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On the Viscosity of a Fluidized System
By J. D. Murray

Introduction

Fluidized states have many properties
which can be described on a continuum basis.
This continuum approach has been exceed-
ingly useful in determining fluid mechanical
properties of such two phase fluid flows in
general and the particular application to
bubble motion in fluidized beds has been
notably successful and useful [see, for
example, Jackson (1), Davidson and Harrison
(2) and Murray (3), (4)].

In view of the fluid-like state of fluidized
beds considerable work has been devoted
to determining an apparent viscosity for
such a ‘fluid’ in the Newfonian sense. A wide
range of values has been suggested for such
a viscosity. A summary of these is given by
Davidson and Harrison (2). More recently
Daniels (5) has given the results of a detailed
study on the measurement of the drag on
spheres immersed in fluidized beds.

The usual methods for finding the viscosity
of a normal Newtonian fluid such as the
falling sphere method, the rotating cylinders
method, ete. are not necessarily reliable when
applied to fluidized beds. The main reason
for this is that fluidized beds are unstable to
small internal disturbances which can give
rise to bubbles in the bed. Bubbles in fluidized
beds seem to occur when the density of the
solid particles ig greater than about ten times
that of the fluidizing fluid. The stability of
fluidized beds was discussed by Jackson (1)
and Murray (3) and (6), who suggested
governing equations of motion for fluidized
beds. Thus, any body introduced into a
fluidized bed could create disturbances which
could result in viscosity measurements of
doubtfull interpretation. The wide divergence
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of values for the viscosity suggested, from
single figure values to tens of poise, are
testament to this.

Murray (6) suggested, theoretically, very
approximate expressions for a particulate
continuum shear and bulk viscosity. He
showed that the presence of a bulk viscosity,
which may also be thought of as a particle
collision effect, was responsible for the rapid
damping of surface waves in a fluidized bed.

It seemed that one way of assessing an
order of magnitude value to a shear viscosity
would be to study some phenomenon which
could be observed without artificially disturb-
ing the fluidized bed. This would then provide
an independent guide as to the reliability
of the accepted techniques as applied to
fluidized beds. One such obvious phenomenon
is the motion of a bubble: bubbles are
endemic in gas fluidized beds. This is done
in this paper and it is shown that a value for
a shear viscosity (which depends on the
voidage) in the vicinity of, but generally
less than, ten seems to be indicated. This is
in line with the values now generally
accepted [see Davidson and Harrison (2) and
Damiels (5)] and found by the usual methods
when carefully used. The simple method
described here thus lends theoretical justi-
fication to this value. The method consists
simply of estimating the drag on a small
bubble and calculating a drag coefficient.
The drag, in steady motion, is equal to the
buoyancy force and equating them gives a
value for the shear viscosity [with the form
suggested by Murray (5)].

The form for the viscosity results in an
expression for the velocity of rise of a bubble
in a fluidized bed which depends on the
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voidage in such a way that the velocity
increases when the voidage increases. This
is consistent with the experimental results
found by Rowe and Partridge (7).

Bubble Motion and the Connection with the

Viscosity

In fluidized beds where bubbles appear
the gas momentum resulting from bubble
motion is negligible when compared with the
particulate motion. Murray (6) showed that
when a bubble moves steadily upwards
through a fluidized bed in which it can exist
an approximate solution of the equations of
motion is that in which the voidage & is
constant. A consequence of this solution is
that the solids motion round the bubble can
be approximated by an irrotational flow.

We consider the bubble (three dimensional)
to be small and such that the particulate
motion relative to the spherical bubble is
given by the usual potential @, where

@ = — Upcos 8 (r+ a*/27%), [13
where U g is the velocity of rise of the bubble
with radius @, and r, 6 the axially symmetric
polar co-ordinates measured from the bubble
center.

The drag on a bubble (in a liquid) if it is
sufficiently small so that it may be con-
sidered spherical was given by Levich (8)
using the dissipation method [see also
Levich (9) and Landau and Lifshitz (10)].
This result has been confirmed by a more
rigorous study of the actual viscous problem
by Moore (11). We here use the dissipation
method with the particulate phase as the
fluid.

The rate of change E of the kinetic energy
of the system due to the bubble motion is
thus approximated in this case in the usual
way from [1] [see, for example, Landau and
Lifshitz (10)] since here the gas momentum
is negligible compared with the solids
momentum, and is given by

B=—12apsaU}, [2]
where us is formally the particulate con-
tinuum shear viscosity. The viscous drag Fy
is obtained from [2] as

Fq; =12 s U_B . [3]
from which a viscous drag coefficient Cp, can

be defined as

1
Cp, = 12nusaUB/—2—Qna2U% = 24/Res*), 4]
Reg = oUpafus
*) Note that the drag coefficient for a small spherical
bubble rising up through a fluid is {wice that for a solid
particle of the same size in Stokes flow.

where Res is a particulate continuum Rey-
nolds number and where ¢ is the bulk
density of the bed which in gas fluidized
beds is given by

s (1 —¢), {51
where gs is the density of the particles and ¢

the voidage.
A bouyancy foree Fp is given by

. 4
o= g mates(l —¢)g. f6]

A buoyancy coefficient C'p, for the bubble
is thus

4
Cpy = 5 waPes(1 — &) g/é-ywﬂgs(l —e) Ug
8 ag
E) U, )

Murray (4) gave the following expression
for Up:

(7]

U% = agf3¢, 81
where ¢ is a constant, introduced in his
analysis which can be chosen to enable the
solutions obtained to approximate more
closely the actual physical situation. In that
work, which was essentially an inviscid
theory, a value of ¢ = 0.6 was found theore-
tically for ¢. From the above, a dependence
of Ug (and ¢) on the Reynolds number can
be found as follows. Substitution of [8] into
[7] gives

Cpp=8c¢. 19}

Since in steady motion COp, and Cp, are
equal, the last equation and [4] imply that

Reg = 3/c [10]
and so
U% = agResf9 .
An estimate of a value for us can be given

from the second of [4], [8] and [10], since
from these

= 0a(1 — ©) Un aof3 = - ea(L — o) (cg a3)** . [11]

Eq. [11] might be expected to hold for
small @, and gives us as a function of g, ¢, &,
os. A typical value is given with gs=3gm./
cc., a =1 om. ¢ = 0.6 [suggested by
Murray [4)], ¢ = 0.4, as ps= 10 gm/cm sec.
Recently Rowe and Partridge (7) showed
experimentally that if the volume wake
fraction fu of a bubble is zero then ¢ = 0.3
in which case, from [11], us = 7 poise. These
values can only be order of magnitude values
since @ in [11] is in a sense arbitrary. The @,
in fact, must be small enough so that the
bubble may be approximately taken to be
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spherical. It may have to be smaller than
1 ¢cm. However, 1 c¢m. is not an unreasonable
value to take and with it the apparent
viscosity is in the range of values now fairly
generally accepted [see Davidson and Harri-
son (2)]. Tt does not support the value of
tens of poise as has been suggested.

If the concept of an apparent Newfonian
viscosity is pursued (even though there is a
dependence on the bubble radius and other
quantities) comparison can be made with the
results obtained from experiments on the
steady rate of fall of a small solid sphere
through a bed at incipient fluidization.
Partridge (12) reports that a sphere of radius
a = 0.75 cm. in a bed of particles of diameter
460 microns with ¢ = 0.4 and gs==3gm./c.c.
and sphere density 7.78 gm./c.c. had a
terminal velocity of U; = 50 cm./sec. With
the value of us=7 poise from above for
fw = 0, a Reynolds number

Reg = gs(1 — &) Upafus =9.6,
is obtained. A drag coefficient Cp is given by

4 1
Cp= ':.))‘ﬂ“a(gsphere —os(1— 8))9/7 0P 05
X (1—¢) U2=35.

From a typical Newtonian Cp-Re curve,
Cp=4.2 for Re=9.6. Alternatively, from
the last equation for a C'p = 3.5, the Be=17.2.
These results are not too inconsistent and
are in line with values found experimentally
by Daniels (5).

From the second of [4], [8] and [10]

Up = gs(1 — e)a? g/9 us , (12]

and if us is given as a function of ¢ then so
is Up. Mwurray (5) suggested a rough and
approximate form for us in the situation
where the particles are 2(a + 1) apart and
I La as

us = Apafl, [13]

where u is the viscosity of the actual fluid
and A4 some function of the geometry. A
dependence of afl on ¢ can be obtained as
follows.

Consider a cube containing 73 (> 1) uni-
formly packed particles of radius @ and
distance 2(a¢ + I) apart. For this cube the
volume of the particles plus the interstitial
space equals the volume of the cube. Thus

4 s
—?—;naﬁ'rﬁ + interstitial space =[2n(l + a)]?.

Dividing both sides by [2n(l 4+ @)]? we
get the following expression for ¢/l in terms

of &, the voidage fraction and &, the close
packed or saturation value of ¢ (that is when
l=0):

afl = (1 — e BI[(1 — &)/ — (1 — &)*®]. [14]

Substitution of [14] into [13] and then [12]
shows that

Up oc gsat(1 — P [(1 — egftfs — (1 — £)113], [15]

which shows that Usg increases as g increases
from g;. There is a value of ¢ when U starts
to decrease again, namely for

e>1— (—;—)3(1 — ),

but this region is not in the range found in
fluidized beds. The fact that Ug increases
with increasing ¢ has been found experi-
mentally by Rowe and Partridge (7).

Summary

By considering a fluidized state to be similar to a
‘fluid’ with a given density, which depends on the
voidage, a rough order of magnitude for the apparent
shear viscosity of the ‘fluid’ was found from a simple
study of bubble motion in the fluidized state. A value
for the viscosity of about 10 poise, or less, was found,
which is in line with more recent suggested values.

Using an expression for the continuum shear
viscosity and bubble rise velocity given by the author
previously a dependence of the bubble velocity on the
voidage was indicated which showed that in fluidized
states the velocity of rise increased with increasing
voidage. This is in keeping with experimental obser-
vation.

It should be noted both from the above and previous
work in this area that the concept of a fluidized state as
a simple Newtonian fluid is limiting. With a Newtonian
concept, however, considerable quantitative informa-
tion has been found. This, not unexpectedly, has been
in the area which might be described as the ‘inviscid’
fluidized state.

I would like to thank Mr. B. A. Partridge of the
Chemical Engineering Division, Atomic Energy Re-
search Etablishment, Harwell, England, for kindly
supplying details of some of the experimental work
quoted above and for the careful criticism and the time
he gave to some of my ideas on the viscosity of a
fluidized system.
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Die Volumenretardation des Polystyrols nach Druck- und Temperaturspriingen*)
Von Ginther Goldbach und Gitnther Rehage
Mit 35 Abbildungen

1. Vorbemerkungen

Unter Nachwirkung wird die zeitlich ver-
zogerte KEinstellung eines Gleichgewichts-
zustandes auf Grund einer &dulleren Be-
anspruchung des Materials verstanden. Hier-
bei wollen wir zwei Erscheinungen der Nach-
wirkung unterscheiden:

a) Die Relaxation: Extensive Gréflen wie
z. B. das Volumen oder die Verformung wer-
den vorgegeben. Die zeitlichen Anderungen
der intensiven Gréflen, z. B. Druck oder
Spannung, werden gemessen.

b) Die Retardation: Hier sind die inten-
siven Grofen vorgegeben, und die zeitlichen
Anderungen der extensiven Grofien werden
beobachtet.

In dieser Arbeit werden Nachwirkungs-
erscheinungen des Volumens an glasig er-
starrenden Substanzen untersucht. Es han-
delt sich demnach um Retardationsvorgénge,
deren Ursache und experimenteller Nachweis
im folgenden nédher erldutert werden sollen.

2. Ursache und experimenteller Nachweis der
Volumenretardation

Bine Fliissigkeit besitzt bei jeder Tempe-
ratur und jedem Druck eine bestimmte,
statistischen GesetzméBigkeiten gehorchende
Anordnung der Molekiile [vgl. (1)]. Hat sich
die zu einer vorgegebenen Temperatur und
zu einem vorgegebenen Druck gehorende
,,innere Ordnung® der Molekiile eingestellt,
50 befindet sich die Flissigkeit im sogenann-
ten ,inneren thermodynamischen Gleich-
gewicht*‘. Durch eine Anderung der Tempe-
ratur oder des Drucks wird die innere Ord-
nung der Molekiile gestort, und die Flissig-
keit bendtigt eine gewisse Zeit, bis das zu
der neuen Temperatur bzw. dem neuen Druck
gehorende Gleichgewicht wiederhergestellt

(Eingegangen am 24, Oktober 1966)

ist. Beschreibt man die innere Ordnung der
Flitssigkeit mit einem einzigen Ordnungs-
parameter { oder einem Satz von Ordnungs-
parametern, so kann man jedem einzelnen
Ordnungsparameter {; eine Retardationszeit
7; zuordnen, die fiir die Geschwindigkeit der
Retardation maBgebend ist. Dabei ist die
Retardationszeit 7; als diejenige Zeit definiert,
in der die Gleichgewichtsstérung auf den
e-ten Teil des Augsangswertes abgeklungen
igt. Nun erfordert jede Storung (Temperatur-
bzw. Druckdnderung) eines Gleichgewichts
eine gewisse Zeit, die aus experimentellen
Griinden nicht unterschritten werden kann.
Diese Zeit sei mit ,,MeBzeit* bezeichnet. Im
Falle einer Temperaturdnderung z. B. ist die
MeBzeit die Zeit, innerhalb der die Flissig-
keit die neue Temperatur annimmt. Solange
die groBte Retardationszeit 7; kleiner ist als
die MeBzeit, befindet sich die Fliissigkeit
wahrend der Dauer des Experiments im
inneren Gleichgewicht. Sind eine oder meh-
rere der Retardationszeiten jedoch groBer
als die MeBzeit, so erreicht die Fliissigkeit
withrend dieser Zeit nicht mehr ihren Gleich-
gewichtszustand. Man beobachtet dann z. B.
eine Retardation des Volumens; die Ord-
nungsparameter {; &ndern sich dabei in
Richtung auf die zum neuen Gleichgewicht
gehorende Ordnung. Es sei nun kurz erwihnt,
wie sich die vorausgegangenen Betrachtun-
gen wihrend des glasigen Erstarrens einer
Fliissigkeit, experimentell duflern:

MiBt man bei konstantem Druck P; das
Volumen ¥ einer glasig erstarrenden Sub-
stanz bei konstanter Abkithlgeschwindigkeit,
von hoher Temperatur beginnend, so be-

*) Vorgetragen von G. Goldbach auf dem Symposium
der Niederlindischen Rheologischen Gesellschaft in
Valkenburg (Niederlande), am 17. Mai 1966. Kurzfas-
sung in Rheologica Acta 5, 302 (1966) erschienen.



