 s), there is substantial de- 
viation between the measured twist-wall locations and 
those predicted by the simple theory (dashed lines). 

Finally, we note that Hart and Rey (1995) have pro- 
posed a mechanism for decay of stress oscillations in 
shearing flow of a tumbling nemafic different from that 
described here. Han and Rey's mechanism was obtained 
from numerical calculations using the full Leslie-Efick- 
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Fig. 11 Orientation angle versus strain (7) predicted by the trans- 
versely-isotropic-fluid model, with parameters of Table 2. In a tor- 
sional shearing flow, the plot represents the radial distribution of the 
orientation angle, with 7=37.5, corresponding to the sample's edge 
and 7=0 to the axis of rotation. The vertical lines mark the experi- 
mentally observed locations of the first and second twist walls 

sen theory in a plane-Couette geometry. In this geome- 
try, both the strain and the Ericksen number are uni- 
form, and the decay of stress oscillations is produced 
by an instability that takes the director out of the shear- 
ing plane uniformly within the plane of the sample. 
Thus, in the Han/Rey mechanism, if one were to view 
the sample along an axis parallel to the velocity gradi- 
ent, one would see no twist walls, only a uniformly in- 
creasing reorientation of the director out of the shearing 
plane. We see no evidence for this mechanism in the 
torsional plate-plate flow studied here. However, in a 
plane Couette flow, there would be no gradient in either 
strain or Ericksen number, and so the Han/Rey mecha- 
nism would apparently be the only one that could pro- 
duce stress decay. The Han/Rey mechanism may also 
be relevant for cone-plate flow and, indeed, some of the 
features of the stress decay observed in this geometry 
can be explained by the simulations of Han and Rey. 
However, the stress decay predicted by Han and Rey is 
much slower than that observed experimentally in cone- 
plate flow, and it seems questionable whether the Han/ 
Rey mechanism could produce the reverse damping 
seen experimentally when the direction of the shearing 
flow is reversed. Thus, a mechanism involving twist 
walls produced by a gradient in Ericksen number might 
instead be the dominant mechanism in cone-plate shear- 
ing. Direct visualizations in the cone-plate geometry are 
needed to resolve this issue, however. 

We may summarize the above paragraph by noting 
that there are in principle three sources for oscillatory 
stress decay in sheafing flow of a tumbling nematic: 1) 
inhomogeneities in strain; 2) inhomogeneities in Erick- 
sen number, and 3) the Han/Rey mechanism. Only 

mechanism 3) could be relevant in plane Couette flow; 
mechanisms 2) and 3) could both be relevant in cone- 
plate flow, and all three could potentially be relevant in 
plate-plate flow. In plate-plate flow, however, we have 
found evidence only for mechanisms 1) and 2). 

Conclusions 

We have shown that the origin of shear stress oscillation 
damping and reversibility in tumbling nematic liquid 
crystals in the plate-plate geometry is correlated with 
the creation and radial propagation of "twist walls." 
Using conoscopy, the configuration of the director near 
the twist walls was found to involve localized rotation 
of the director away from the shear plane followed by ro- 
tation within the vorticity-gradient plane to a homeotropic 
orientation at the defect "core." These observations show 
that, while the origin of the twist walls may be the in- 
plane tumbling instability predicted by the Leslie-Erick- 
sen theory, the director pattern in the twist wall involves 
out-of-plane, as well as in-plane, director orientations. 

For an Ericksen number of around 104, when the 
shear direction is reversed, if the shear strain 7R is less 
than about 200, the twist walls migrate outward and are 
expelled from the sample. The damping of the stress os- 
cillations is reversible in this case. If 7R>500, disclina- 
tions form and prevent the reversibility of the twist-wall 
migration. 

Time-resolved image processing of the propagation 
of the first several twist walls for large Er (17 500) re- 
veals that only the first twist wall follows the relation- 
ship r(t)~ 1/t as expected from the concept of a critical 
strain describing the propagation. Subsequent twist 
walls show increasing deviation from this scaling, and 
we believe this is due to an accumulation of elastic 
strain caused by the "winding up" of the director at the 
mid-plane of the sample. Despite the influence of elas- 
tic strain, the damping of stress oscillations during the 
start-up of shearing in the plate-plate geometry can be 
accurately predicted out to a strain of about 50 by Les- 
lie-Ericksen equations in the infinite-Er limit, by ac- 
counting for the radial nonuniformity of the strain, and 
hence of the director field. Beyond 7 = 50, the measured 
damping of stress oscillations is much greater than that 
predicted by the infinite-Er theory, evidently because of 
the accumulation of elastic strain. In a cone-and-plate 
device, on the other hand, the strain is uniform, so the 
much more gradual damping of shear stress observed in 
this geometry is probably due only to the accumulation 
of elastic strain. 
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