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Abstract

This paper introduces new forms, sampling and estimation approaches for discrete choice models. The new
models include behavioral specifications of latent class choice models, multinomial probit, hybrid logit, and
non-parametric methods. Recent contributions also include new specialized choice based sample designs that
permit greater efficiency in data collection. Finally, the paper describes recent developments in the use of
simulation methods for model estimation. These developments are designed to allow the applications of discrete
choice models to a wider variety of discrete choice problems.
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1. Introduction

Much of the empirical work in discrete choice modeling has occurred in relatively simple
choice contexts. Typically, a single decision maker chooses one alternative among a small
well-defined set, and taste homogeneity is assumed among a well-defined population.
Expansion of the choice model application domain, however, necessitates deviation from
this simple and well-defined arena. In many choice situations, problems of taste hetero-
geneity and unobservable choice sets are expected and the choice decision itself is fairly
complex, as illustrated by the following cases:

1. Taste heterogeneity: It is quite common for consumers’ preferences to differ for the
same set of product or service attributes. In the random utility models this should be
expressed by different sets of taste parameters and/or the random component of utility.
If there exist substantial taste variations (systematic or idiosyncratic) not adequately
captured by the additive random term, then the taste parameters should be specified
probabilistically. Two well-known approaches are latent class choice models and the
random coefficients models.

2. Choice from a large number of alternatives: In many choice applications, numerous
alternatives are available. In such cases it is unrealistic to expect the decision maker to
compare the many attributes of all available alternatives before choosing. Most re-
searchers agree that a two-stage choice is made: (i) simplified rules screen the many
alternatives down to a manageable number, and (ii) through an elaborate process the
most preferable alternative is found.

3. Choice of a collection of multi-attributed items: In general these collections can be
assortments or systems. An assortment is a collection of relatively homogeneous items,
such as the set of magazines a consumer subscribes to in a given year. A system is a
collection of heterogeneous items, each drawn from a relatively homogeneous group;
for example, a work station organized by a work-at-home professional, consisting of a
micro-computer, monitor, printer, and fax machine.

4. Sequential decisions: Various decisions are made by an individual in a sequential
manner. Examples include choice of employment, domicile, transportation mode, and
investments. Sequential decisions are dynamic by nature.

5. Decisions involving externalities: For example, whether or not to subscribe to an
electronic communications network; such a decision may be driven by how many other
individuals (including family and friends) have already subscribed or will subscribe.
Social issues caused by externality effects (environmental damage, traffic congestion)
may complicate the choice decision due to the social dilemma problem. “Green”
product purchase, recycling, and motor vehicle use decisions typically involve social
externality effects.
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Development of a choice model for these types of decisions requires significant adap-
tation of the standard choice modeling framework and often a new way of thinking about
the decision problem. The remainder of this paper introduces approaches for tackling these
problems, in particular referencing model forms, sample design, and model estimation.

2. Model forms
2.1. Latent class choice models’

In general the Latent Class Choice Model (LCCM) can be described by the following
equation:

s

P,i) = Zl P,(ils)Q,(s) (1)
where

P,(i) = probability of individual » choosing alternative 7;

0,(s) = probability of individual n belonging to latent class s;

P,(ils) = probability of individual » choosing alternative i given n belonging

to class s; and
S = number of latent classes.

The latent classes may represent:

(a) Different decision protocols adopted by consumers;

(b) Variable choice sets considered by the consumer; and

(c) Segments of the population with varying tastes or sensitivity to product and service
attributes.

Note that the latent class choice model assumes that the available data include the choice
indicator, attributes of alternatives, and the consumer’s socioeconomic and demographic
characteristics. Specifically, no data is available on attitudinal and perceptual indicators?.
We now turn our attention to recent developments in LCCM.

(1) Form of the class membership probability model: Gopinath (1994) presents modeling
approaches for cases wherein the underlying latent construct could be: (a) categorical,
as in the case of latent class characterizing decision protocols (categorical criterion
model); (b) binary latent class, as in the case of latent class characterizing choice set
(binary criteria model); and (c) latent class with ordered levels in each dimension, as
in the case of latent class characterizing taste variations through ordered levels of
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consumer’s sensitivity to attributes (ordinal criteria model). The presentation empha-
sizes the various types of class membership models which assign consumers to classes,
and which are formulated via a behavioral theory of unobserved criterion functions.
The criterion functions may represent unobserved attitudes, consumer’s constraints,
and decision rules. The basic elements of the binary criteria model were embedded in
the works of Swait and Ben-Akiva (1987a, 1987b) and Ben-Akiva and Boccara (1995).
Dynamic LCCM: Until now the discussion of LCCM has been limited to a static
setting. Dynamic LCCMs have been developed that capture: (1) preference changes
over time, and (2) structural dependencies between past and present latent states.
Bockenholt and Langeheine (1996) recently demonstrated the relevance of these
extensions for predicting choice behavior. Bockenholt and Dillon (1997) present a
parsimonious latent class framework for analyzing competitive changes before and
after a new product is introduced. Their latent class models are dynamic in nature,
allowing the classes’ product preferences to change after the new product’s introduc-
tion, as well as considering the possibility that consumers may switch to a different
latent class after product introduction. In a similar vein, Ramaswamy (1996) uses a
latent Markov model in capturing the evolution of preference segments before and
after new product introductions.

Latent classes on multiple dimensions: Ramaswamy et al. (1996) discuss a latent class
framework for modeling portfolio choice on two bases that are conceptually distinct,
but interdependent. Their latent class model explicitly considers potential interdepen-
dence between the bases at the latent class level by specifying the joint distribution of
the latent classes on each basis.

Multistage choice models: Consumers often use multiple decision making rules. This
is especially relevant to choice contexts with many possible alternatives. In such a
case, consumers may use a simpler rule to reduce the number of alternatives consid-
ered, at which point a more elaborate rule may be employed to choose from the
reduced set of alternatives. A number of researchers have investigated this multistage
choice decision protocol, and it is well known that misspecified choice sets yield
biased parameters (see Stopher (1980), Williams and Ortuzar (1982), Swait and Ben-
Akiva (1986)).

The choice set formation process requires a probabilistic model since the consumer’s
choice set is unobservable. In this sense, the two-stage choice model can be viewed as
a latent class model where each class corresponds to a possible choice set. A practical
problem of the two-stage model arises from the number of potential choice sets. To
alleviate the computational issue Morikawa (1995) derives choice probability for the
independent availability model of Swait and Ben-Akiva (1987b) by a pairwise com-
parison process.

Ben-Akiva and Boccara (1995) propose a methodology for incorporating indicators of
availability of alternatives. Using attitudinal data as indicators of latent constructs is
a promising method for modeling consumer behavior and suggests a future direction
of this research topic.

LCCM with latent class indicators: As a first step in incorporating latent class indi-
cators which may be viewed as attributes characterizing the class, Gopinath (1994)
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elaborates on the different types of specification of the measurement model depending
on the characterization of the latent class. These measurement models can be linked
to the different class membership models to obtain an extended latent class choice
model that is more likely to be empirically identifiable and to yield more efficient
estimates.

Model forms for choice probabilities

Multinomial Probit Model: Discrete choice empiricists face a well-known dilemma
involving the trade-off between model and behavioral complexity, and model sim-
plicity and ease of estimation. Relaxed assumptions concerning the utility functions’
error structure limit the model application to choice contexts with a small number of
alternatives. On the other hand, restrictive assumptions concerning the error structure
(e.g., MNL model), lead to quick calculation of the choice probabilities for even large
choice sets. The most practical method for resolving this trade-off involves incorpo-
rating simulation techniques into estimation (see Hajivassiliou and Ruud, 1994, for a
discussion of simulation methods). Most approaches exploit a conventional estimation
technique, such as the method of moments and the Maximum Likelihood (ML) frame-
works, where easy to compute simulators replace the choice probabilities. In situations
with very large choice sets, the method of moments often loses some interest because
it requires the computation of all choice probabilities instead of only the probability
associated with the observed choice, which is the case within the ML framework.
However, we note that in recent years, no significant advances have been made in the
MNP literature. Some incremental contributions include the application of existing
simulation techniques to situations with large choice sets and improved simulators.

Hybrid logit/Random coefficients Model: The MNP estimation approach which has
received recent attention is the hybrid logit (or logit kernel). This approach is char-
acterized by specification of the error term, of which a portion is assumed to be a
Gumbel variate. Clearly it has a great potential for application because of its speed
and its ability to apply to a variety of choice situations. Bolduc and Ben-Akiva (1991)
suggested a hybrid logit specification to estimate MNP models with very large choice
sets.

The hybrid logit approach partitions the J, X 1 utility vector into three independent
components’:

u,=Xxpg+2Sn,+v,n=1,..,N

The first term is the systematic portion of utility. X,, is a J, X K matrix of explanatory
variables, and B is a K X 1 vector of coefficients. The second term is a random vector
with mean zero. Specifically, S is a matrix of coefficients, Z, is a matrix of individual
characteristics or explanatory variables and m, is a vector of independent random
variates. Finally, v, is assumed to be a Gumbel variate, independent and identically
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distributed across both alternatives and observations. In addition, v, and m,, are inde-
pendent. Since the Gumbel and normal distributions are similar in shape, the logit
kernel is a close approximation to the MNP model when T, is standard normal.
Ben-Akiva and Bolduc (1996) consider many different sub-models subsumed in this
model form. For our purposes, two specific forms of the utility functions are notable.
First, if Z, is equal to X, S'is a K X K lower triangular matrix of coefficients (with
possibly some of its elements constrained to zero), and m,, is a K X 1 vector of random
variates, then this equation represents a random coefficients model. A degenerate
form of the random coefficients model—that nonetheless has an interesting interpre-
tation—is if Z, is a J,, X J, identity matrix, S is a J, X M matrix of factor loadings,
and m,, is an M X 1 vector of random variates. Under these conditions, the represen-
tation of utility corresponds to a factor analytic structure. The logit kernel simulator
can be derived easily. By conditioning on m, the likelihood that observation z chooses
alternative 7 is written as:

B2,
po [
in > PRECEALL

=
N
1 % B2,
RS Hbtzsn,
jel,

:ﬁin

where R equals the number of draws from the distribution of m. By construction, P,,
(known as the logit kernel simulator) is an unbiased estimate of P;,. Given that P,, is
a smooth (twice-differentiable) function of the parameters, it can be used within
standard quasi-Newton estimation techniques. For a finite value of R, however, the
log(P,,) is a biased estimator of the log(P,,) (see Revelt and Train, 1996). The section
on estimation discusses the value of R for which this bias is negligible.

Table 1. Classification of nonparametric methods

Classification Systematic utility Random component
1. Nonparametric nonparametric distribution-free
2. Semiparametric | parametric (usually linear-in-parameters) distribution-free

3. Semiparametric 11 nonparametric parametric distribution
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(3) Nonparametric methods: Here, the term “nonparametric” refers to issues outside het-
erogeneity characterized by the latent class or random coefficients models. In the con-
text of random utility models, nonparametric methods can be classified as in Table 1,
where the utility is expressed as the sum of systematic utility and a random component.
(a) Nonparametric: Matzkin (1993) discusses identification conditions. Her work

however is purely theoretical and no applications exist on this topic.

(b) Semiparametric I: This is studied extensively in the econometrics literature. For
examples, see the special issue of the Journal of Econometrics (1993, v. 58, July,
p. 1-274) and Marketing Letters (1994, v. 5:4, p. 335-350). However, all em-
pirical studies are limited to a binary response variable, and even many theoretical
developments tend to focus on binary response models, as described in Horowitz
et al. (1994).

(¢) Semiparametric II: While correct specification of a random component is impor-
tant for consistent estimation of systematic utility, response shape of systematic
utility could suggest interesting behavioral implications. For a binary response,
the generalized additive model (GAM) allows estimation of an additive nonpara-
metric utility function when the random component is assumed to be logistically
distributed (Hastie and Tibshirani, 1990). Abe (1995) extends the GAM to a
multinomial response variable in the framework of a multinomial logit model. He
found that the algorithm was simple, estimation was quite robust under violation
of the logit distributional assumption through a simulation study, and the com-
putations were quick for typical scanner-panel databases.

In the estimation of a nonparametric systematic utility, note that the bottleneck is
typically the number of covariates. When the utility function has many covariates, the
data points are sparse over the high dimensional space and the estimation becomes
unstable. This is known as the “curse of dimensionality” (Silverman 1986, Stone
1985): as the number of dimensions increase, an exponential increase in sample size
is needed to maintain reliable estimation. Therefore, practical implementation neces-
sitates the implementation of some form of constraints (or structure) to the nonpara-
metric specification, such as additivity in GAM.

Future research on nonparametric methods should pursue the following:

* Demonstration of the advantages and benefits of pursuing nonparametric methods
through useful and interesting applications in choice contexts;

¢ Development of convenient estimation algorithms (GAM is one example); and

* Empirical studies to gain better understanding of the operational characteristics of
estimators—such as robustness—in practical settings.
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3. Sampling and data collection
3.1. Sample design and analysis for discrete panel data

A common survey design in empirical analysis of choice behavior is a panel in which a
sequence of discrete responses are observed. Examples are consumers enrolled in super-
market scanner panels, travelers who either provide diaries or retrospectively recall timing
and destination of trips, and workers periodically polled for employment status. The
classical protocol for enrolling a panel is simple random selection from a target popula-
tion, and virtually all of the statistical theory for analysis of discrete panel data assumes
this protocol. However, in some applications, the recruitment protocol involves stratifi-
cation by choice. Examples of choice-based recruitment protocols would be enrolling
scanner panel members from customers at a specific supermarket chain, selecting travelers
by intercepting them at destination sites, and selecting workers based on current employ-
ment status.

Choice-based samples can be quite economical in collecting relevant information at low
cost, but statistical analysis must be adjusted to correct for sampling effects. Also, choice-
based samples are quite susceptible to bias, since minor variations in survey procedure by
choice can produce differences that the statistical analysis attributes to differences in the
measured attributes of the alternatives. Model coefficients that are specific to alternatives
are particularly vulnerable to this bias. In biostatistics, choice-based samples, also called
case/control or retrospective designs, are used mostly as a preliminary screening device,
and are viewed as insufficiently reliable to be definitive. Only exogenous sample designs,
also called prospective designs, are considered reliable enough to provide a firm basis for
medical policy (see Feinstein 1979). While there is less accumulated experience with
choice-based sampling strategies in consumer behavior applications, the lessons from
biostatistics suggest that at the very least, a choice-based design user assumes a heavy
burden of ensuring that conclusions drawn from the data are not contaminated by the
sample design.

A sample design in which members are recruited by interception at chosen sites, and
then followed up as a panel with diaries and/or periodic surveys, is an Intercept and
Follow (I&F) design. Such a designed survey was conducted for the State of Montana:
anglers were intercepted at selected fishing sites on selected days, and then followed up
with diaries over a fishing season (see Morey et al. 1995). The purpose of the study was
to estimate a model of angler participation level and site choice as a function of individual
and site attributes. In the following discussion, choices are termed “sites,” and recruitment
is interpreted as interception by screening at specified sites.

Recruitment by interception at selected sites has several important statistical implica-
tions. First, individuals who visit a site frequently have a greater chance of being captured
and hence are oversampled relative to those who visit the site infrequently. Further,
characteristics associated with more frequent visits, such as male gender or high avidity
in the case of fishing, are oversampled relative to characteristics associated with infre-
quent visits. Second, visits to intercept sites, compared with nonintercept sites and non-
participation, are more frequent in the sample than they are in the population. Third, if the
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capture rates vary across sites, then the effects of site attributes on behavior are con-
founded by variations in apparent site popularity-an artifact of the sample design.

Techniques for adjusting the statistical analysis of choice-based cross-section samples
to correct for sampling effects have been investigated extensively in biostatistics and
econometrics; see Manski and Lerman (1977), Manski and McFadden (1981), Hsieh,
Manski, and McFadden (1985), and Imbens (1992). A critical requirement for these
methods is that all alternatives appearing in the behavioral model of choice must be
sampled at positive rates.

The literature on choice-based sampling has not treated the problem of analyzing panel
data with choice-based recruitment. McFadden (1996) extends the statistical analysis of
choice-based cross-section samples to the case of panels with choice-based recruitment,
and finds that the simple WESML and CML weighting schemes that work in the cross-
section case are no longer valid. McFadden (1996) provides a readily implemented sta-
tistical procedure for the case of panels where there is no unobserved heterogeneity that
persists through time, and provides solutions for some cases. The results are clearly useful
for applications with explicit choice-based recruitment, and are relevant for a broader
class of panels where screening protocols, refusals, and attrition create de facto stratifi-
cation by choice.

Suppose there is no persistent heterogeneity, so that choices on different occasions are
statistically independent, conditioned on observed exogenous and predetermined vari-
ables. Then the intercept choice behaves like a cross-section choice-based observation,
and can be treated using a WESML or CML criterion. All subsequent choices behave like
observations from a random sample. Thus, for example, one can discard the intercept
observation and analyze the remaining data as if the sampling were random. However,
even in this case the distribution of explanatory variables is not representative of the
population, but rather biased toward configurations of explanatory variables that induce
more frequent visits to the intercept sites. Then, estimation of any population quantity
requires re-weighing of the sample to correct for the oversampling of frequent visitors.

Alternately, suppose there is persistent heterogeneity, perhaps due to taste variations
across individuals. Then the simple expedient of discarding the intercept observation and
analyzing the panel as if it were randomly recruited does not work. Further, quasi-
maximum likelihood methods that are a standard computationally practical tool for ana-
lyzing randomly recruited panels with persistent heterogeneity break down under choice-
based recruitment. McFadden (1996) shows that an extension of the CML criterion is
applicable; implementation requires use of computer-intensive simulation methods.

3.2. Incomplete choice based samples

A common shortcoming of revealed preference (RP) data is incompleteness: information
on the choice set from which choices are made may be missing or incomplete, and the
sample may lack data on some of the alternatives. In an extreme but familiar case, data
may be available for only one of the choice alternatives, as when a firm keeps files on only
its own customers. For such data it would appear to be impossible to estimate a choice
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model. However, Steinberg and Cardell (1992) show that even in such unfavorable cir-
cumstances it may be possible to estimate binary discrete choice models by pooling the
RP data with commonly available public use data. Thus, for example, an insurance com-
pany pooling data on its own customers with census data lacking information on insurance
choices could still estimate a binary model of insurance choice. In companion work,
Cardell and Steinberg (1993) extend their results to incomplete multinomial data. Here the
core argument for the binary logit case is summarized.

Consider three types of data. The first, called a choice-restricted sample, is a random
sample available from a stratum defined by the response variable Y. The second, dubbed
a supplementary sample, is a random sample with observations drawn from all strata of
the choice variable Y, but which contains data only on the covariates X and does not record
any information on Y. The third is a random sample from the entire population with data
on both Y and X. In the latter case, for a sample of size N, the log likelihood function can
be written as:

% [Y, log P, + (1 = Y,)log(1 = P,)] @)
n=1

where P, is a probability model and » indexes observations.

For model identification, equation (2) requires that data contain observations for both ¥
= l and Y = 0. The model cannot be estimated when the data is restricted to observations
with Y = 1 (choice-restricted samples). However, when a supplementary random sample
containing information on X but not on the response variable Y is pooled with a choice-
restricted sample containing data on both X and Y, it may be possible to estimate a discrete
response model.

Consider the artificial case where the sampling rates for the supplementary and choice-
restricted samples are both 1; that is, where the entire population is surveyed in the
random (supplementary) sample, and all persons with the response variable equal to 1 are
surveyed in the choice-restricted sample. Applied to the entire population, equation (2)
can be rewritten as

N
> log (1 —P,)+ log P, — log (1 —P,) 3)
n=1 1 1

n:Y,=

n

n:Y,=
where N now equals the population size.

If the sampling rates are 1, then equation (3) can be computed from the combined
supplementary and choice-restricted samples as follows: (a) The first sum is computed
from the supplementary sample alone, accumulating a log(l — P) term for each obser-
vation. This is equivalent to erroneously treating every observation in this sample as if it
had a value of 0 for the response variable. (b) The second sum is computed from the
choice-restricted sample only. It accumulates a correct log P term for observations having
a value of 1 for the response variable. (¢) The third sum is also computed from the
choice-restricted sample only and functions as a correction term.
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When the sampling rates are less than 1, a related pseudo-likelihood can be applied to
a pooled sample of supplementary and choice-restricted samples. It can be written as

N ¥y NtM
X log(1—=P,)+— > log(P/(1—P,)) 4)
n=1 7| n=N+1

where 7, = the sampling rate in the supplementary sample; ; = the sampling rate in the
choice-restricted sample; N = the size of the supplementary sample; and M = the size of
the choice-restricted sample. The data are arranged so that the first N observations are
from the supplementary sample and the following M observations are from the choice-
restricted sample. Aside from some simplification, equation (4) differs from equation (3)
only in that contributions to the pseudo-likelihood from the choice-restricted sample are
weighted by the ratio of the sampling weights 7, and r,. Thus, to implement equation (4),
we need to know only either r,/r,, or the share of the population with ¥ = 1.

When r, and/or r, are less than 1, Cardell and Steinberg (1993) show that for a broad
class of functions P, the maximization of equation (4) when applied to a pooled sample
of supplementary and choice-restricted samples yields consistent estimates.

4. Estimation

We now turn our attention to developments in the estimation of MNP, for which three
general approaches exist. A non-classical approach is Gibbs Sampling, or more generally,
the method of Monte Carlo Markov Chains. Overall experience with this technique has
been mixed. While some find it to be a viable alternative to more classical simulation
methods (see Bolduc, Fortin, and Gordon, 1996), others note that it often requires a large
number of random draws and, thus, is computationally inefficient. The Gibbs sampling
approach has great potential but needs more work before the technique can be generally
adopted for discrete choice analysis.

A second approach involves simulating the choice probabilities using GHK (see
Borsch-Supan and Hajivassiliou, 1993) or Stern’s method (Stern, 1992). Such simulators
assume that the random component of utility is multivariate normal, but by partitioning
the error term in a convenient manner, the probabilities can be estimated quickly. Many
authors have compared the plethora of estimators that fall into the class (e.g., Hajivassil-
iou, McFadden, and Ruud, 1996), and most find the GHK approach to dominate others.
Bolduc (1996) extends Stern’s original approach in order to produce a simulator that
performs as well as GHK in terms of precision, but computes faster.

A third approach, discussed earlier, is the hybrid logit. This section focuses on some
new insights not covered in the several survey papers referenced above, and exclusively
concerns the hybrid logit model estimation.

(1) Identification: Ben-Akiva and Bolduc (1996) demonstrate that the hybrid logit model
is subject to identification problems that do not arise in the conventional MNP frame-
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work. In fact, the authors show that this problem appears in any MNP formulation
based on an error component decomposition.

(2) Simulation variance and local maxima: Simulation variance is simply the additional
variation in the parameter estimates due to approximation of the likelihood function
by a finite number of random draws. The R variates used in simulating the integral are
a function of the initial seed to the random number generator. Two easy solutions for
reducing this variance are: increase the value of R or use antithetic variates. From a
programming perspective, the first option is easier, but it increases the computation
time. The second option requires a trade-off as well, since computing the antithetic
variates is more costly than simply drawing pseudo-random numbers.

An interesting feature of the logit kernel estimator is that the variation in the likeli-
hood value seems to be small for even small values of R (e.g. 20), but the variation
in the parameter estimates can be as much as 10% of the sampling variance for values
of R as large as 500. In other words, large changes in the parameter estimates result
in only small changes in the likelihood value. Needless to say, the optimal number of
random draws needed to minimize both simulation variance and computation time
largely remains an open question.

Local maxima are a common problem among many MNP estimators that use simu-
lation techniques, and as of yet, little research has focused on this issue. The method
most often prescribed for overcoming this problem is to estimate the function at
different starting values, but since maximization often requires hours (or days!) of
computation time, this solution is clearly impractical. Inevitably, researchers must
develop new algorithms that are robust to local roots, and one candidate may be
simulated annealing (SA) (see Aarts, 1989, for a description). SA has already estab-
lished a position in computer science and engineering literature as one of the best
methods for solving combinatorial optimization problems which often have many
local roots, but it has not yet found its way into the statistical packages commonly
used by discrete choice empiricists. Research should begin to focus on modifying
these algorithms to facilitate efficient estimation of the MNP model.

5. Conclusion

Increasing the complexity of discrete choice models often requires complex computations
and data collection procedures to estimate the choice probabilities, and as in the MNP
case, issues of computational tractability quickly become important. Simulated maximum
likelihood is a practical method that often works well in resolving this problem, but the
breakdown points of these estimators are ill understood. Clearly future work must identify
when problems such as simulation variance and local maxima are important, and develop
methods to deal with them. While the speed of the average computer has increased, so also
have the ambitions of modern discrete choice empiricists.
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Notes

1. DeSarbo et al. (1997) discusses latent class choice models with reference to capturing heterogeneity in
consumer response models. This section provides an overview of recent developments not addressed in
DeSarbo et al. (1997).

2. In this respect the term “latent class choice model” is somewhat of a misnomer since latent class models
utilize the existence of indicators of latent classes. It must be noted that the choice itself can be construed
as an indicator of both the underlying preference and the associated latent class. The ideas developed within
latent class choice models are extended in Gopinath (1994) wherein models incorporating attitudinal and
perceptual indicators, referred to as latent structure choice models, are formulated.

3. Throughout this section, let J,, denote the total number of alternatives faced by individual n, K denote the
total number of explanatory variables in the systematic portion of utility, and N the sample size.
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