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STATEMENT OF THE PROBLEM

When a liquid flows through a fixed bed and concentration
gradients exist in the liquid, a mass transfer process occurs which
tends to decrease the gradients. This mass transfer_process is the
result of the liquid mixing occurring within the interstices of the bed.
Previous studies have concerned the radial mixing of both gases and
liquids flowing through fixed beds, and the axial mixing of gases
flowing through fixed beds. There are practically no data on axial
mixing for liquid systems. The present investigation has resulted
in the evaluation of axial eddy diffusivity occurring in liquids flow-
ing through fixed beds of solids. Two groups of factors effecting the
axial mixing were inveéfigated: the geometrical properties of the fixed
bed and the physical properties of the flowing liquid. The specific
| variables investigated were particle size and shepe, 5ed length, flow
rate and viscosity of the flowing soiutions. Continuous photometers
‘were designed and constructed to analyze the color density of the flow-
ing liquid solutions. Several experimental techniques were investigated, -
with the frequency response and pulse function methods being employed

in the research.



I. TINTRODUCTION

When a liquid flows through a bed of packed solids and
concentration graéients exist in the liquid either because of input
composition changes or because of a chemical reaction occurring
within the liquid, a mass transfer process is initiated which tends to
éliminate the gradient. This mass transfer procéss is the result of
the liquid mixing occurring within the bed. The "back-mixing" in
catalytic reactors or adsorption towers tendé to decrease the driving
forces for chemical reactions or transport processes and thus limits
the conversions or separations obtainable. The effectiveness of
filtration is often limitéd by the mixing between the filtrate and
the wash liquid. "  In ion exchange and ion exclusion, the degree of
separation produced is a function of the liquid mixing taking place

within the beds of resins.

MIXING MECHANISMS

The mixing of liquids flowing through fixed beds may be
considered as a mass transfer process. '"Molecular diffusion” is the
name glven to a mass transfer process in which the rate is propor-
tional to the cqnpentration gradient and the proportionality constant
is called "diffusivity". In a fluid flowing through a packed bed an
additional mixing process occurs which is superimposed on the molecular
mechanism of diffusion. The same form of equation as used to describe
"molecular diffusion” is still often used to define this overall mass
transfer process, but the constant is called "effective diffusivity‘

because of the turbulent flow characteristlcs which are associated with



the constant's dependence on flow rate and geometry of the system.

This model of mixing is described by equation (1).

N=- (D, +8; ) %? =-D, %;—r (1)
where Dv represents the moleculgr diffusivity, SE the mixiné diffusivity
and E% the tqtal effective diffusivity.

The miXing may be rationalized in terms of the following
mechanisms. When fluids flow around an object, a surface boundary
layer is formed in which the fluid velocity varies from zero at the
surface to the main stream velocity at the outer edge of the boundary
layer. As the fluid velocity increases, the boundary layer separates
from the surface of the object before the rearmost point is reached,
curls up on itself, and forms a stationary eddy behind the object. -
This separation phenomenon occurs at some point in the flow of the
boundary layer around the surface Dbecause of the adverse pressure
gradients which are Created, the conversion of mechanical energy to
heat and the increase of inertial forces over the shearing forces
within the boundary layer. As the rate of flow increases further,
the eddies become larger and more complex, and are continuously shed
and reformed. Finally the wake behind the object becomes unstable
and irregular turbulence occurs. In & packed bed the intersection of
the boundary layers and eddies associated with the many particles pro-
duces mixing of the fluid in a radial and axial direction even though
the flc- ay not be entirely turbulent.

Several investigators2’13’36 have discussed the statistical
nature of turbu. “vce in flow through packed beds. The "random-walk"

theory, explains the contribution of solid particles to the radial

mixing process. When a molecular group approaches a particle, the



group divides and moves laterally to pass the object. This side-stepping
pnocess is repeated at each layer of particles in the bed. The theory pos-
tulates complete mixing in the interstitial space of the several incom-
ing streams. The resulting "random-walk" formula has been proven con-

26’30. Recent

sistent with experiments concerning radial diffusionls’
investigations have shown that effective radial diffusion; represented
by DR, and effective axial diffusion, represented by DL’ are not of the
3,26,27,31.

same magnitude

PREVIOUS INVESTIGATIONS

The first measurements of turbulent diffusion in fluids flow-
ing through fixed beds were performed by Bernard and Wilhe1m3’39.
Radial mixing rates in both gaseous and liquid systems were determined
using a noint-source technique. (The various expefimental techniques
are explained in the next section.) Baron3 applied statistical con-
siderations, resulting in the random-walk theory, to radial mixing
which predicted results in the experimental range of Bernard and Wilhelm.
Iatinen?6extended the radial mixing experiments and the application of

the "random-walk" approach. Recent investigations by Fahien and Smithl?

and Plautz and Johnstone30

, concerning heat and mass transfer radially
in fixed beds through which gases are flowing, have extended and con-
firmed the above studies.

Axial mixing, or the mixing in the direction of flow, has
been neglected because of experimental and analytical difficulties.
Lapidus and Amundsonfoj5 presented a mathematical treatment for adsorp-
tion in beds, including akial mixing, which involved the response

function of the system to an inlet step function change in concentration.
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Danckwertsll arrived at similar results and measured a longitudinal
diffusivity in water flowing through packedbRaschig rings. Employ-
ing a frequency response techniqué (response to a sinusoidally vary-
ing 1nput),Kramer; and Al'berda2l+ presented some experimental results
for axial diffusion in a system similar to that of Danckwerts'.
Deisler and Wilhelm;e likewise employed the frequency response tech-
nique in the study of gaseous diffusion in beds 6f porous solids.

More recently, McHIenr’y27

employed this method of sinusoidally varying
éoncentrations in the study of axial mixing of binary gas mixtures
flowing thfough a random bed of spheres.

Previous investigations have thus resulted in data concern-
ing the radial mixing of both gases and liquids flowing through fixed
beds, and the axial mixing of gases flowing through fixed beds. Al-
though several experimental techniques have been proposed, there are
practically no data on axial mixing for liquid systems.

This study was undertaken to iﬁvestigate the axial mixing of
liquids flowing through fixed beds of solids. Two groups of factors
were investigated: the geometrical properties of the bed and the |
physical properties of the liquid, Continuous photometers were designed
and constructed to analyze the flowing liquid solutions. Several experi-

mental techniques were investigated, with the frequency response and

pulse function methods being employed in the investigation.



IT. EXPERIMENTAL

EXPERIMENTAL METHODS

Several different techniques have been employed in the in-
vestigations of turbulent mixing in fixed beds. Each method analyzes
the response curve resulting from some kind of initial disturbance in

a dynamic system.

The point soufce technique, in ﬁhich a tracer diffuses from
a point soﬁrce into the fluid flowing through the packed bed, has been
used to evaluate the extent of radial mixing3’15526’30. Fluid samples
taken at various radial increments are analyzed, as well as samples of
the average effluent, resulting in'concentretion profiles from which
radial diffusion coefficients can be determined. The point source
method was not used during the present research, but 1s discussed
briefly to present a cdmplete pileture of the mixing occurring in fixed
~ beds. The results of several investigations of radial mixing by the
point source technique are presented and compared with the data of the
present research in the discﬁssion.

The frequency response technique, employed in previous gas-
12,27

eous diffusion measuremente , requires the response to a sinusoidQ
ally varying inlet concentration. The longitudinal diffusivities can
be computed, as will be shown_later, from the ratio of the amplitudes
of the sinusoidal concentration wave at the inlet and outiet of the bed.
The freqﬁency response method was employed in part of the present re-
~search because it presented advantages of simplicity during both the

experiments and calculations. However, analytical difficulties were

encountered in its applications for low flows because of the length of

-5-
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the runs and because of the small axial mixing rates. To overcome the
analytical problems, other techniques were employed.
A third method involves the response to an inlet step func-

tionll’25.

Experimentally, this could be carried out by flowing a
clear éolution and a tracer solution successively through a fixed bed
and determining exit concentration as a function of time. From this
experimental concentration profile the axial diffusioﬁ rate can be cal-
culafed. However, experimental difficulties are encountered in obtain-
ing a sharp, uniform step function at the inlet to a bed. Several
unsuccessful attempts were made to obtain a sharp step function during
the present research. In addition, difficulties were encoﬁntered in
the calculation of the axial diffusivity from the outlet response curve,

as explained later.

Yagi and M:‘Lyauchiu2 used the pulse wave method in their study

of mixing in continuous flow reactors. DanckWertsll suggested this
method for the investigation of mixing in packed beds. In thié method,
one determines the exit concentration profile for an experiment in
which the tracer is injected over a short period of time, that is, in
the form of a unit pulse. From this concentration profile, the axial
mixing coefficient can be calculated. The pulse function technique
was used during the present research for the low flow rate range.

By making the necessary modifications, the equipment.was
successfully used for both the frequency response technique and the

pulse function method.



EQUIPMENT

Flow Systen

Figure 1 is a photograph of the experimental equipment
employed in the frequency response runs. The flow system for this
method is illustrated schematically in Figure 2. The liquid solu-
tions were forced through the system from constant pressure supply
tanks. The pressure in these tanks was maintained from the avail-
able 90 psig air supply by a Moore Nullimatic pressure regulator. The
brass storage tanks, each having a capacity of 10 gallons, contained a
clear solution oOr a dye solution. During a single run the small change
in liquid height,resulting in a slight decrease in the tank pressure,
did not alter the flow rate within the accuracy of the reading. Hoke
needle control valves @ownstream of the storage tanks regulated the
flow from each tank. Copper tubing having an inside diameter of
3/8 inch was used throughout for all liquid flow lines. The clear and
dye solutions, alternated by the three-ﬁay directional-flow valve and
mixed during flow through the pre-bed (a column packed with glass beads)
to periodically vary the composition, then flowed through the packed '
”testing section. Analysis of the flowing streams was made at both theA
inlet and outlet of the testing sections by means of continuous photo-
meters. A third Hoke metering valve following the column added control
to the system. The flow rate was measured %y three Fisher and Porter
flow metérs arranged in parallel and covering a flow range from 0.001
gpm to 1.0 gpm. Calibration curves for the flow meters can be found in
Appendix III-A.

Essentially the same flow system was employed for the pulse

function runs except for a few modifications as shown in Figure 3. A



FIGURE 1 - EQUIPMENT ASSEMBLED FOR FREQUENCY RESPONSE EXPERIMENTS
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small 2 liter brass cylinder containing the concentrated tracer solu-
tion replaced one of the large storage tanks. Copper tﬁbing having an
inside diameter of 1/4 inch was used for the concentrated dye lines.
The clear liquid flowed continuously through the system, with a short
dye pulse being injected into the flow by means of the three-way
directional-flow solenoid valve. The pre-bed was not used, but longer
test columns were employed. The liquid flowing through the column was
analyzed only at the ou%let of the testing section by a contimuous
photometer.

Features of the systems were: the method of periodically
varying the liquid composition, ﬁhe method of introducing the pulse
function, thé columns and packings investigated, and the analytical
units.

Wave Generator - Frequency Response Method

The inlet stream composition, which varied periodically with
time, was obtained by passing alternate volumes of clear and dyed
solution through a pre-bed of glass spheres. The feed to the pre-bed,

a step-function composition, was formed by an electrically controlled
three-way directional-flow Skinner solenoid valve which alternated the
fléw of the two solutions. The three-way valve could be operated either
manually or automatically. In the automatic operation a combination

of two Microflex Reset timers, manufactured by Eagle Signal Corporation,
were set so that the éolenoid was repeatedly on and off for equivalent
intervals. The pre-bed consisted of a brass conical expansion section
followed normally by a 1-1/2 foot section of 2 inch inside diameter

Pyrex glass pipe. The expansion section was filled with 1 mm glass
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spheres, while the glass pipe unit was filled with 3 mm glass spheres, sepa-.
rated and supported by a lOO mesh bfass screen as shown in Figure L.

The pre-bed served two purposes. First, it produced at the inlet
to the testing section an approximate constant velocity profile. The measure-
ment of point velocities for fluidg flowing within packed beds is very diffi-
cult, but several investigations indicated the ﬁbove assumption valid for the
pre-bed system. Studies by Schwartz and Smith3® on gaseous flow distribution
in packed beds showed a maximum in the veloeity near the wall. However,
their studies indicated that for dp/dt less than .0k the assumption of uni-
form velocity distribution is valid. Thatcher38 arrived at similar conclu-
sions and also found that entrance effects were almost negligible. A veloci-
/ty profile for aqueous NaCl solution flowing through packed spheres was ob-
tained by Hirai?0. The shape of this profile does not agree with previoﬁs in-
vestigations, but indicétes that the uniform velocity distribution assumption
is valid for liquid flow through packed beds.

The second purpose of the pre-bed was to disperse or mix the inter-
fages of the alternate solutions so that an approximate sine wave composition
would be obtained. The pre-bed, through this mixing process, served as a
damping factor, hence removing most of the higher harmonics from the approxi-
mate square waves which were introduced by the thrée-way valve. The mathe-
matical approach to the damping effect of the pre-bed apd the calculations
for a predicted wave are presented in Appendix I-B-5. The upper portion of
Figure 5 compares an experimental outlet wave of the pre-bed with the predicted
wave, the calculated values of which are based on the known experimental condi-
tions of pre-bed particle diameter, pre-bed height and liquid velocity and the

degree of liquid mixing determined through this research. 1In the initial runms,

the pre-bed was packed with 1 mm gléss beads and the resulting wave was not as
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close an approximation of a true sine wave as desired, but could be repre-
sented by a short Fourier series. The pre-bed also damped out the small
irregular waves sometimes formed at the interface in the operation of

the three-way valve.

Pulse Generator

A unit pulse of concentrated dye solution was injected into
the flowing clear solﬁtion by means of the three-way Skinner solenoid
valve. The length of the pulse was determined by the residence time
of the run being made. For short residence times, an instantaneous
on-off flick of the manual switch was used; for low flow rate runs
with residence times greater than ten minutes, pulse lengths up to
four seconds were used.

Test Column

Figure 4 is a section drawing of the main test column show-
ing the several sections flanged together. Two 5/4 inch glass spacers
used in the analytical system separated thé main test section from the
pre;bed and the calming section. Neoprene interface gaskets were ﬁsed
at all joints. All glass sections of the column were 2 inch inside
diameter Pyrex glass pipe. The spacers, gaskets and brass calming
section were likewise 2 inch inside diameter so as to maintain a smooth
wall across the joints. The lengths of the main test section of glass
pipe used in the frequency response experiments were 5.0 and 2.0 feet.
Column lengths of 3.0 and 5.0 feet were used in the pulse function
runs. Glass spheres, Raschig rings, Berl saddles, and Intalox saddles
were used as packing. The characteristics of the packings are shown
in Table I. The porcelain packings were supplied through the courtesy

of the United States Stoneware Company. The fraction voids were
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measured each time the column was set up. A 100 mesh brass screen,
fastened between two gaskets, supported the packing in both the pre-bed
and test sections{ No screen was used above the packing in the test
section.

The same method of packing, i.e., pouring the beads slowly

through a funnel at the top of the colum and tapping the colum

TABLE I. PACKING CHARACTERISTiCS

‘ Equivalent Bed
Nominal . Diameter Porosity
Type Material Size dP dp/dt €

Spherical Glass  60/80 mesh  .0083 in. .00k2  .352
Spherical Glass 1 mm .039 in. .020 .340
Spherical ‘Glass 3 mm .133 in. .067 340
Spherical Glass 6 m .265 in. .13 367
Raschig rings Porcelain 1/ in. .22 in. .11 .632
Berl saddles Porcelain 1/% in. .23 in. 412 - .616
Porcelain 1/4 in. .20 in. .10 .629

Intalox saddles

—— - ma—

lightly to promote settling, was used each time the columm was repacked
with spheres. The column and the entire system were backfilled very
slowly with water to remove all'air.

A wet ﬁethod was used in loading the longer column with the
porcelain shapes for the pulse function runs.’ The colum was filled
partially with water, and the rings or saddles were slowly poured
'through a fpnnél at the top. The water prevented breakaée and provided
slow, even settling.of the particles. The colum was also tapped lightly

to promote settling. When the test section contained 6 mm spheres,
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Raschig rings, Berl saddles, or Intalox saddles, the expansion section
was filled with 1 mm glass beads to remove velocity variations and pro-
duce an even pulse distribution at the entrance. Normally, the ex-
pansion section was filled with the same size beads as were in the
fest section. Allowance was made in the calculations for the extra
length.

Analytical System

Method gﬁ Analysis. In the frequency response technique the

inlet and outlet wave compositions located above and below the fixed
bed must be determined. The continuous analysis of a liquid flowing
through a bed of packed solids is a difficult task. The method of
continuous colorimetric analysis was chosen over others investigated,
such as conductometry and refractometry. Conductivity measurements
were ruled out because of the close temperature control needed, the
flow interference caﬁsed by the electrodes within the columh, and possi-
ble erroneous readings caused by the coating qf electrodes with the
leading liqpia, | Methods using a refractometer were also ruled out
because of the high cost and excessive flow interference. The continu-
ous colorimetric photometers were employed at both the outlet and inlet
without causing any flow disturbances and gave an instantaneous mea-
surement of the dye concentration flowing through a horizontal section
of the column.

Photometer Design; The two identical photoelectric colori-

meters used in the research were constructed in the laboratory because
available commercial models would have required extensive modifications.

The colorimeters were designed and constructed by trial and error ex-

23,28,40

perimentation after an extensive literature survey and study of
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existing instruments. A sectional drawing of one unit is shown in
Figure 6. In operation, the instrument employed the basic physical
relationships needed to measure color intensity. Light from a tung-
sten source was collimated by a lens, passed through a filter which
selected the desired color of light, and theh directed through the
flowing liquid. The flowing stream absorbed a certain amount of light,
depending on its color inﬁensity. The remaining light was then de-
tected by a sensitive phototube in the receiver, and electrically
amplified and recorded. A photograph of a photometer, exposing the
light source compartment, is shown in Figure 7. The two units were
mbunted on vertically adjusﬁable aluminum platforms around the test
column as shown in the photographs. The light source compartment and
the photocell compartment each moved horizontally on a track, so that
once the colorimeter units were aligned, positions were reproducible.

Light Source. The light source was a 100 watt, T-8, double

contact, projection bulb mounted in a standard socket which was adjust-
able both horizontally and vertically. Power to the light source was
provided by a 500 watt Sola Constqnt Voltage Transformer which regu-
lated the output voltage to 115 volts plus or minus 1 percent over the
input range of 95-125 volts. Preliminary tests indicated no notice-
able variation in light intensity during the length of a run. The lamp
was adequately cooled by air blown through the chimney. The life of

a lamp was approximately 20 hours; hence, several were used during the
experiméﬁts. Because the incandescent projection lamp emits light in
the range 420-750 millimicrons, selective filters were needed to limit
the band of light passing through; this narrowing of the light band in-

creased the sensitivity and stebility of the colorimeter.
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Filter and Lens. Since maximum sensitivity was desired, the

selections of the filter, dye solution and photocell were all interre-
lated. The method described by Cooper8 was employed in choosing the
optimum combination of filter and photocell with thé desired dye. This
method is baéed primarily on the fact that the variation in.transmit-
tancy with concentration is greatest when the incident light is re-
stricted to the_spectral region of the solute's greatest absorptance.
The photometers werelinitially designed on the basis that Pontachrome
Blue ECR dye would be used as the tracér during the experiments. The
resulting optimum combination of dye, photocell and filter is presented’
in Figure 8 showiﬁg the desired relationships between the percent trans-
mittance cur\.re for Pontachrome Blue ECR, the spectral sensitivity char-
acteristic of a phototube having a S;h photosurface and the transmit- -
tance curve for a Cenco B filter. After construétion of the photometers,
preliminary experiments indicated, as will be explained later, that
Pontamine Sky Blue 6BX dye would be a more satisfactory tracer. Hence
a Cenco C, 610 millimicron‘peak, 100 millimicron band pass filter,

which has a transmittance curve corresponding to the traﬁsmittance
curve for Pontamine Sky Blue 6BX as shown in Figure 9, was used in the
photoﬁeters during the experimental work.

A double convex lens for creating an intense and homogeneous
beam of light was mounted with the filter on an adjustable base. The
beam of light, further restricted by slits 3/52 inch by 1/4 inch, was
directed through the flowing liquid at the glass spacers on a diameter
line of the column. The marked spacers were always returned to their

identical positions to insure reproducibility.
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Photocell. The vacuum photocell was chosen over other light
measuring cells because of its stability, instantaneous response and
high.sensitivity57. Gas-filled photoemissive cells were not used be-
cause of their.instability. Mﬁltiplier phototubes were not employed
because of the extremely constant high voltage supply required and be-
cause the incident light exceeded the toleration of the normal cell.
Photovoltaic cells were ruled unsatisfactory for a continuous colori-
meter because of their response lag or temporary fatigue, great sensi-
tivity to temperature changes and noﬁlinearity. A high-vacuum photo-
tube, IP39, having a spectral response of S-4 was chosen because of its
great sensitivity andbexcellent operating characteristicsBj. Numerous
IP39 tubes were tested until two sets (one for each of the upper and
lower photometers, and one fér replacement purpoées) were obtained
having similar sensitivities and characteristics. The phototube was
mounted upright in the receiving compartment thevsurfaces of which were
sprayed with light-absorbing black paint. The receiving compartment
also housed the power supply to the phototube and the circuitry aéso-
ciated with the measuring system. A schematic Wifing diagram of the
measuring circuit is given in Figure 10. For the type of phototube

used and the experimental conditions encountered, the potentiometer

19,37,43

circuit was the most desirable and least expensive This basic
circuit produced a volfage drop in the series of resistances propor-

tional to the light intensity. The power supply consisted of a 90 volt
radio battery, which was periodically checked with a portable-potentio-

meter. No replacement of the battery was hecessary during the experi-

mental work. The low anode voltage used 90 volts combined with the
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relatively low resistance (maximum: 13,600 ohms) produced a strictly

linear response.

Recording Instruments. The output of the phototube circuit,
i.e., the voltage drop which is directly proportional to the light in-
tensity, was measured by a Leeds and Northrup Model S Spéedomax G
Indicating Recorder. Two recorders were required to obtain a contimi-
ous record of the inlet and outlet wave compositions in the frequency
response method. The balancing system of the>Speedomax, supplied with
a D-C potentiometer circuit, consisted of a converter-amplifier unit
and a. two-phase balancing motor. The response of the instrument was
one second full scalé with a range of O to 10 millivolts. The recorder
was quite versatile in that chart speeds of 3 in./hr to 2160 in./hr
could be easily obtainéd by changingvgears. A separate switch con;
trolled the chart.

Tracer Solution

The dye initially proposed for the tracer and used in the

design of the photometers was Pontachrome Blue ECREB.

However, pre-
liminary tests, using a Fisher Electrophotometer, indicated the spec-
tral transmittancy of the dye was affected by light, by the pH of the
tap water, and possibly by contact with the copper used throughout the
equipment. Several dyes and indicators were tested intensively to
determine the effect of light, pH of solution and reaction with copper.
The solution found most satisfactory for the tracer was Pontamine Sky
Blue 6BX dy; dissolved in distilled water and buffered with potassium

acid phthalatel6. Several dyes, including the two mentioned above,

were supplied (with their spectral transmittancy curves as shown in
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Figures 8 and 9) through the courtesy of the E. ;. DuPont de Nemours
and Company. |

Solutions of Pontamine Sky Blue 6BX dye were found to conform
to Beer's law for the range of concentrations used during the present

research. This relationship may be expressed as

Kc
I=1I,10" (2)
or
log L) - xe (2a)
10 IO
where
I, = intensity of incident light
I = intensity of emergent light
c = concentration of absorbing solution
K = absorption coefficient

Since the tracer solutions conformed to Beer's law, a straight line
relationship existed between the logarithm of the transmittancy and
the concentration of the solutions.

The chemical composition of the dye used is given in the

structural formula below:

Pontamine Sky Blue 6BX - (Color Index No. 518)
Chemical name:
Sodium salt of
dimethoxydiphenyldisazo-bis-8-amino-1-napthol-

5:T-disulphonic acid
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0CHs OH AJE,
D N = Nms%ma

SOBNa
OH NHé
oC H} :
SOBNa

The molecular diffusivity of Pontamine Sky Blue 6BX was found
in the literaturel to be 7.5 x 10'9 fte/sec and was therefore considered
negligible in the experimental work. The Pontamine Sky Blue 6BX dye
was also employed succe;sfully'as the tracer in the propylene glycol
solutions used to determiﬁe the efféct of viscosity on the diffusivity.

Pontamine Fast Turquoise 8GLD dye, having similar spectralv
characteristiés, was used for a single run to determine whether a dif-
ferent dye affected the experimentai results.

Initial Calibration of Photometers

Both photometers were initially calibrated simultaneously
using standard solutions of Pontamine Sky Blue 6BX. The equipment was
assembled as if in preparation for a run, with the clear reference
solution in one storage cylinderland the standard dye solution in the
other cylindef. After an hour warm-up period for the photometers and
Speedomax recorders, the clear reference solution was allowed to flow
through the system. The photometers were then standardized by varying

the resistances in the photocell circuits until the Speedomax recorders



each indicated 9.0 millivolts. The standard dye solution was then
allowed to flow through the system, by switching the three-way valve.
The resulting change in color density was recorded. This method was
followed for each standard solution. |

Siﬁce the tracer solutions conformed to Beer's law, the

calibration curves can be represented by the formula

y = A 10" (3)
where
y = reéorder reading, millivolts
c = concentration, gms/y4

constants of the calibration

>
=
i

A plot of logarithm y as a function of concentration results in a

straight line relationship represented by the modification of equation

(3) as
log v = log A + me (3a)
where
log A = intercept
m = slope

The calibration curves for the inlet and outlet photometers, presented
in Appendix IIT-B, are identical and approximate a straight line. The
resulting formula for concentration, with the evaluated calibration

constants, is

_ 9542k - log y
°T Tlee ()
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Materials

Distilled water, buffered with 0.0012 molar potassium acid
phthalate,‘was the fluid normally used during the investigation.
During the frequency response runs the tracer solution contained ap-
proximately 0.0064 grams per liter of Pontamine Sky Blue 6BX. This
concentration produced a color density which when analyzed in the

photometers resulted in an approximate Speedomax recorder reading of

TABLE II. PROPERTIES OF PROPYLENE GLYCOL-DISTILLED WATER SOLUTIONS

Percent Temperature Density Viscosity
Propylene Glycol °C gn/ce Cp
0 20.0 0.998 1.007
50 h 20.0 1.040 6.205
67 19.5 ‘ 1.045 11.726
85 18.5 ‘ 1.043 26.861

i.O millivolt. The concentrated dye solution used in the pulse func-
tion experiments contained approximately 4 grams per liter of Ponta-
mine Sky Blue 6BX. The density of the solutions used wefe assumed to
be identical to that of water since the concentrations were so smail.
The viscosities of the solutions were determined as a function of tem-
perature and found to be almost identicél to that of water as shown
in Appendix III-C.

Several runs were made to determine the effect of viscosity
on the mixing chafacferistics. Propylene glycol was used in preparing

solutions of high viscosity. It is readily miscible with water in all
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proportions, and produces a solution having a relatively constant density
for all concentrations. The properties of the propylene glycol-distilled
water solutions are shown in Table II. The concentrated dye injected
into each of the above solutions contained a similar percentage of pro-

pylene glycol.

EXPERIMENTAL PROCEDURE AND DATA

Frequency Response Method

The experimental procedure can be best explained by describing
a typical frequency response run. The equipment was assembled, as shown in
Figures 1 and 2, and the entire system was filled with distilled water and
purged of air. One of the tanks was filled.with the clear solution, while
the other was filled with the dye solution. The dye solution was mixed
before each run from a standard concentrated dye solution. Prior to each
run the flow rate; the frequency of the periodic wave, and the chart speeds
needed to record the sine waves were determined. The photometers and re-
corders fequired an hour to stabilize. Before turning the light sources on
.1t was necessary to start the cooling air. During the warm-up period, the
two Microflex timers were set at the desired frequency. Preliminary experi-
ments determined what frequency was required for the pre-bed to produce a
satisfactory sine wave. A stop watch was employed during the run to check
the timers. The recorder charts were also adjusted to the desired speed
by installing the necessary gear arrangements.

After the electrical measuring units were stabilized, the

clear reference solution was allowed to flow through the system. Both



32

photometers were standardized by varying their resistances until the
Speedomax recorders indicated 9.0 millivolts. A record of this stan-
dardization was méde on the chart paper and also on the data sheet.
Then the dye solution was allowed to flow through the system and the
resulting measurement (approximately 1.0 millivolts) recorded as before.
This standérdization procedure was followed before each run.

The pressure in the storage tanks was normally set at 50 psig;
however, in cases where higher pressure was requi¥ed to force the solu-
tions thrdugh the system, 80 psig was used. After the standardization
of the photometers, the Hoke metering valves downstream of the storage
éanks were opened a certain number of turns. Then the needle control
valve foilowing the column was opened and set at the desired flow rate,
allowing the clear solution to flow thrdugh the colum. The three-
way directional-flow solenoid valve in the unenergized position allowed
the clear solution to flow. Once the flow rate was stable, the sole-
noid valve was energiéed and the dye‘solution allowed to flow. Then,
the metering valve following the dye storage tank was adjusted so that
equivalent flow rates were obtained. Repetition of this process assured
identical flow rates for both solutions.

The‘run was begun by switching the three-way valve to the
automatic control of the timers, and stafting the chart paper in the

~recorders. A minimum of twenty waves were allowed to pass through the

testing section, thus allowing the column to reach equilibrium. During
the run thé liquid flow rate and temperature of the solutions were re-

corded. The liquid rates remained steady so that the flowmeters could

be accurately read to 0.2 of a division. Following the run, the charts
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containing the continuous record of the inlet and outlet wave compo-
sitions were marked with the run number and inlet or outlet analysis.
The following is a list of the data which was recorded during
a frequency response run:
Run designation
Date and time
Column properties
Particle diameter
Height
Porosity
Pre-bed properties
Particle diameter
Height
Frequency of periodic wave
Chart speed
Liquid flow rate
Liquid temperature
Recorder traces
Colorimeter calibrations
Inlet colorimeter; clear and dye solutions
Outlet colorimeter; clear and dye solutions

Inlet and outlet concentration profiles

Experimental data for the frequency response runs are pre-

sented in Table III. Column 1 contains the run designation, and col-
‘umns 2 and 3 the particle diametef and height of the pre-bed. The
corrected flow rate of the liquid solutions is reported in column L,
and the temperatures of the solutions in column 7. Columns 10, 11 and
lé report the physical properties of the test section: cblumn 10 the
diameter éf the glass spheres, column 11 the porosity gf the packed
bed, and column 12 the height of the packing. The period of the intro-

- duced concentration wave is reported in column 21. The maximum and
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minimum concentration points, averaged for ten inlet periodic waves,
are pfesented in columns 13 and 14, respectively; the maximum and mini-
mum concentration points, averaged for the ten corresponding outlet
waves, are presented in columns 16 and 17, respeqtively. These concen-
tration points are the results of the conversions of the recorder
traces (in millivolts) to concentration units on a basis of O for the
clear solution and 1 for the dye solution. Figure 11 is a repro-
duction of the actual recorder traces of the inlet and outlet periodic
waves of run 28; Figure 5 presents the inlet and outlet waves for run
28 resulting after the conversion to concentration units. The experi-
mental data (recorder trace points in millivolts) for the complete
concentration profiles of the inlet and outlet periodic waves of run 6
are presented in Appendix II-B.

Four sets of data, each with a different sized glass sphere
as ﬁacking, are reported. The first set includes a group of preliminary
runs, A-F, which wefe employed to determine the feasibility of the
frequency response method. The 1.5 foot test section was packed with
1 mm glass spheres (dp = .039 in.) during runs A and B. For the remainder
of the first set, runs C-F and 1-9, 1 mm glass spheres in a 3 foot test sec-
tion were uséL In runs 1-9, the velocity, covering a range from 6.05 gpm
to 0.90 gpm, was the variable. The second series of runs, 19-26, employed
60/80 mesh glass spheres (dp = .0083 in.) in either a 2 foot or 3 foot
column, with the flow rate varying from 6402 gpm to 0.68 gpm. In the
third group of runs, 10-18 and 27-29, a 3 foot column was packed with
5 mm glass spheres (dp = ,133 in.) and the velocity was varied from
0.05 gpm to 0.84 gpﬁ. The fourth group of runs, 30-35, employing a

2 foot test section packed with 6 mm glass beads (dp = .265 in.), was



g2 NNY ASNOJSHY XONANOTUA SYHOVMI ¥YEQYOOEY J0 ZOHEUDQom.mMm - TT TNNDIA

Tt 3a0 i L
B [ b T I EEE T | FH it E i B HEE
FH F HEECEFF [ £ i TTFTT PR e 52 i HHEEH
H £ FH EH FH FEEEEEEE] ki FEEREE - HEEERREEF ERA EEH L | HHEEE et t
HHTER gisain] o T T T , T

- 82 Nn§ i T i

= i ma= a My 35 et
3AQ ot 2 iiise |
aeicrlicEE i EEN , S i s e D e B
MH/N 096:Q33dS LHVHD siizaell3Ehd (T i e [ A s AL S
3, §12+'NTI0S dW3L i R : e Lduauseal lz5a3 e HULLAY B | e R R e ER L R e
938 2 : AOINAd : R R . EEEEEE [ EE L bR b HEE FEEEE | FEECH R
Wd9 062" - I - IUvY MOId athsgidiizgscdic] L FER TR seaniainl Mhaia R sl et catani e e e e
14 $O'E - STUIHIS wuig e e EE L it FEEEL T EE R
F: 9g6l'8sl d3S i : FEEEEE i
i L3N - 82 NN T sseass

—————p . (R,



-37-

made to determine the effect of the large dp/dt ratio, 0.13, on the
diffﬁsivity measurements. The flow in runs 30-35 covered the range
from 0.05 gpm to 0.86 gpm.

The reduction of the experimental data and evaluation of axial
diffusivity are discussed in the next chapter and in Appendix II.

- Pulse Function Method

The equipment for the pulse functibn runs was assembled as
shown in Figure 3. Much of the same procedure as employed in the fre-
quency response runs was followed. Again, the entire system was filled
with distilled water and purged of air. Both the large storage cylinder
and the small cylinder contained the clear sblution. During the necessary
warm-up period for the electrical measuring instruments, the gears for the
desired chart speed were installed. The flow rates from each cylinder were
adjusted as in the freéuency responsé runs. The small.cylinder was then |
drained of clear solution, and filled with concentrated dye solution. The
lines from the concentrated dye cylinder were purged of clear solution so
that an instantaneous pulse could be introduced. The flow of the clear solu-

tion through the system was controlled by the metering valve following the

column. The photometer at the exit of the test section was standardized
by varying the resistances and setting the recorder at 9.0 millivolts.
The concentrated dye pulse was then injected into the flowing stream

by instahtly energizing and de-energizing-the three-way solenoid valve.
The injection time was measured with a stop watch. When the pulse ap-
proached the exit of the test section, the recorder chart was started.

A pip was introduced on the chart through a switch in the photometry
circuit, and the time recorded. The pulse function response was con-

tiniously recorded by the Speedomax on the chart paper. Figure 12
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presents a reproduction of the recorder trace for a pulse of run P6.
The flow rate and temperature of the solution were checked throughout
a run. A series of five pulses, introduced and recorded as described,
constituted a run. The pulses were spaced so as not to interfere with
each other. A series of runs were made by varying the rate of flow
through the column and repeating the above procedure.
The list of data recorded for a pulse function experiment
follows:
Run designation
Data and time
Column properties
Particle diameter and shape
Height
Porosity
Chart speed
Liquid flow rate
Liquid temperature
Pulse
Length of pulse
Time of pulse injection
Time of pip on recorder chart
Recorder traces
Colorimeter calibration

Outlet concentration

Experimental data for the pulse function runs are presented

in Table IV. Column 1 contains the run designation with the prefix "P"
referring to the pulse function method. Columns 2, 3, 4, and 5 present
the properties of the packing: column 2 the nominal particle size and
shape, column 3 the equivalent spherical diameter, column 4 the height
of the packiné, and column 5 the porosity of the packed bed; Column 6

contains the corrected liquid flow rate, and column 10 the liquid
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temperature. The data for an exit pulse profile, averaged from the
recorder traces of three or more pulse waves, are presented in colﬁmns
13, 14, and 15. Column 13 contains the maximum concentration of the
pulse wave in units of gms/li X 102, column 14 tﬁe area under.the
exit concentration profile of the pulse wave in. units of gms/li X lO2
and column 15 the time (seconds) for the pulse to pass through the test
section. Figure 12 is é reproduction of the recorder traces for a
pulse wave of experiment P6. The experimental data for the concentré—
tion profiles of three pulse'waves of run P6 are presented in Table
XIV, Appendix II-C.

The first three groups of pulse function runs were to deter-
mine the effect of velocity on mixing in the low flow range and hence
extend the data of the frequency response experiments. For each group
of runs the velocity was varied from 0.003 gpm to 0.05 gpm, approxi-
mately. Each group of runs employed a different particle size: 1 mm,
3 mm and 60/80 mesh glass spheres were used for runs P1-P7, P8-Plh,
and P15-P23, respectively. A longer column, 5 foot, was used for the
60}80 mesh spheres because of the émall amount of mixing occurring,
while the 3 foot column was used for the other two groups of runs. The
effect of particle diameter on mixing is shown in Figure 13 which pre-
sents the concentration profiles of two runs, P7 and Pll, made under
identical conditions except for the diameter of the spherical packing.
Run P24, made to determine the effect of bed length, employed‘a 5 foot
test section packed with 3 mm glass beads. The‘primary purpose of the
runs P25—P40‘was to determine the effect of particle shape. Runs P25-
P28 used 6 mm glass beads, runs P29-P32 used l/h in. Raschig rings,

runs P33-P36 used 1/4 in. Intalox saddles, and runs P37-P40 used 1/4% in.
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FIGURE 13 - EFFECT OF PARTICLE DIAMETER ON PULSE CONCENTRATION PROFILES

(3 ft. column - Interstitial Velocity .0061 ft/sec)
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Berl saddles. The velocity was varied in each set from .02 gpm to
.23 gpm. The purpose of runs P4l and P42, employing a 3 foot column
packed with 1 mm glass spheres, was to determine if the tracer used
had any effect on the measurement of axial diffusion. Pontamine Sky
Blue 6BX, the dye used normally, was used in run P41; Pontamine Fast
Turquoise SGLD was used in run P42. Runs PL43-PL5 were made to deter-
mine the viscosity effect; propylene glycol solutions, covering a
viscosity range of from 1 to 26 centipoise were used.

Step Function Method

Although expefiments by the step functioh method are not in-
cluded in the results of this research, several runs were made in an
attempt to obtain satisfactory data. Thevequipment was assembled
exactly as in the frequency response method, except for the elimina-
tion of the pre-bed. The experimental procedure was exactly as the
procedure in the frequency response method up to the time of the intro-
duction of .the periodic concentration waves. An approxima£e step
function was then obtained by energizing the three-way directional-
flow solenoid valve and allowing the dye solution to follow the clear
solution. Several methods of introducing a step function were tried
with the above method being tﬁe least objectionable. The reverse.step
function could also be obtained by de-energizing the valve and allowing
the clear solution to follow the dye solution.. A continuous record of
the outlet concentration curve was obtained by the photometer and

recorder.



TREATMENT OF EXPERIMENTAL DATA

As a fluid, in which concentration gradients exist, flows
through a packed bed eddy diffusion or mixing occurs which can be
rationalized asAa mass transfer process. This eddy diffusion, super-
imposed on the molecular mechanism of diffusion, can be described by

the equation

de de

N =-(D, + &) iy - -Dy, el | (1)

where

o
]

v molecular diffusivity, ftg/sec

o
|

= mixing diffusivity, £t°/sec

lw)
1

p = total effective diffusivity, ft2/sec

. : 3
- & concentration gradient, 99&%5122—

=
n

mass transfer rate, ~E9l§§§
sec-ft

Experimental data, obtained for fluid flow ﬁhrough beds in which the
particle to column ratio was less than .075 and the length to diameter
ratio of the column was greater than 10,have verified the rationaliza-
tion of mixing as a mass transfer process described by equation (1).

_On the basis of this model, a material balance for an increment of time
é£ made for a cylindrical element dr in thickness and‘dz in height

results in the equation:

d2c , 1 dc éfg _ .. 9c _ dc
Dy [_B;E-’-;é—r] +DLaz2 ué-i_“at (4)

-
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where
DR = effective radial diffusivity, ftg/sec

D; = effective axial diffusivity (in longitudinal
direction), f£t2/sec

u = mean velocity, ft/sec

¢ = concentration of tracer in solution, moles/ft5

r = radial coordinate in cylindrical coordinate system

z = Jlongitudinal coordinate in cylindrical coordinate
system

t = time, sec

The derivation of this partial-differential equationglwhich is repre-
sentative of the diffusion-convection mixing of a liquid flowing through
a fixed bed of particles, can be found in Appendix I-A. The first two
terms in equation (4) represent the diffusion of the tracer, the third
term the transport of‘the tracer due to flow and the foﬁrth term repre-
sents the accumulation of the tracer.

In theory, determinations of concentratién, c, as a function
of position, r and z, and time, t, in an experiment where a tracer is
fed at a ﬁoint source into fluid of known comptsition and flow rate,
yield the information required to determine DR and DL through the evalu-
ation of the various first and second partial derivatives by numerical
differentiation and smoothing. The difficulties of obtaining such data
and the large error involved in differentiating the data twice, lead
to special experimental conditions for which equation (4) has known
mathematical solutions which permit the evaluation 6f effective dif-
fusivity from specific values of ¢, r, z, and t. The point-source ex-
periment results in the evaluation of effective radial diffusivity, DR,
while other types of experiments lead to values of effective axial

diffusivity, Dy.
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FREQUENCY RESPONSE EXPERIMENT

In the frequency response method the concentration at the
inlet is varied sinusoidally and the response is obtained at the out-
let. Comparison of the amplitudes of the inlet and outlet harmonic
functions leads to values of the axial diffusivities.

Mathematical Representation

Sinusoidal Solution. In the mathematical representation of

the frequency response experiment, no radial concentration gradients
exist and the effective axial diffusivity and velocity are independent

of position leading to the modification of equation (4) as follows:

e dc _ dc

LTV e (5)

The two experimental boundary conditions which exist are: first, the
inlet concentration is a harmonic function of time; second, at a
sufficiently long distance down the bed the amplitude approaches Zero.

These boundary conditions can be represented as follows:

c(z,t)

c(0,t) c + A(0) cos wt (65

C
m

c(oo,t)
or A(z) =0 for z »w
where Cp is the mean composition about which the concentration oscil-
lates, A(0) is the amplitude of the inlet concentration wave, and w is
the angular fréquency of the oscillations. Danckwertsll applied an
alternate choice of boundary conditions which resulted in the same

approximate solution as equation (10) below. With the introduction of
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the above boundary conditions, the periodic steady-state solution re-

sulting is:

c(z,t) = c  + A(0)e™B cos(at - ?) (10)
where

2
2Dy w

Ba=-Z22 J7._ \/-ﬁ-ar(—g—) +% (10a)

| 2Dy, u
and

1
-3 ‘ (10b)

S
1]

The functions B and ¢ shown in Figuré 14 are representative of the de-

crease in amplitude and the phase shift of the outlet wave, respectively.
Details of two solutions are presented in Appendix I-B. The

original solution employs the Laplace transforﬁ and requires use of the

complex inversion integral for the inverse transformation. The second

12,24

solution, following the method proposed by other investigators ,

is more direct; this method employs complex variables and the principle
of superposition. The final solutions are identical.

Approximate Solution. An approximate form of the above solu-

tion can be employed when experimental conditions are such that the

ratio haDL/ug, is small. The complex form of the above solution is:

. / g T |
2D, [1 - J1+ N 1] + dwt ¢ (11)
) e | |

Expansion of the radical by means of the Binomial Theorem and reject-

c(z,t) = ¢, + A0

ing insignificant terms, and then dropping the imaginary part of the

solution; leads to the following approximate solution:
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FIGURE 14 - SINUSOIDAL CONCENTRATION WAVES FOR INLET AND OUTLET STREAMS
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2
) ZW DL
5 Zm, ‘
c(z,t) ¥y + A(0) e u cos (wt - ) (12)
in which the value of B is approximated as
szDL '
BT 3 : (12a)
u

For this approximation, the value of B is in error approximately less

than the value of the first term neglected in the binomial expansion,

aD. \ 2
5(—%) T (120)

For experimental runs in which this approximation produces too large

which is the group

an error, the last term rejected should be included in the expansion
of the radical. The approximate solution then resulting is:

zw?DL 5za>h'DL5

- +
u5 u7 _ EZQ?DLE
c(z,t) = ¢y + A(0) e cos(wt - Tt 5 ) (13)
. : u
where B is approximated as
zwgDL 5za>uDL5
u u
and the maximum error in B is approximately
aD. \ 4
b =2
5 | (13v)
u .

Assuming the approximate solution of equation (12) is applicable, the

ratio of inlet to outlet amplitudes leads to the equation



[%m?DL]
A(0) B_ . 3 | (14)

M _ B
B A(O)e_B
or,
Ai zw?DL
In~=B = 3 (1ka)
e u

from which DL can be calculated. For experiments in which the first
approximation is in excess error, equation (15) can be employed. The

ratio of amplitudes then results in the equation

A, szDL 5za)l+DL5
In—=B7Y% - (15)
A, '

3 T

u u
from which DL can be calculated by trial and error. The diffﬁsivities
were calculated by one of the above approximations so that the maxiﬁum
error in the value of B»caused by the approximation is less than 1.5
percent, which is well within the error of measurement.

Evaluation of axial diffusivity from measurements of the
phase anglgs was not carried out during the present research, since the
measurements of amplitude ratios provided a more accuratg and reliable
means of evaluation.. Justification for the elimination of phase angle
calculations is apparent in equation (12), since in this approximate
solution the phase angle does not contain the diffusivity until higher
order terms are included, as indicated in equation (13). Other investi-
gators employing the frequency response technique have arrived at

gimilar conclusions.



-51-

Non-Sinusoidal Solution. The outlet wave from the pre-bed,

or the inlet wave to the test section, was not always sinusoidal al-
though periodic. Under these conditions, the periodic concentration
wave could be represented by a Fourier series having the form

o
%o
c(o,t) =5 + }: (8, cos nwt + b sin nwt) (16)
n=1
or the form

c(0,t) = %? + }: Ah(o) cos (nwt - wh) (16a)

where

A(0) = [a," +1,°] (160)

represents the amplitude of the n-th harmonic and
b
-1 n

¥, = tan ;; (16¢)
represents the phase lag of the n-th harmonic with reference to a pure
cosine wave of the same frequency. Thus, as the above equations indi-
cate, the periodic function is a combination of simple harmonic waves.
The term ao/2 represents the neutral position: the terms, a,cos wt +

1

b,sin wt, the fundamental wave; and the other terms, a,Cos nwt +

1
b sin nwt, the higher harmonics. The outlet concentration wave then
also must be represented by a Fourier series in which each harmonic
component is dampened and shifted in phase. By the principle of super-

position, each harmonic in the outlet corresponds to the outlet ex-

pected if the corresponding harmonic in the inlet wave was the only
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inlet. Applying the periodic, but non-sinusoidal, inlet wave as a
boundary value to the differential equation for the diffusion-convection
mixing of a liquid flowing through fixed beds, results in the approxi-

mate solution

_ [zngw?DL
& u nzw
c(z,t) = rald E: Ah(o) e cos (nwt - LA ) (D)
n=1

The details of the solution are found in Appendix I-B-L.

| This solution confirms the earlier statement that each harmonié
component is dampened and shifted in phase. The fact that a periodic
function can be resolved into its simple harmonic components, permits
the reduction of the inlet wave to its harmonic components, the appli-
cation of each component- to the system, and the construction of the
general outlet case by addition of the components. The application of
the frequency response me@hod to the periodic concentration waves re-
quires a harmonic analysis of the experimental functions; i.e., a
representation of the functions as Fourier series.

Evaluation of Data

The data from the frequency response experiments were analy-
zed by two methods depending on whether the inlet concentration wave
was sinusoidal or non-sinusoidal. An axial diffusion coefficient,
Reynolds number, and axial Peclet number weré obtained from each set
of experimenﬁal data. Table III summarizes the important steps and
the results of the‘ calculations for each run. Sample calculations for
sinusoidal and non-sinusoidal waves are recorded in detail in Appendices
IT-A, B. The important features of the evaluation of the data and

correlations are discussed herewith.
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The calculation and correlation of longitudinal diffusivity,
regardless of the form of the inlet concentration wave, required, in
addition to fhe recorder traces of the inlet and outlet wave composi-
tions, the following data: flow rate; frequency of periodic wave, w;
liquid properties of density, p, and viscosity, p; bed properties of
particle diameter, dp, porosity, €, bed length, z, and bed diameter,
di. The densities and viscosities of the solutions, obtained from
Figure 32, Appendix ITI-C, wﬁich presents the relationship to solution
temperatureg are reported in Table III, columns 8 and 9. ‘The super-
ficial velopity,vo, and the actual mean linear velocity, u, -reported
in columns 5land 6, respectively, of Table III, can be calculated from
the corrected measured flow rate, the column diameter, and the measured
fraction void, €. The.length of the wave pgriod in seconds was mea-
sured during the runs and, if necessary, was checked by meésuring the
distance between peaks of two adjacent waves and dividing by the chart
speed. From this measured wave period, the angular frequency, reported

in column 22, was calculated:

2n .
w="—, radians per second

where T is the period, in seconds.

Reynolds number, defined as dp Vg p/p and presented in column
25, was calculated from the superficial velocity through the unpacked
column as converted from the measured flow rate, the known particle
diameter, and the density and viscosity corresponding to the tempera-
ture of the fluid.

Axial feclet number, defined as dP u/DL and reported in column

26 was calculated from the actual mean linear velocity in a packed bed
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determined from the measured flow rate, the known particle diameter
and the calculated longitudinal diffusivity coefficient.

Sinusoidal Data. For the sinusoidal input concentration

waves, the ratio of the inlet and outlet amplitudes was used to calcu-
late the longitudinal diffusivity according to equations (12a) or (13a).
The amplitude ratio was determined in the following manner.

Figure 11 is a reproduction of the recorder traées for the
inlet and outlet concentrations of run 28. The recorder tracers are
not sinusoidal, even with a sinusoidal concentration wave, because the
photocell measures only the transmitted light. As shown by Beer's law,
it is not‘the transmittancy, but the logarithm of the transmittancy
which is directly proportional to the concentration of the absorbiﬁg
solution. The concenﬁration wave is thefefore obtained by taking the
logarithm of the value i;dicated By the photocell as shown in Fiéure i5
whefe a typical recordef tracé and its corresponding sinusoidal con-
centration wave are shown.

Prior tp each run, the photometers were calibrated and
checked. In this process, recorder traces ﬁere obtained for the trans-
mittancies through the clear reference solution ana the dye éolution.
To simplify calculations the dye solution was assumed to have a con-
centration of 1 and the clear feference solution a concentration of 0.
A plot of the logarithm of the transmittancy (recorder units of milli-
volts) as a function of the concentration is shown in Figure 16, indi-
cating the straight line relationship which\exists. As previously

shown, the straight line can be represented by the formula

[3

log y = log A + mc (3a)
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The equation for concentration then has the form:

o = log A - log ¥y
-m

. The values 6f the constants, A and m, were obtained from the calibra-
tion data for each frequency response run.

Thé minimum and maximum readings for ten consecutive inlet
sinusoidal waves and their corresponding outlet wavés were averaged
and the concentrations determined according to the above formula. The
minimum and maximum concentrations of the inlet and outlet waves are
reported in columns 13, 14 and 16, 17, respectively, of Table III.
From these concentrations the amplitudes (columns 15 and 18), and
hence the amplitude ratio, A;/A. (column 20) into either equation (12a)
or (13a) leads to the calculation of the axial diffusivity, DL’ as
reported in column 23.

Non-Sinusoidal Data. For non-sinusoidal input waves the ex-

perimental inlet composition wave must be converted into a form of the
Fourier series. A numerical procedure known as the 1l2-ordinate scheme
of harmonic analysis, discussed in Wylieul, was used to determine the‘
coefficients in the Fourier series. This numerical procedure is equiv-
alent to the graﬁhical method of approximating the periodic concentra-
tion wave by assuming a series of harmonics, whose sum approaches that
of the given periodic function. For ﬁhe numerical harmonic analysis
the values of the concentration wave at intervals of one-twelfth of a
period were obtained by averaging a series of ten periodic inlet waves.

From these concentration values, Ccj, €1, - « +» Cyo the values of the

Fourier coefficients a, and b, are obtained by a series of successive
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condensations as shown in an example presented in tabular form in the
sample calculations in Appendix II-B. The Fourier series for the inlet

wave resulting from the numerical analysis has the form:

o

¢}

c(0,t) = S *t @ cos &t + by sin ot + .

1

(18)
+ ag COS Swt + b5 sin 5wt '

The corresponding series for the outlet wave must be

a
c(z,t) = E? +a) e

cos % bl e-B sin & + .

2 2
+a e Beos ns + bn e B

n sin n® + .

(19)

+ ag e 2B os 55 + b5 e 2B oin 55

where
= wt - @ (19a)
The equations for B, approximated by the methods previously presented

for sinusoidal waves, are:

2
zw D
B ¥ 3L ' (12a)
. u : .
or - )
zaFEL 5zw#D 5
BY - L (13a)
'LJ.5 U.7

The maximum‘concentration, c(z,t)max, and the corresponding angle, 8,
were averaged for ten outlet waves. Substitution of these values,
c(z,t)max and §, and the coefficients &, and by, determined from the har-
monic analysis of the inlet wave, into equation 19, results, after a trial
and error procedure in a value of B based upon the maximum concentratién of

the outlet wave. The third and higher terms of the series represented by

2
equation 19 were small, and &% B approached O rapidly, thus simplifying
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the calculation of B. This value of B for the peak concentration was then
used to compute the entire outlet wave from equation (19). Figure 17
presents the concentration profiles for a typical non-sinusoidal run; the
lower portion compares & wave, calculated as described above, with the ex-
perimental outlet wave. The comparison indicates that the evaluation of
B from equation (19), by substituting the value of the peak and angle of

the outlet concentration wave, was valid.

The longitudinal diffusivity was then determined from equa-
tion (12a) or (13%a), by substituting the value of B, the frequency of
the periodic wave, the interstitial flow rate and the column height.
Values of axial diffusivity obtained from'fifteen experimental runs by
this more detailed, non-sinusoidal method are presented in Table III,
colum 25. These values had an average deviation of approximately
5 percent from values of axial diffusivity obtained by assuming the
non;sinusoidal concentration waves to be sinusoidal and comparing the

inlet and outlet amplitudes.

STEP FUNCTION EXPERIMENT

Axial mixing of liquids flowing through fixed beds can also
be evaluated from the shape of an outlet concentration profile re-
sulting from a step function change in concentration at the inlet.
The step function can be obtained experimentally by flowing at a given
rate a clear solution and a dye solution successively through a fixed
bed of given height.

Mathematical Representation

'As before, no radial concentration gradients exist, and ef-
fective diffusivity and velocity are independent of position, hence

the original diffusion-convection equation reduces to:
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L. (10)

The sudden change in composition of the feed stream can be represented

by ’boundary conditions:

c(z,t)
c(z,0) =1 z >0
Step function (20a)
c(z,0) =0 z <0
c(o,t) =0 t <O (20b)

¢  bounded

which then lead to the solution:

‘ R-1 R+1
<£_1 erfc \ =™ =) - e% erfc (e1)
cy 2 2 NRS : 2 NRS
where
ut DL
R = — S = — (212), (21b)
zZu

Details of the sélution, as well as the mathematics concerning several
following statements, are found in Appendix II-C. Lapidus and Amund-
son‘25 employed this solution in their discussion 'of adsorption in packed
beds combined with longitudinal diffusion. Damckwertsll , having chosen
different boundary conditions, arrived at similar solutions.

Experimental Results

The longitudinal diffusivity can be evaluated from the shape
of the outlet concentration profile resuiting from a step function
input. Any value of concentration and time on the outlet concentration
profile when substituted in equation (21) gives a value for longitudi-

nal diffusivity. In order to avoid the problem of selecting a



-62-

particular point, or averaging the results of many points, it is con-
venient to use thevslope of the concentration profile at R = 1 as shown
in Figure.lB to evaluate the axial mixing. Differentiating equation
(21) with respect to R, and setting R = 1, results in the equation for

the slope of the concentration profile at R = 1:

The value of DL can then be calculated by substituting the slope of

the outlet concentration profile, the interstitial velocity and the

1.0 .
C sk -
CO

0 - I

0 ' | 2

DIMENSIONLESS TIME VARIABLE, R

FIGURE 18 - STEP FUNCTION EXPERIMENT - OUTLET CONCENTRATION PROFILE
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column length. Danckwertsllvemployed this procedure in determiﬁing the
longitudinal diffusivity in water flowing through packed Raschig rings.
During the experimental runs it was observed that when the

tracer solution followed the clear solution through the packed bed,
some form of holdup of the tracer occurred. This phénomenon appar-
ently results from the adsorption of the tracer substancé on the sur-
face of the particles. The adsorption hypothesis is substantiated by
the fact.thét the holdup became more apparent in beds operated at low
flow rates. The méthematics of longitudinal diffusion combined with

. adsorption on fluids flowing through packed beds have been discussed
by Lapidus and Amundson25. The diffusion-convection equation can be

modified to include the. adsorption effect as follows:

2
d7c dc _dc , 13
D u— = +=31 23)
L2 3z ot eot (
where
n = amount of tracer adsorbed on particle surface
€ = fractional void volume in the bed

In addition to the boundary conditions previously assumed {equations
(20a), (20v)), it is necessary to make an assumptiontconcerning the
nechanism‘of adsorption. The simplest mechanism assumes that equili-
brium is established at éach point in the bed according to the

relationship:

n=ke+k, (2k)



The solution

where

Plots of the

-6k -

to the problem with the above boundary conditions is:

; }
—((:— =% erfe R_-Z - e 5 erfc R_+Z (25)
o NURyS VURyS
k .
y=1+2 (25a)
€

above equation in which the two unknowns, S and y, are

obtained by trial and error, compared fairly well with experimental

concentration profiles. As shown in Figure 19, values of y were found

1

| | 2
DIMENSIONLESS TIME VARIABLE, R

FIGURE 19 - STEP FUNCTION EXPERIMENT - OUTLET CONCENTRATION PROFILE

RESULTING FROM ADSORPTION OF.TRACER
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equal to the value of R where cyco equals 0.5. Therefore, as before,

DL can be most conveniently calculated by determining the slope of the
concentration profile at the concentration midpoint, which is where

R = y. Hence by differentiating equation (25) with respect to R, and

setting R = y, there results:

dc 1 _ zu

CE Rey e beRD (26)

from which DL can be calculated.
Several preliminary experimental runs employing the step

function principle were made to obtain data in the low flow range. Two
.primary difficulties arose during the preliminary experiments. First,
experimental difficulties were encountered in obtaining a trué step
function concentration change in a flowing liquid at the inlet of the
column. The calculation of longitudinal diffusivity from an experi-
mental exit concentration profile by means of equation (25) is only
possible when a sharp, uniform change in concentration is produced at
the inlet to the column. No experimental metnod was found to produce
a completely satisfactory step function at the inlet to the test column.
The second difficulty arose in the calculation of the diffusivity co-
efficient from the experimental data. The value of DL determined
through equation (26) is very sensitive to errors in the value of the
slope of the concentration profile. The slope at the midpoint was
difficult to determine accurately from the experimentél data, heiice
the diffusivity coefficients obtained were very unreliable. Data ob-
tained and calculated by this method failed to give reproducible results.

The experimental difficulty and the lack of reproducibility of the
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preliminary ster function experiments led to the consideration and use

of another approach.

PULSE FUNCTION EXPERIMENT

Several investigators have proposed the pulse function method
to investigate the characteristics of mixing in reactors or packed beds.
Danckwertsll presented the mathematics of introduqing a pulse into a
reactor for the detection of mixing characteristics. Yagi and Miyauchil+2
employed the pulse wave method in their study of mixing in continuous
flow reactors. |

Mathematical Representation

Mathematically, this method is an extension of the step func-
tion approach. The inlet boundary conditions are obtained by injecting
into the flowihg stream a concentrated tracer solution for a short
period of time; i.e., in the form of a unit pulse. The concentration
profile for this unit pulse is determined at the outlet of the test
section. Danckwerts shows that the exit distribution function, which
is the equation for the exit concentration profile, for a unit pulse
is the derivative of the distribution function for a step function. A
physical interpretation of the pulse function derivation as well as
details of the differentiation, are shown in Appendix I-D. The formula
for the concentration profile for the unit pulse, resulting from the
differentiation of the step function distribution function, equation

(25), is:

il ) 6

87
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where @ is the quantity of tracer injected into the feed stream at time
O and V is the void volume of the bed. The values of Siand 7 can be
determined so that a calculated distribution curve will approximately
bduplicatevan experimental concentration profile.

It can also be shown (Appendix I-D) that the area under the
exit concentration curve of the unit pulse function is equal to unity;

hence

00

f(%) R =1 (28)

0
This fact becomes of value in the evaluation of the axial diffusivity
from the experimental data.

Evaluation of Data

During this research, the pulse function method was employed
- for runs made at low liquid flow rates, and also for runs using non-
spherical particles. As before, the modified Reynolds number and modi-
fied Peclet number Wefe obtained from each set of experimental data.
Sample calculations for a typical pulse function run are presented in
Appendig II-C.

The important steps and the results of the pulse function
calculations are summarized in Table IV. The superficial velocity, Vs
and the interstitial velocity, u, calculated from the corrected mea-
sured flow rate,_the column diameter and the measured porosity are
presented in columns 7 and 8,respectively. Column 9 contains the time
required for the iiquid to pass through the coiumn (residence time, R,
equals one) as calculated from the column length and the interstitial

velocity. Columns 11 and 12 present the densities and viscosities of

the solutions as obtained from Figure 32, Appendix III-C.



The longitudinal diffusivity for each run was determined from
the exit pulse distribution function recorded on the chart paper. After
several trial and error calculations on a series of runs in which S and
y were approximated in order to duplicate an experimental pulse wave,
it was found that under the experimental conditions used, the peak of
the concentration profile occurred at R =7. The value of Vc/Q at the

pesk, determined by setting y = R in equation (27), is:

Zu

2
L'-JTR DL

Ve N S |
Q)R:y RS\ (29)

from which DL can be calculated. The feasibility bf using the maximum
point on the pulse function to calculate the value of DL is shown in
Figure 20, in which a typical experimental pulse profile duplicates
fairly well its calcula%ed counterpart. 'The‘experimental concentration
profile was obtained from the reéorder traces by converting the photo-
meter readings in millivolts to concentration units by means of the

formula

log A - logy  .9542k - log y
C = =
-1 148.92

gm/1i - (3v)

where A and m are constants of the original photometer calibration, and
y is the recorder reading in millivolts. Values of concentration were
determined at regular increments of time. The time abscissa was con-
verted to values of residence times, R, which is a dimensionless ratio
representative of time. The area under the cdncentration curve was
obtained by numerical intégration. Because the ordinate was concentra-
tion and not Vc/Q, the value of the integrated area was not one as

indicated by equation (28). However, by multiplying each of the
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concentration points by the reciprocal of ‘the area calculated, a dis-
tribution function for a pulse wave with VC/Q as ordinate and R as
bscissa is obtained. The integrated area of this curve then equals
unity. The values, averaged from three pulse waves per run, of the
maximum concentration of the pulse wave, of the area under the concen-
tration profile of the pulse wave and of the time required for the
pulse to pass through the column are presented in Table IV, columns
13, 14, and 15, respectively. The value of the maximum concentration

of the pulse, in terms of the dimensionless ratio, VC/Q, is calculated

by dividing the maximum pulse concentration (column 13) by the area
under the concentration profile of the pulse (column 14). These values
of Vc/Q and the values of the largest experimental percentage devia-
tion from the reported YC/Q, are presented in columns 16 and 17, re-
spectively. The values of the dimensionless time ratio, R, and the
largest experimental percentage'deviation from the reported R, are
reported in columns 18 and 19, respectively. The values of R were
calculated by dividing the timg required for the pulse to pass through
the bed (column 15) by the time required for the liquid to pass through
the column (column 9). The value of R is usually greater, but‘never
less, than 6ne because of the adsorption of tracer on the particle

surface. Column 20 contains the values of S calculated from equation

(28).
1 L

S = L
w2 (Yo 2 Zu (29a)
Q) Ry

The axial diffusivity, presented in column 21, was then calculated from

the values of S, column length and interstitial velocity. The
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calculations are completed by the evaluation of Reynolds number (column

22) and axial Peclet number (column 23).



RESULTS AND DISCUSSION

The variables affecting axial mixing which were investigated
were liquid‘veiocity, particle size, particle shape and liquid viscos-
ity. Several variableé resulting from the experimental technique
were also investigated; these included the effect of frequency and
amplitude of the periodic functibn in the frequency response experi-
ments, the length of the packed column, and the type of dye solution
used as tracer. The column diameter was held constant in all

experiments.

LIQUID VELOCITY

A series of experiments were made for each of four particle
sizes in which the interstitial velocity was varied from 0.0008 ft/sec
to 0.3 ft/sec. A plot of the logafithm of axial diffusivity, DL’
as a fﬁnction of the logarithm of interstitial velocity, u, wifh parti-
cle size, dp, as parameter is presented ;n Figure él. Data from the
two experimental techniques, the frequency response method, covering
the high flow range from 0.0l ft/sec to 0.3 ft/sec, and the pulse
function method, coverihg the low flow rate range from 0.0008 ft/sec
to 0.02 ft/sec, are presentéd in the figure. The data from both tech-
niques for a single particle size résult in a straight line relation-
ship between the logarithmof DL and the logarithm of u. The excellent corre-
lation of data obtained by both methods indicated the axial diffusion
measurements were quife accurate and not dependent upon the experimen-

tal technique employed.

Since the plot of the logarithm of D1, versus logarithm of u ap-

proximates a straight line for a particular particle diameter, the relationship

-T2-
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between axial diffusivity and interstitial velocity may be represented

by the equation
log Dp = log C; +b logu (30)

where log Cl is the intercept and b is the slope of the straight line.

Equation (30) may also be written in the form

D = Cp WP (30a)

The values of the coefficients, log Cl and b, are determined for the

TABLE V. - COMPARISON OF REGRESSION COEFFICIENTS AND THEIR
STANDARD DEVIATIONS FOR RELATIONSHIP Dy, = Clﬁb

Separate . '
Particle | Least Simultaneous Least Squares
Diameter |Squares Slope ‘ Intercept Constant
(inches) | Slope b Standard log.  C Standard
b Deviation 10 “1| Deviation Cqy

,0085 1.0875 1.0867 $0.0165 -2.6575  +0.0312  0.002200
039  1.1053 1.0867 +0.0165 -2.0452  +40.0299  0.009011
133 1.0521 1.0867 +0.0165 -1.4388  +0.0334 0.03641

.265 1.0610 1.0867 +0.0165 -1.1356  +0.034%2 0.07318

best straight line through a set of experimental points by the method
of least squares. The family of straight lines in Figure 21 all have
equal slopes. The separate slopes of each set of data, obtained by
least Squareé, and the common slope, determinedbby a simultaneous least

14,34

squares method , are presented in Table V. Statistical tests indi-
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cate that the differences between the individual slopes and the common
slope might-reasonably be caused by sampling variation; i.e,, the com-
mon slope does not differ significantly from the individual slopes.
The value of the common slope is 1.0867 and its standard deviation is
+ 0.0165. Statistical tests also indicated that a common theoretical
slope of 1.000, which would result if the axial diffusivity were dir-
ectly proportional to the interstitial velocity, differs significantly
from the slopes obtained from the experimental data.

A fourth series of runs with 0.265 inch spherical particles
was made in which the interstitial velocity ranged from 0.006 ft/sec
to 0.23 ft/sec. As shown in Figure 21, the straight line relationship
does not exist for this particle size for interstitial velocities

- greater than 0.02 ft/sec. In this range the axial diffusivity does
not increase as rapidly with the interstitial velocity as in the lower
range. This phenomenon is also observed in the 0.133 inch spherical
particles for interstitial velocity greater than 0.06 ft/sec.

)

PARTICLE SIZE

The axial diffusivity increases as the particle diameter be-
comes larger, as‘shown in Figure 21. The relationship between axial
diffusivity and the particle diameter can be determined by evaluating
the relationship between the constants, Cl’ calculated fo? each parti-
cle size, and the particle diameter. A plot of the logarithm of C; as a
function of the logarithm of dp approximates a straight line as shown in
Figure 22. This relationship can again be represented by the straight

line formula

log C; = log C + a log dp (31)
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FIGURE 22 - DEPENDENCY OF AXIAL DIFFUSIVITY ON PARTICLE DIAMETER - PLOT OF C, = Cdpa
WHERE D, = Ca% W = club
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which may also be written

1 D (513)

The values of the coefficients, log C and a, are determined by the
method of least squares. The slope, a, of the straight line has fhe
value of one; therefore, the constant Cl is directly proportional to
particle diameter, dp. Therproportionality constant C has the value
3.245 and its standard deviation is # 0.121.

A combination of equations (30a) and (3la), whose forms were
obtained from experimental data, describes the axial diffusivity as a

function of particle diemeter and interstitial velocity:
D, =Cd_ul (32)

The coefficients evaluated from the experimental data are

Q
!

= 3.25 t 0,12

o'
Il

1.09 T 0.02

where

u ¢ 5.5 %107 £t8/sec.

As indicated, this relationship is valid only in the region where the
product of particle diameter and linear velocity is less than 5.5 x

-4

10 ftg/sec, since the straight line approximations of the experimen-

tal data exist only in this region.

The ratios of particle diameter to tube diameter, dp/dt’
 covered during the experiments are presented in Table VI following.
135

The investigation of Schwartz and Smit indicates that velocity



-78-

variations exist in gaseous flow through packed beds for dp/dt >’0.0M.
Hence the use of 6 mm glass spheres, or particles of equivalent dia-
meter, in a 2 inch diameter column probably leads to velocity varia-
tions due to the increase in voids near the wall. However, the agree-

ment of the experimental data as shown in Figures 21 and 22 indicate

TABLE VI. RATIOS OF PARTICLE DIAMETER TO TUBE DIAMETER, dp/dt

Particle Diameter | Tube Diameter
Nominal Size Inches Inches dp/dt
60780 mesh spheres .0083 2.0 .00k2
1 mm spheres .039 2.0 .020
3 mm spheres .133 2.0 067
6 mm spheres . .265 2.0 .13

no detrimental effect in the evaluation of axial diffusivity due to

the increase in the ratio, d,/dy.

PARTICLE SHAPE

Various types of packing were investigated to deter-
mine the effect of particle shape on the mixing of liquids flowing
through a packedvbed. The smallest available Raschig rings, Berl sad- |
dles, and Intalox saddles, each having a nominal‘size of l/h'inch, were
used. To obtain a comparison with spherical particles having an approxi-
mate equivalent diameter, 6 mm glass beads wére also investigated. The
properties of fhe various packings are presented in Table I. The data
for the above packings are plotted in Figure 25 which shows the rela-

tionship between axial diffusivity ahd interstitial velocity. Both
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experimental procedures, the frequency response method aﬂd the pulse
function method, were used in obtaining data for the 6 mm glass beads
to establish the reproducibility of the techniques for the large dp/ét
ratio. The axial diffusivities for the other packings were obtained by
pulse function experiments. The data for all packings studied, having

an equivalent diameter in the range 0.20 - 0.26 inches, fall approximately

TABLE VII. EFFECT OF VISCOSITY ON AXIAL DIFFUSION

Run Solution Viscosity Velocity Axial Diffusivity
% 1 u Dy

Propylene Glycol cp ft/sec | ft2/sec
L1 0 . 0.95 .00227 000010k
Lo 0 ' 0.95 .00227 . 0000095
43 50 6.21 .00249 .000010k
Il 67 11.73 ©.0023k4 0000110
L5 85 26.88 .00225 .0000100

along the same curve indicating that axial mixing is dependent upon the
size of the partiélé and not the shape of the particle in so far as it

has been investigated.

LIQUID VISCOSITY

The series of runs made to determine the effect.of viscosity
are summarized in Table VII. Aqueous solutions containing various per-
centages of propylene glycol were used to vary the viscosity. During

these experiments the particle diameter (}059 inches) and the lineam
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velocity (approximately 0.0023 ft/sec) were held constant, with the
viscosity being the only variable. Figure 2k shows that over the vis-

cosity range cdvered, 1-26 centipoises, there was limited variation in axial

diffusivity.
{00004 T T T T T T T T T T T
2 b ommny
.0000I -8 O O O
8- —
6 ]
.000004 |- - ~
| | | | | | | | | | | | |

VISCOSITY cp

FIGURE 24 - VARIATION OF AXIAL DIFFUSIVITY WITH VISCOSITY AT CONSTANT
VELOCITY (u %.0023 ft/sec) AND CONSTANT PARTICLE DIAMETER (dp = .039 in)

EXPERIMENTAL VARIABLES

Variables of Frequency Response Method

In the frequency response technique, the axial diffusivity

was normally calculated from the formula

2
. é; ) ZW DL
e u5
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A.
i
in which the values 1n 7—, z, ®, and u were obtained experimentally.

The axial diffusivity is dependent on the linear velocity, but should
not be a function of the amplitﬁde ratio, length of column, or fre-
quency of the periodic composition wave. Hence, a ﬁlot of In ﬁi as a
function of zw2 should approximate a straight line. Figure 25 shows
the relationship between experimental values of 1ln éi and za? obtained
from runs described in Table VIII in which the linear velocity, u, was
held constant. $Since the data approximates a straight iine, the axial
diffusivity is not dependent upon the experimental variables of the
frequency response technique. In most cases, individual axial diffu-

sivity coefficients were obtained from a run made at a certain frequency

and not from a series of runs at several frequencies.

TABLE VIII. EXPERIMENTAL VARIABLES OF FREQUENCY RESPONSE METHOD

dp = .039 in.
' Axial
Velocity | Height | Frequency A Diffusivity
_ In 2% zaf D
Run v z w A,
(ft/sec) (£t) (rad/sec) ‘(ftg/sec)A
A 02296  1.50 1047 A7k 016k .000141
B .0229 1.50 .0785 .0989  .00924 .0001k47
6 .02235 3.01 .0850 .278 .0218 .000147
9 .02238 3,01 .1256 559  .OLTY .000139

A comparisdn of the diffusivity coefficients determined from
the non-sinusoidal input waves with diffusivity coefficients evaluated
on the assumption that the input waves were sinusoidal is given in

Table IX for a series of runs. The percentage deviation of the assumed
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FIGURE 25 - EFFECT OF EXPERIMENTAL VARIABLES OF FREQUENCY RESPONSE METHOD
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TABLE IX. COMPARISON NON-SINUSOIDAL CALCULATIONS AND
ASSUMED SINUSOIDAL CALCULATIONS OF AXTAL DIFFUSIVITY

Particle diameter: .030 inch

Axial Diffusivity

Velocity Non-Sinusoidal Assumed Sinusoidal

Calculations Calculations Percent

Run v Deviation

ft/sec ftg/sec ftg/sec

7 .0151 .0000950 .000103 + 8.4
6 .0224 .000147 L0001 4k - 2.0

9 .0e2k .000139 .000132 - 5.0 |
A .0230 :000141 .000128 - 9.2
B .0230 .0001h7' .000132 -10.2
5 .0326 .000277 .000254 - 8.3
L .0788 .000591 .000617 + b.b
p L1456 .00122 .00116 - k.9
2 .210 .00168 .00164 - 2.4
C .213 .00168 .00169 - 0.6
F .218 .00175 .00182 + 4,0
D .254 .00195 .00192 - 1.5
E 254 .00201 _ .0020k + 1.5
1 .270 .0024k .00233 - L5
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. sinusoidal calculations from the non-sinusoidal calculations is within
the experimental error, and indicates that the more complicated non-
sinusoidal calculations are not necessary for the evaluation of axial
diffusivity. |

Effect of Bed Length

Table X summarizes data obtained by the frequency respdnse
method and the pulse function method in which the only variable for
each set is the bed length. The calculated diffusivity coefficients

for both techniques indicate no effect of bed length.

TABLE X. EFFECT OF BED LENGTH

Particle | Column
Diameter | Height | Velocity | Axial Diffusivity

Run Method '
dp p u DL
in. ft. ft/sec . £t9/sec
6 Frequency
Response .039 3.01 .0224 .000147
A Frequency :
Response .039 1.50 .0230 .000141
P 11 Pulse Function 133 3.11 .00613 .000149
P 24 Pulse Function 133 5.05 .00621 .000133

In the frequency response experiments, the amplitude ratios
were determined by analyzing the color density of the solution flowing
through unpacked sections upstream and downstream to the test section.
These unpacked spaces, in which conditions bbth'as to flow énd mixing
were undoubtedly different from that of the packed bed, could conceiv-
ably affect the evaluation of the mixing occurring wiﬁhin the test

section. However, the duplicate axial diffusivities obtained for both
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the short and long test sections indicated the effect of the unpacked
space was negligible. Similar conclusions resulted for the pulse
function experiments. Normally, the long columns were used in both
methods to evaluate the axial diffusivity.

Effect gg Tracer

Table XTI shows the results of two experiments designed to
determine the effect of the dye used as tracer. The dye normally used,
Pontamine Sky Blue 6BX, was compared with a second dye, Pontamine Fast

Turquoise 8GLD, which has similar spectral characteristics. The two

TABLE XI. EFFECT OF TRACER

(Pulse Function Experiments)

Particle | Column
Diameter | Height | Velocity | Axial Diffusivity

- Run Tracer dp z . Dy,
in. ft. ft/sec £t°2/sec
41 Pontamine Sky
Blue 6BX .039 3.09 .00227 .0000104
L2 Pontamine Fast _
Turquoise 8GLD .039 3.09 .00227 .0000095

experiments, in which all conditions were identical except for the -
tracer used, resulted in similar axial diffusivities indicating the

measured coefficients were not dependent upon the tracer.

PECLET NUMBER, REYNOLDS NUMBER CORRELATION
The axial mixing data are correlated in a plot of modified
Peclet number as a function of Reynolds number as shown in Figure 26.

The ordinate is a modified Peclet number having the form

d u
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where dp is the particle diameter, u is the interstitial velocity, and
DL is the effective axial diffusivity. The abscissa is Reynolds numberz
dp Vo p/p, where A is the superficial velocity based on the empty col-
umn cross seétion, p is density, and p is viscosity.

The effect of Reynolds number can be observed by the trend
of the'plotted data. The data for spherical particles covers a wide
range of Reynolds number, 0.01-170, and indicates a general decrease in
Peclet number, 0.60-0.80 at Reynolds number 0.0l to O.Bé—O.ME at Rey-
noids number 10.0. A break in the trend occurs at Reynolds numbef 10.0,
as the Peclet number increases grédually to a value of 0.7-0.9 at Rey-
nolds number 170. The data for Raschig rings, Berl saddles and Intalox
saddles covers a range of Reynolds number from 3.5 to 45, and the trend
follows that of‘the spherical particles.

The effect of particle diameter is indiéated by'the three
lines dréwn for Reynolds number less than 10. Each line represents
the correlation between Peclet number and Reynolds number for a pafti-
cular particle size based on the previously derived equation for axial

diffusivity as a function of particle diameter and interstitial velocity,

D = (3.25 ¥ 0.12) 4 (1.09  0.02)

. (528)

The data obtained from experiments in which the viscosity
was varied is also plotted in Figure 26, in the Reynolds number range

of .009-.05.

COMPARISON WITH PREVIOUS INVESTIGATIONS
The results of this study of axial mixing in liquids flowing

through beds of packed solids are graphically compared in Figure 26
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with the results of other investigations concerning the axial and radial
mixing of gases and liquids flowing through beds.

Kramers and Alberdaeu, using the frequency response method,
investigated the longitudinal mixing of water flowing through a column
(diameter: 2.9 inches, length: 13.4 inches) packed with 3/8 inch
Raschig rings. Harmonic waves were obtained by sinusoidally varying
the concentration of an electrolyte in water and measuring the electri-
cal conductivity of the solutions. The Peclet numbers (0.86, 0.86),
shown in Figure 26 were calcuiated from the value of DL/u dp (1.1 +0.1)
for the two water velocities investigated (Reynolds numbers: 85 and
155). The data agrees with the results of this research.

Another experiment concerniné the longitudinal mixing of
water flowing thréugh a bed packed with 3/8 inch Raschig rings has been
presented by.Danckwertsll. The column was 1.9 inches in diameter and
4,6 feet in length. The outlet response curve to an inlet step func-
tion_disturbance was used to evaluate the mixing occurring within the
bed. The value of Peclet number (0.488) for a Reynolds number of 22
calculated from the data of Danckwerts is also shown in Figure 26, and
is in agreement with the data.

Measuremenﬁs on the axial mixing of binary gas mixtures flow-
ing through a random bed of spherical particles have been reported by

McHenry27

. The frequency response technique was employed in which an
axial Peclet number was computed as é function of the ratio of the
amplitudes of a sinusoidal concentration wave at the inlét and outlet
of the bed. The test éolumns were 1.93 inchés in diameter randomly

packed with .127 inch spherical particles to a height varying from 1 to

3 feet. For the gas systems Hp - Np and CEHM - N2 and for Reynolds
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numbers between 10 and 400 the mean of 21 determinations of axial Pe-
clet number was 1.88 + 0.15. The curve shown in Figure 26 summarizes
graphically the data of McHenry.

The axial mixing data for the gas systems does not coincide
with the results for the liquid systems. Perhaps, if the Reynolds num-
ber range were increased beyond 170, the values 6f axial Peclet numbers
for liquid systems would approach those of the gas systems. Agreement
between the two systems is not necessary, since the more efficient mix-
ing of the liquid system could possibly be the consequence of more
complex interaction in the bed. If axial diffusion is the result of
local trapping, by-passing, acceleration and deceleration, then it

" could be assumed that these processes would be more efficient in li-
quids than in gases because of the great difference in physical
properties.

A comparison of the axial mixing data with data from the
literature concerning radial mixing is also made in Figure 26. The
point source metﬁod was employed to evaluate the extent of radial mix-
ing for both liquid and gas systems.

3,26,39

For liquid runs, Bernard and Latinen allowed methylene
blue solution to diffuse from a point source into water flowing at
various velocities through beds of packed solids. Spheres, varying
from 1 mm to 5 mm in diameter, were used as packing in a 2 inch dia-
meter column. Gaseous experiments7>were performed with carbon dioxide
diffusing across an air stream flowing through an 8 inch diameter pipe
packed with 5/8 inch spheres. Fluid samples were taken at various

heights and various radial increments; samples of the average effluent

were also taken., Hence, concentration profiles were obtained at various
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heights and from these experimental data values of u/DT were calculated.
Curves for the two systems are preseﬁted in Figure 26. The data for
gas systems indicate the radial Peclet number is approximately 10 for
Reynolds numbers between 25 and 600. The results of Latinen's investi-
gation for a liquid system show a constant Peclet number of 11 for Rey-
nolds numbers greater than 150, with an increase in Peclet number below
this region. The results of both investigations agree with the statis-
~ tical "random-walk" approach of Baron2 who predicted a Peclet number
of the order of 11 for fully developed turbulence.

Fahien and Smithl? extended the study of radial diffusion
coefficients in fixed bedg through which gases are flowing to include
a larger»range of pipe and packing sizes and the effect of radial posi-
tion in the bed. The point source method of introducing carbon dioxide
into an air stream was used. Measured point values of the Peclet num-
ber were fouﬁd to increase with radial position due to the increase in
void fraction and the influence of the pipe wall, when dp/dt > 0.05.
Average values of the radial Peclet number were approximately 8.5 fdr
Reynolds numbers greater than 40, with a decrease in Peclet number
indicated for lower Reynolds numbers.

Radial gaseous mass transfer rates have also been investi-
gated by the point-source method by Plautz and JohnstoneBO. The modi-
fied Peclet group was found to be constant at a value of approximately
12 in the region of fully developed turbulence.

The results for radial mixing of the gas and water systems
coincide to a greater degree than the data for axial mixing. This
closer agreement probably results from the mechanism associated with

radial mixing, which assumes that mixing occurs because of the splitting
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and side-stepping of fluid packets flowing around the particles in a
packed bed. |

The curves for molecular diffusion for the three gas systems
and the water-dye system are also included in Figure 26. These curves
indicate the large increase in mixing occurring because of the eddy
diffusion process. At low flow rates, with other effects being negli-

gible, the curves for eddy and molecular diffusion should merge.

EFFECT OF AXTAL DIFFUSIVITY IN CHEMICAL REACTORS

In the performance of a steady-flow fixed bed reactor the
mixing occurring between products and reactants reduces the reaction
rate. The effect of longitudinal eddy diffusion can be approximated
for a first-order, or pseudo-first-order, reaction in which the reac-
tion-velocity constant 'does not vary and no changes in volume occur.
The fraction of reaéfant which has reacted, x, during passage through

a packed column can be approximated for small values of diffusivity as

, ke
k DL 7 u
x=1- |1+ e (33)
w2

according to Danckwertsll, For no axial diffusion this becomes

x=l-e (34)

which is the solution for piston flow.. Thus, the effect of diffusion '
is to decrease the fractional convérsion compared to that for piston
flow. However, if the factor, kQDLz/uB, is small the effect of longi-
tudinal diffusion is negligible. Even though the results of this re-

search indicate the axial diffusivity is much greater than previously
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assumed, it can be seen that for a pseudo-first-order approximation,
only those reactions having relatively high reaction velocity constants,
which produce steep concentraﬁion gradients, are affected by longitudi-
nal diffusion,

This approximate treatment can only serve as a rough guide
for the éffect of axial mixing in steady-flow fixed-bed reactors. In
reactions of order higher than first, the chance of a given molecule
reacting depends on the molecules it encounters during its passage
through the reactor, hence the effect of mixing on the reaction cannot
be described by the above equations. The more complex the reaction,\
the greater the effect of the mixihg occurring within the reactor should
be. Take for example a reaction which results in an increase in the
 total number of moles of fluid; the resulting concentration gradieht
becomes steeper, since the reactant is being diluted by products as
well as being decdmposed, and thus the effect of axial diffusion should

become more pronounced.



SUMMARY AND CONCLUSIONS

The present investigation has resulted in the evaluation of
axial mixing occurring in liquids flowing through fixed beds of solids.
The primary variables considered were particle diameter (0.0083 to
0.265 inches), liquid velocity (interstitial velocity from O.QOOS to
0.3 ft/sec), packing shape, and liquid viscosity. The detefmination
of the extent of axial mixing was carried out in equipment designed and
constructed to analyze the response to some form of initial disturbance
in a flowing system. The method of tracing this response was colorimetry;
hence continuous photometers were designed t9 determine the concentration‘
of tracer dye in the flowing streams. Two methods were émployed to evalu-
ate the extent of axial mixing. A frequency response method, in which the
inlet composition varies sinusoidally, was employed for high flow ranges.
A comparison of the inlet and outle£ preriodic waves resulted in the
evaluation of axisl diffusivity. Experimental difficulties led to the
use of a second method for the low flow ranges. In the pulse function
method the outlet concéntration profile resulting from an iplet concen-
tration pulse was used to evaluate the extent of axial mixing.

The primary conclusions resulting from this investigation can
be summarized as follows:

1. A series of experiments resulted in data showing the effect
of liquid velocity and particle diameter on axial mixing. The inter-
stitialvvelocity was varied from 0.0008 ft/sec to 0.3 ft/sec for four
sizes of glass spheres having diameters of 0.0083, 0.039, 0.133 and

0.265 inches. The plotted data, shown in Figure 21, is described by

-9h—
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the relationship

.09 t 0.02
D, = (3.25 * 0.12) dpu (1.09 )

in the region where the product of particle diameter and interstitial

velocity is less than 5.5 x lO'u

'ftE/sec.

2. Four types of packing: spheres, Raschig rings, Berl saddles,
and Intalox saddles, were investigated to determine the effect of particle
shape on axial mixing. Packings having the same approximate equivalent
diameter (0.20 to 0.26 inches) produced approximately the same axial
diffusivities indicating, in so far as has been investigated, that the
shape of the packing has little effect on the axial mixing.

3. Experiments using propylene gljcol and water solutions,
having viscosities ranging from 1 to 26 centipoises, indicated no effect
of viscosity on axial diffusivity over the range investigated.

4., The axial mixing data are correlated in a plot of modified
Peclet number, dpu/DL, as a function of Reynolds number, dnv.e/k, as
shown in Figure 26. The trend of plotted data indicates that for Reynolds
number increasing from 0.0l to 10, the Peclet number decreases from
0.60-0.80 to 0.32-0.42. The Peclet number then increases gradually to
a value of 0.7-0.9 at Reyﬁolds number of 170. The data for Raschig
rings, Berl saddles and Intalox saddles covers‘a range of Reynolds num-
ber from 3.5 to 45 and the trend follows that of the spherical particles.

Several variables resulting from the experimental teéhnique
were also investigated to show that the evaluation of axial diffusivity
was not dependent upon the experimental method employed. These non-

dependent variables were the frequency and amplitude of the periodic
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function in the frequency response experiments, the length of the packed
column and the dye solution used as tracer.

A comparison of the results of this investigation with previous
mixing studies is made in Figure 26. The data for axial mixing has a
much loﬁer value of Peclet number than that of radial mixing, indicating
a‘greéter degree of mixing in the longitudinal direction than in the
radial direction. The value of axial Peclet number for the liquid system
of the present research is lower than that previously presented for gas
systems (approximately 2) but agrees with the previously limited data
of Kramers and Alberda, and Danckwerts for axial mixing in liquid sys-
tems. The results of this study indicate that axial eddy diffusion in
liquids flowing through fixed beds is greater than previously assumed and

perhaps should not be neglected in reactor calculations.



APPENDIX I

MATHEMATICAL DERIVATIONS



A. DERIVATION OF DIFFUSION-CONVECTION EQUATION

Consider a cylindrical column packed with finely divided
particles through which fluid flows at a mean axial velocity wu. Assume
concentration gradients exist within the fluid, and that adsorption can
take place on the surface of the particles. Let

c

1]

concentration of tracer in fluid stream, moles per unit
volume of solution

n = amount of tracer adsorbed on particles, moles per unit
volume of bed

D = effective axial diffusion coefficient, ft°/sec
Dg= effective radial diffusion coefficient, ft2/sec

u = mean axial velocity of fluid through interstices of
bed, ft/sec

7z = distance variable along bed, longitudinal coordinate
r = radlal coordinate
€ = porosity, fractional void volume in bed

t = time, sec

The mathematical mechanism for diffusion, both eddy and molecular, can
be described by the equation which states that the rate of transfer of
diffusing substance through a unit area of section is proportional to

the concentration gradient measured normal to the section, i.e.

N = -D éE for axial transfer
L ¥
and
N = -D % for radial transfer.
R dr

The fundamental diffusion-convection equation can then be derived by
making a material balance for an increment of time Ot for a cylindri-

cal element dr in thickness and dz in height.

98-
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K

FIGURE 27 - DIFFERENTIAL SEGMENT WITHIN COLUMN

The rate at which the tracer enters the element from the axial direction
through the plane perpendicular to the axial direction at distance z is

given by
(2qrdr [ D 9 4 uc]
) L3z

Similarly, the loss of tracer through the plane at distance (z + dz) is
equal to

(2nrdr) -D g% (c + %% dz) +u (c+ % dz)

Likewise, the rate of tracer transferred into the element in the radial

direction through the cylindrical surface at radius r 1s given by

(2xrdz) [:-DR %% ]

while the loss of trancer through the surface at radius (r + dr) can be

represented by
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-Dp I:(2m~<1z)ar BKEnrgi)%%

The rate at which the tracer increases in the element is equal to .

(21(1‘ dr dz g QM gtn

© where the first term repfesents accumulation in the solution itself,
and the second term represents adsorption on the particle surfaces.
Summing the above rates and eliminating terms results in the general

diffusion-convection equation

Fe Fe 1 de de d 1 éﬂ
p. < 4+ D Su 2 Sy 1
Ly R[a# ] T ()

For cases in which the adsorption 1s negligible the equation reduces to:

Fe Bec 41 de
byt Rz

In systems in which the effective diffusion is considered to be isotropic,

e %
Uy T X (2)

- i.e.
DR = DL = DT
the equation becomes
2 2
D é_EE + Q_Eg sl yx o X (3)
T [§ z or r or dz ot _

For the system considered in this research, the concentfation gradient

was in the axial direction only, i.e.

SB_C_=O' 82(3 =O
or NS
resulting in the equation
2
Dy, _@_C__uéc_=ac ()4-)



B. FREQUENCY RESPONSE TECHNIQUE
7,6

1. Solution by Laplace Transform and Inversion Integral

The diffusion-convection equation, assuming no radial concen-
tration gradients exlst and that effective diffusivity and velocity

are independent of position, reduces to
D 2C& ux =X ' (1)

in which the standard nomenclature is employed. Two boundary conditions
are imposéd: first, the inlet concentration is a harmonic function of
time

c(0,t) = cp + A(0) cos Wt (2)

and second, at a sufficiently long distance down the bed the amplitude
approaches zero ‘
clwoyt) = cp (3)
or
A(z) =0 for z 5w
If in equations (l), (2) and (3) the expression
cl'= c - cp (%)

is substituted, there results:

Fec dey _ de
D -u ==l =221 (1a)
IJE;;%  dz ot
cl(o,t) = A(0) cos Ot ' (2a)
cl(m,t) =-O‘ (3a)

-101-
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With the substitution

-8z ot (5)
2D LD
g = Cle L L
equations (1a), (2a) and (3a) become
p. ¥g - % (6)
v
2
4t at
g(0,t) = A(0)e ™ L cos @t = A(0)e cos Wt A7)
where 2
u
a=1= (Ta)
DL ’
g(‘”st) =0 ‘ (8)
and for a column of sufficient length
g(4,0) =.0 for gz > 0 (9)

The above partial differential equation and boundary conditions may be
solved by applying the Laplace transformation.
Suppose a function f(t) exists for all positive values of the

variable t. Then the Laplace transform f(s) of f(t) is defined as

(o]

-st
f(s) = e f£(t) at (10)

where s is a number sufficiently large to make the integral converge.

Applying this principle, equations (6) and (7) become transformed to

—=p- =8 =0 (11)

and
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where g(s) is the Laplace transform of g(t). Thus the Laplace transform
reduces the partial differential equation (6) to the ordinary differential
equation (11). The solution by the method of operators of (11) satisfying

(12), and for which g remains finite is

 Blk,s) = Al0) —2— E (13)

S-
(s-a)2 + of ©
Since the inverse transform of g is not apparent, fhe complex
inversion integral of the Laplace transformation is employed. If a com-
plex function f(s) is analytic and of the order 0(s¥) in the half plane
@(s)}xo, where Xo and k aré real constants and k >1, then the j.nversion
integral L_ll{ —f—(s)} along any line x = &, where g >»Xx,, converges to a

function f(t) that is independent of ¢, i.e.

. E+1B
-1 At
= 1 lim
£(t) = Lﬁ_ { f(s)} = i B ow J/; f(a)an (1)
’ £-ip

where the symbol Li,-lrepresents the transformation of F(s) by the inversion
integral, and A is“’ a variable of integration.

Consider the function g(s) equation (13), to be complex and hav-
ing a branch point at s = 0, and simple poles at s = a + iw. Define

s = reig and

a}
ia
Js=Nr e2 = Jr (cosg +isin§-) -~ (15)

where - < © < x. With this restriction on ©, the function ~/_s_ as defined
in equation (15) is single valued and analytic at all points in the finite
complex plane except on the negative end of the real axis and at the origin.
Since g(s) is an analytic function of J;, g(s) is analytic in the same

region except for the simple poles at s ='a + iw.
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The function E(s) satisfies the conditions for the integral

(1) resulting in the formula

Etie {7: ~
At - zy =
_ AQO} fk a) D
E-io

This cémplex integral is evaluated by empldying certaln principles of
complex variables, auxiliary line integrals and theory-of residues.

Cauchy's residue theorem states that the counterclockwise
integral around a closed curve C within and on which f(s) is analytic
except for a finite number of singular points Sqs Bpy +ee Sps inside of
C is Qn; times the sum of the residues of those points, i.e.;

. cff(s)ds = 2ni(K) + K + **°Kp) (17)
where Kl’ K ,...Kn,'deﬁote the residues of the singular points 815 8o,

. s, within the curve.

Hence, the integral (16) can be evaluated by considering the
closed curve shown in Figure 28, since the curve so formed lies in a
region where the integral is analytic.

By Cauchy's theorem:

£+ip }Jc-z/'%'
. Loy

1
2ni }\.-3)2
£-ip
_2ni
= ? {Kl + Kz] - ---l—-- IAB + IBC + ICD + IDD‘ + ID(C: Ich' + IB'A'
Tl 2ni

+T Al (18)

Kl and K2 represent the residues of the poles a + iw, and where IAB denotes

the integral over the arc AB, and so on.
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FIGURE 28 - CLOSED CURVE FOR EVALUATION OF COMPLEX INTEGRAL
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Iet R and r, denote the radii of the large and small circular

2

arcs; thus R 52 + 52 so that B— «» when R— ». Along theilarger arc

il

r=R® ;  ax-1re™® a0

while along the smaller arc

io 19 ie
A=re ; {ii = J;;e 2 ; A=1irge a0

As ro—>0 and R- », the left hand member of equation (18), which is in-
dependent of Tos becomes the inversion integral or g(t). For clarity,

denote JAC = 1im I _, and so on, for the integrals over the arcs and

€-»0 AC
lines.

Wnen A is on the arc AB, the real part of the exponent

At-2 /%L 1s not greater than té. Hence

tA
(}\,—8.) At-2 J; hY < -—(}i_—ag)l—g e dae
e N (R-2)~ - o
(r-a)2 + @?
and, if.GA is the angle © at A
/2
- tE - tg
i JABl < i-;_)-};—-—g e f do - .__(..liié)R__é- e (ﬂ/Q-QA)
(R-a)° - o (R-a)” -
e
A (29)

Since QAT’“/E as R—» o, it follows that JAB tends to O as R—» », Likewise

JA'B' vanishes as R tends to infinity.
On the arc BC the real part of the exponent lt-zvfz' is less

Dy,
than tR cos 0, and therefore

i
tR cos ©
’JBCI<__(.R_-%_)_B___ fe 4

(R-a)2 - u?-

/s
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Substituting (@ + x/p) for 6, where cos 6 = cos (& + n/5)

the above, there results:

“/2 -tR sin
R-a - W
0
If 0 <a <n/2, then 20 ¢ sin @, and
7
n/2 - 2tRa
Ipe| < (R-2)R f e n da = (R-a)R
(R-2)2 - [R-af -« |2tR

-tR
= (R-a)n E - ] (2
ER-a)2-d>2_]2t .

Hence, |JBC\ vanishes gs R becomes infinite, when t>» O. Similarly,

the limit of JB’C' is zero.

The integral over the small circle can be written

- ie 2y
10 i0 roe t - algg e 2
Jppr = 1 (roe” -a)rge e 2

(roeig-a )2 + (n2

de

which vanishes as Ty tends to O.

On the line CD, ) = r e(T-€)

L(n-¢)
J_}:=~/?e ; thus as € -0

lim A = 1im r elln-€) _ p ond - 4 (cosn+ i sin x) =
=0 €0
i(x-€) xi
linWx = linVre®  =Jre F o (cosn/p + 1 sinx/p)
€0 €-0
lim dx = -dr.

€—0

, A\ = ei(ﬂfe)dr, and

-sin @, in

/2

Nr
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i(- -
Similarly on the line D'C', A = r e (-x *€) an = Ll re) o g
L(-n+e)
J-}t = J;ez ; as € -0
14 i(-m+e) -ni
GEPOL = %Eybr e =re = rf[cos (-x) + 1 sin (-x)] = -r
%(-n+e) -%}
%imoﬁ = Jéi)mosf? e = Nre =1 cos (-n/5) + 1 sin(-n/p) =wr
" :
lim d\ = -dr.
- €0
Therefore
r
° z
(r+a) Tt - 5 Nt
J. + J = | a5 T dr
ép = “pre (rta) + of |
R
R rt + 2% 1T
i (x+a) b3 ar
(r+a)2 + of .
R .
o .
‘which reduces to
iBZZJ? -1_;,«/;
R -rt L L
J_+a  =o J/‘ (r;a)eggﬁ e - e dr
¢cD D'C Y (r+a) + o 21
v 0 . '
and consequently
0 ;
(rra)e ™ 2 Jr
lim (T + J ) =21 r+va)e .  sin r dr
ro_) @ CD D'C' O'/‘ (r+a)2 + a)2 FL.

The residues of the simple poles at (a + i®) are evaluated

as follows. The function f(A) can be represented as tle quotient p(2)/a())

" 0\‘ | At - z«/—%;
t) =) = el 72 (23)

The residue A_j of f(k) at the simple pole )\, can be represented by

of two analytic functions, i.e.,

definition as
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_um () p(0) _ p(2) )
Ay AU g T = m (24)

Therefore the residue at (a + iw) is

(atin)t - z y&HO

K =2e (2ka)

and likewise at (a-iw) is

(a-iw)t - z a]-) @
K, = %-‘e L (2kb)

The sum of the residues is

t -z y 8110 it -z yf8=1i®
a ilat-z 5 iwt-z D,
e e L + e ‘ (25)

which on substituting )

N

=Y 1,1 (26)
reduces to
—_— 1(ot-2Y,)  -1(wt-zY,)
. . e + e 27)
2
or
at -zY_.L
e e cos (wt-zYz) (27a)
u2
Remembering that a = o
WD,
N v
Yapr, 1 ~L{hapy |
Y, = % + | —— 5 -5
1 55, 1 > cos 1 tan = _(28)
and b

|l
o]
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LoD
To simplify let tan @ =m = "'EL and note that
u

cos O =
‘91 + tanEG ‘; 1+ m
where n = \/1+?
also that
0 _ [1+cos© _ mn+1
cos 3 = \/ 2 = 2n
and correspondingly
in © = l-cos 0 B n-1
sin 3= 2 = Y
Now substituting into Y, and Y,
y. = % J— n+ __u lx; L""DDL
1= 2p . T o2pp Vo2 EDL
(28a)
LDy
u
2

Returning to equation (18) and substituting the previous

evaluations there results

y+iB At-z ~/]I5_L

1 (A-a) at-zY¥,
ol P+ 2 °© dA=e cos (@t-2Y,)
7-1B

-._i_ 2if r+ae si z«/_r ar (30)
2ni 5 r+a) +w Di

Hence, upon eliminating the unsteady state term

at -z’_t'l

g(z,t) = A(0)e cos (wt-z¥p) (31)
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and substituting into (5) and (L)

at -z¥y %% -at
c(z,t) =cy + A(O)e e cos (wt-z¥y)e © (32)
The final solution is then
% -ZYl
c(z,t) = cy + A(O)e cos (at-zYp) (33)

where Y and Y, are defined by equations (28a) and (29a).



B. FREQUENCY RESPONSE TECHNIQUE

2. Solution Employing Complex Variables and Principle

of Superposition6’ 12,24

The partial differential equation for the diffusion-convec-

tion mixing of a liquid flowing through a packed bed has the form

2
dc dk _ o
R V% T % W

in which the inlet composition is
c(0,t) =cp + A (0) cos (at) (@)

and is bounded by

‘ c(m)t) =Co. (3)

m

The steady-state periodic solution to the above system is assumed to
have the form ] .

c(z,t) = cp+ A(VO) e-B cos (wt - B) (%)
because of the linearity of the system.

Summarized below are several principles of complex variables

and the principle of superposition which are employed in the solution.

Complex number h=p+1ik (5)
0=tantk (6)
Y
" h=|h| (cos ©+1sin6) (7)
where |h] =m_ (8)
Euler's equation states
1t

e =cos £t +1sint ‘ (9)

-112-
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and therefore
h = |n]e!® | (10)
Principle of superposition states that in a linear system
the effect of ‘each action upon a system is as if it alone were present,
the effect of a number of actions ‘upon the system being the sum of *the(
individual actions.

As before, let

¢y =¢ - ¢y (11)
and obtain 5
D Z ~u = (12)
L ¥° oz dqt
e, (0,t) = A(0) cos (ut) " (2a)
ey () = 0 (38)
cl(z,t) = A(O) ‘e-B cos(};jc) ' v(1+a.)

Now, consider input to be a complex numbér; hence, instead -
of inlet of form (2a) ’introduce an inlet of sameamplitude A(0) but
multiplied by the sum of a real cosine term and an imaginary sine
term, the angle remaining wt:

c,(0) = A(0) [cos (wt) + 1 sin (wt)] (12)

Hence equation lLa becomes

cl(z) = A(0) e B [cos (Wt - g) + 1 sin (0t - g)]

(13)

Applying Euler's equation (9), the above becomes

(122)
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and

cl(z) = A(z) 1ot (13a)
where A(z) is the complex amplitude represented by
Alz) = A(z) e'i¢ (1k)

The use of complex variables now becomes apparent, for when (13a) is
substituted into the linear differential equation (la) containing t
as a variable, where c is the independent variable, t drops out. Hence

there results 5
d Alz) u 0A(z) A(z) 1w ‘
—— - = - =0 (15)
oz D oz D
L L
with the boundary conditions

A(z) = A(0) for z = 0 (16)
and
S A(z) =0 for z = e ‘ (17)
The solution of (15) by method of operators gives
m z m_z
A(z) = Kpe 1 +K262 —\ - (18)
where
f— e——
u 2 ia)
UL TN - , (19)

Since the solution is bounded Kl = 0, and applying the boundary con-

ditions (16) and (17), equation (18) becomes
%D
2D ~ D
A(Z) - A(O) e ﬁ Dy, - (20)

Now substitute (20) into (13a) and (11) givi

c(z, t) = cy + A(O) e
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 In order to obtain the real solution, the exponent in (21) must be
separated into its real and imaginary parts. Application of de Moivre's

Theorem to the radical gives

5 b 2 ' |
2 wz ‘ Q
i® u Q
I;_L = /<r> + | cos 5 + 1 sin2 »(22)

where

2

(22a)

This radical, as in the previous solution (Appendix I-B-1) becomes

2
2 +———1(D =Y Yo1 \
L‘}z D, =4t (22pb)

Now replacing the radical in (21), the solution becomes

[%sz - 2¥y - zYeil [Lof]

e(z,t) = ¢ + A(O)e e (23)

Upon application of Euler's equation. (9) and the rejection of the
imaginary sine terms by the principle of superposition, equation reduces

to

%Z. - ZYl
c(z,t) = ¢y + A(O)e DL cos (@t-zY,) (24)
where ‘ <1>DL2
Yl = _U_ L+ u2> ti
2Dy, : (25)

2
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(26)
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B. FREQUENCY RESPONSE TECHNIQUE

3. Approximate Solutioni2r2T 4

An approximate solution may be obtained by referring back to

equation 21, Appendix I-B-2, which can be written

e + A(0) egD(l m)

4D
If —EL |i®|<1], the radical can be expanded by means of the Binomial
" ;

(1)

c(z,t) =

Theorem as follows

)
\/; + (: :> =1+ 2b2 - lObu + 8hb6-"‘
+

1(2b - kb2 + 28b° -*++ ) (2)

‘Where

™.&

(2a)

Substituting this expansion into equation (1) and neglecting terms

:LO( > (3)

beginning with

the solution becomes

-S-%L[l - 2b2 4+ 2bi - hpd1] + 10%

e(z,t) = e+ A(O)e | (1)

which combines to

zw?DL : 220513%
-—=3 1% - =y —-5—)
c(z,t) = c, + A(O)e e (5)
or z¢?D '
_ 03
c(z,t) = cp + A(O) e W ocos (@t - 22 4 2 D%) (5a)

u w
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The error in the value of B, where B is approximated by

zaED
u

This error can be estimated, for in the expansion of the radical an

L, is approximately less than the value of the first term neglected.

alternating series results, and the error made in stopping is in absolute

value less than the first term neglected. Hence the error in B is

100t |
I (6)

Should more precision be necessary, the first term neglected

(3 o

in the expansion could be

with the solution being

n
i 2P D , 22 »?
c(z,t) = cp + A(O)e u’ ul
® ZOITP lhzﬂ)SDLL
cos (0t - 2= + - ) (8)
u U.S u9

~and the error in B becoming

| 4
—-——E&b() Yl (m—DI-) (9)
2b° - 10b 2
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B. FREQUENCY RESPONSE TECHNIQUE

22
4. Adoption to Periodic Functions’

In the experiments where the inlet composition wave was not
sinusoidal, but periodic, the inlet waves can be represented by the

Fourier series:

rog) = %9 + ay cos(®t) + by sin(®t) + ... ay cos (n®t )

+ by sin(n®t) + ... (1)

which may also be written

0

flot) = %? + .Ej [}n cos(n®t) + b sin(nw€] (1a)

n=1
where
T[ . .
a, =% ff(fbt) cos(nt) d (wt) (n = 0,1,2...) (1p)
-7
7
b, =2 ff(wt) sin(n®t) @ (@) (n = 1,2...) (1c)
-7

The Fourier series may also be written as a series of sines or cosines

only, hence:

f(ot) = %? + }; Al cos (n®t "Wn) (2)
where n=l
% = ’ an2 + bn2 (28')
¥ = tan™tPn (2v)
n a

n
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A, represents the amplitude of the n-th hermonic and the phase angle
,, measures the lag of the n-th harmonic with reference to a pure
cosine wave of the same frequency. Thus, as the above equations in-
dicate, the periodic function is a combination of simple Hermonic waves.
The term %& represents the neutral position; the terms, 8y cos(wm) +
b, sin(®t), the fundamental wave; and the other terms, a, cos (n®t) +
bn sin(n®t), the higher harmonics. The outlet concentration wave then
also must be represented by'a Fourier series in which each harmoﬁic
component is dampened and shifted in phase. By the principle of
superposition, each harmonic in the outlet corresponds to the outlet
expected if the corresponding harmonic in the inlet wave were the only
inlet.

The solution to the diffusion-convection equation in which
the inlet boundafy condition is a periodic wave reﬁresented by a

Fourier series can be most easily found by the method of complex

variables and the principle of superposition. Thus given

pfoudk & )
with the boundary conditions

cp(0,t) = A (0) cos (n®% - ¥) (4)

ep(=,t) = 0 (5)
the assumed solution is

cn(z,t) = Ah(z) cos (n®t - v, - ¢n) (6)
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Considering the input and output to be complex, and employing Euler's

formula, equations (4) and (6) become

cn(O) = An(o) [cos(nﬂ)t - \Jrn) + 1 sin(nwt - Ilfn)] (4a)
- 4.(0) Y (k)

and
cn(z) = An(z) [cos (nwt - v, - ¢n) + 1 sin(n®t - ¥, - ¢n)] (6a)

(a0t - )

= An(z) e (6b)
where the comrlex amplitude
) -1
A(z) = A (2) e o (6c)
Subsituting (6b) into (3), and hence removing t
agAn(z) _u aAn(Z) ) Ah(Z) niow -0 (7)
2 D oz , D,

results in an ordinary differential eqﬁation in An(z) with the boundary

conditions

(8)

]
o

A, (0) for z

Ay(z)

(9)

]
o

li
8

for z

A(z)

Solution of (7) by the method of operators gives

u_ u2 ni.
2(2) = A,(0) eZ(QDL\/W% * ) (10)

which with appropriate substitutions and reductions yields the solution:
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zu E- ‘/1+——-2—unwDLi] +i(n¢0t‘-¢r)
e2DL u n

cp(z) = A, (0) (11)
The approximate solution is obtained, if
4nD
2L| i® I <17 . (12)
u ,

by expanding the radical by means of the binomial theorem and rejecting

insignificant terms. The resulting solution 1is:

24P |
-__PLGu5 1o - ¥, - nz®

cn(z) = Ah(O) e e v (13)

which on eliminating the imaginary component reduces to:
zn?w?DL

e, (z) = An(O) e W cos (nwt - ﬁh - 9%9 ) (1%)

This solution then confirms the earlier statement that each harmonic
component is dampened and shifted in phase as if it alone were present.
The summation of the harmonic components forms the periodic outlet wave

zn?a?DL

o0
a u3» i\
e(z) = 59 + }Z_ A,(0) e cos (n® - ¥, - it (15)
n=1
Therefore, the frequency response experiments in which the inlet com-

position wave is not sinusoidal, but periodic, can be employed to

evaluate the axial diffusivity.
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B. FREQUENCY RESPONSE TECHNIQUE

5. Mathematical Approach to Pre-bed 22

Consider a packed column through which fluid flows with a
mean axial velocity u. Assume that the fluid consists of alternate
and equal volumes of clear solution and tracer solution. If no mixing
occurred, piston-type flow would result and an interface between two
solutions would move down the column with velocity u. Denote this
imaginary boundary plane as z = O and use it as the origin of a frame
of reference moving down the colﬁmn with uniform velocity u. However,

as the liquids flow through the column mixing occurs according to the

eguation
Fe - d
D = I8 1
LT % @)

where c now represents the mean concentration of tracer at a plane
z at time t, and Dp, is the axial mixing coefficlent.

The introduced alternate and equal volumes of clear and
tracer solutions produce and approximate "square-wave" as shown in

Figure 29 which can be represented by a Fourier series having the form

f(z) = ;9 + }z [an cos(g%z) + b, sin(gﬁg)] (2)
n=1
where
L

8, = % d/\f(z) cos(gﬁz) dz (2a)
-L
I _

b = ff‘(z) sin(—f}% dz. (2v)

_L’
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FIGURE 29 - APPROXIMATION OF "SQUARE-WAVE" BY
FOURIER SERIES
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The function for the square wave is

f(z) = -1 -L {z <0
‘ B (3)
£(z) = 1 0 £z &
hence
0 . L
21 (DIZ 1 Iz -
a = IfCOS(L)dZ+‘L'f°°S(L)dZ‘O
-L 0
for n = 0,1,2... (4)
0 L '
N rz N oz 0 for n = 0,2,k...
bn="f, /;in(L)dz+ I fSin(T) dz:h _
4_L O ;1-3; fOI‘ n = l,j,B-;a
(5)
The Fourier series resulting, for 0<|z|<L, is
© 2nv1)nzf
in [&___l%
ok ° L . 1z L 3xz
Co = ; (2n—l) = sin 5 sin I +
- (6)
~ The solutlon to equation (1) has the form
2
c = z [A, sin(dyz) + By cos(npz)] e (7
m=1

which upon application of the inlet boundary condition becomes

2
ﬁz] e- l?znil)ﬂ‘ Drt
(8)

or 2 2
s DLt Ox DLt

2
sin (ZE—Z') e s

2 ‘ '
B 257 Dt (8a)
L
+ % sin(-'-—SEZ) e +

R+
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which 1s a Fouriler series modified by the exponential terms.

Now if experimental conditions are chosen so that the factor,

7 is in the range

0.5 < ——E%- < 2

the second and succeeding terms become negligible, producing a wave
which approaches a true sinusoidal function.

Run 28 is typical of the experimental waves introduced into
the test section from the pre-bed filtering system. The experimental

conditions which existed are:

 Pre-bed: height 1.6 ft
particles 3 mm spheres
Flow rate: u = .07 ft/sec
Diffusivity: Dp, = .002 fte/sec
Wave period 24 sec/cycle
Hence
t = —L6F6 o5 g
.07 ft/sec
L = (LO7 ft/sec)(@k sec/eycle) _ 8k ft/cycle
2 .

ot (3.4)°(.0 t?/sec)(22.9 sec ) | e

12 (.84 £t/cycle)?
Therefore - 66 -5.%
c = A e sin X2 S e sin 21Z
n In
) -16.6 51z

C o+ 5y e sin <7 (9)
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or

c = .657 sin %% + .001 sin 2%5 + 0 ~(10)

The predicted outlet from the pre-bed, as calculated by the above

equation, is compared with the experimental periodic wave in Figure 5.



7,11,25

C. STEP FUNCTION TECHNIQUE
Consider now the partial-diffefential equation for the
diffusion-convection flow of liqﬁid through a packed bed

2 i .

dec o _ %k ., 1
SR (1)

in which the last term represents the adsorption of tracer on the

particles. The additional relations

e(z,0) = 1 z> 0

Step function (2)
c(z,0) = 0 z< 0 ‘
c(0,t) = 0 t >0 (3)

describe, respectively, the initial condit;on of the bed and the inlet
fluid.

The assumption, concerning the mechanism of adsorptiop, that
equilibruim is established at each point in the bed gives the relation-

ship

N = klc + Kk, | (%)

which upon differentiation gives

—g% = klgct— (5)

With the substitution of (5), equation (1) becomes

X X ‘
DL§Z “U% =% (6)
where
k
y=1+ 2 . | (7)

For experiments in which the adsorption effect is negligible, y = 1.

The substitution of

-128-
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c=ge (8)

into equation (6) and the boundary conditions (2) and (3) results in

Dy, Bzg . og
7 32 3 (9)
and )
. uz
g(z,0) =e DL 2% 0
(10)
g(z,0) =0 z {0
g(0,t) = 0 t >0 (11)

The system of equations may be split into two problems. Separate
variables by assuming solution to be of form
g=2T (12)

which when substituted in (9) gives

Dy
= 7% T = g (13)
or
le _ 7, T' .
7 5£ T (13a)

where the primes represent first or second derivatives. Since
function on left can vary only with z and the one on right only
with t, they must both equal a constant -O?; that is

L = - of | (1)

Z"

(w] R

T

™

which results in two separate differential problems.

The solution of the first of the differential equations (14)

7" + of7 = 0 | (15)
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that satisfies boundary condition
z(0) =0 (16)
is

Z = C, sin az. (17)

The solution of the second of equations (14)

D
™+ of -—7L T=0 (18)
D
is then -of —7-L t
(19)
T = 02e

Hence the solutions of equations (9) amdl (10) of the form g = ZT are

D
L
062_71:

Cphe - sinoz . (20)

Since the function is not periodic, and condition (ll) must
be satisfied for all values of z, the Fourier integral is employed to
obtain the solution.’ Multiply (20) by (2/x) £(z') sinqz' and integrate
with respect to the parameters o and z', which are independent of z and

t, getting the function

D .
o b Lt w
D 7
glz,t) = 5 e sina z da | f(z') sin a z'dz' (21)
0 0
When t = O, the integral on the right becomes the Fourier sine

integral of f(z)

00 0
g(z,0) = £(z) =% f sin a z do f f(z') sin o z'dz'  (22)
0 | 0
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Therefore, since f(z) satisfies conditions of Fourier integral theorem,
solution is given by (21).

Applying the relationship

2 sina z sina z' = cos [a(z'- z)] - COé [a(z'+ z)] (23)

and inverting the order of integration of (22) there results

A o o -OF -];L t
g(z,t) =i= f e f(z') {cos[a(z'- z)] - cos[av(z'+ z)Jdz' do
0 O ' : (2)4-)
Using the integration formulas
o -y : [ﬁr{f]
fe 7 cos[a(z'- z)] da = J—“T- e " (25)
g : 2Dt
© 2 " t - ,:Z.(E_ZLLEJ
f e ’ cos[a(z'+ z)] da = J—E e hDLt (26)
0 2t

equation (24) becomes

_ z7-7" _ z§z+z' )
o , iﬁDLt DLt
' e -e da'

N D t
| AN (27)
Since f(z') = e °D, , equation (27) expands to
t T 2 1 1 2
_uz'_ y(z-z") _uz' _ y(z+z')
® 2D, hDLt N 2D hDLt
g(z,t) = r f e dz' - fe | dz!
N Dyt 0 0

(28)
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Expanding the exponent and removing the constants of integration from

the first integral, there results

Wt | uz ® X (g BE )2
. hDLy 2DL f . hth 4 az!
0
Now let
3;1.,1 ]
' -
N CAL I ). ;A= 32
,/EDLt ,/EDLt
7 7
and at
11,1}3, -z
Z' = 0 F) }\ = -
Al
7
Z' = oo’ ) A =

2
ut _uz o \2
DLt EDLr 2D; 5
= ¢ e d
7 A=

ut _ g
iore/d
For purposes of simplification let

e’

S:-—; R:EE.
uz Z

The complimentary error function is defined as

, . N
erfe(x) = —= 'fe ax

(30)

(31)

(32),(33)

(34)

hence (31), with the substitution of (32) and (33), reduces to
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o7 "2
£ R- .
EI;L— e erfc [ 7] (55)

LkRSy

In a like manner the second integral of (28) becomes

2 uz
kg e ﬁ%*- ZBL erfe [ R+7] - (36)
177 JLRSy

Substituting (35) and (36) in (28) an then returning to equation (T7)

the solution is

Pt uz Yt o, uz w
4Dy " 2D 4Dy T 2D 207
(z,6) =1 4 e erfe |22 | —e erfe |22 '
olzt) =3 JLiRSy | VLRSy
(37)

which reduces to

1
c(z =1 erfc |2z —e 5 erfe | 2 8
( ’t)_ 2 rf []ﬁ] f [ﬁg—;] (3 )

the equation for the exit concentration profile for a step function
inlet.
The slope of the concentration profile at the concentration

midpoint which occurs at R = 7, can be determined by differentiating

(38) with respect to R, and setting R = y. Hence
2

S| Br

JLURSY

1 . [By
S ~ 4IRSy
R+y R-y

de 1 .
R 4x :/Rgsy € ~ Jrosy ¢ (39)

u2t
=



=13k -

and when R = ¥y

de | 1
— - )_l_o
(dR \/ b B2S (o)
R=y




D. ©PULSE FUNCTION TECHNIQUE
The pulse function technique 1s based on the fact that the
response of a linear system to a unit impulse is the derivative of the

b1

response of the system to a unit step function. Wylie ™ presents proof

of this for an analogous electrical system. Danckwertsll and Yagl and

Miyauchi 2

also derive equivalent hypothesis for flow through reactors.
To obtain a physical interpretation of the pulse function
technique it 1is necessary to refer to the forégoing method of Appendix
I-C. In the step function technique, the concentration profiles or
distribution functions for residence times were described by plots of

F vs R as shown in Figure 18, where F is the fraction of tracer in the

exit stream at time t,'

p(e) - 8] (1)

and R is the residence time. As time t, or R in Figure 18, becomes

infinite the fraction of tracer material approaches 1.0; i.e.,

lim F(t) = 1.0 | (2)

to

Now define a new function

B(t) = LEG) | - (3)

so that E(t) is the rate of change of the fraction of tracer material
in the exit stream. As a result, where "primes" refer to variables of
integration: t

F(t) = E(t') 4 ¢! ()

and hence upon substituting (3) in (1) there results

-135-
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1
lim F(t) _ lim fE(t') dt' =1 (5)

tes0 Tt 5
The instantaneous rate at which the tracer material leaves the column

is vF(t) and the amount leaving in the interval 0 to t is
.

va(t") at" | (6) |

0

t ot
vffE(t') dt'at" (7)
00

where v is the volumetric flow rate, ft3/sec.

or

Suppose now that we suddenly injJect a quantity Q of
tracer material, moles tracer, into the flowing stream at time O.
If the cdncentratién ig large and the period of injection very small,
the product beécomes unity; i.e., in the 1limit an arbitrarily large
concentration acting for an infinitesimal time produces a unit 1ﬁpulse.
Now let c(t), moles tra‘cer'/ft3 liquid, be.the concentration of tracer
in the exit stream at time t. Then vc(t), moles tracer/hr, is the

instantaneous rate at which the tracer leaves the bed, and

-t ~ -

v u/\c(t") at" ' (8)

| 0 | |
is the quantity of tracer (moles of tracer) leaving the bed in time

0 to t.

At time » all the tracer will have left the column, and
since‘the total amount that entered was defined as Q, the equation
results; |

Q.= v f c(t") at” (9)
O .
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and also the fraction of tracer which had enteréd at time O and had

left by time t can be defined by
t

f %'c(t") at" (10)
0

Assume now that the tracer, as in the step function treat-
ment, had been fed at the rate v. During the time interval O to t

the amount 6f all the msterial having left the bed is
t -

16 f v dt (11)
0

Now consider the tracer as having entered during a series of small
time increments, i.e., in a series of unit pulses, during time O to t.
It has been shown that the fraction of traéer which has left the
column at time t after.entry can be represented by equation (10).
Hence, the amount of tracer that has left the bed during time O to t

is

t t ' t t
f |: f %c(t") dt"] vat' = vflé- f:(tf') at" at!
0 0 0 0 (12)
" But previously this quantity of tracer leaving in time O to t was

given by equation (7), hence

t t t ot

vf-é f_c(t") at" at' = v fE(t") at" at*  (13)

0 0 0 0 .
Therefore |

d Ft) (14)

which shows that the distribution function of the pulse is the

derivative of the step function distribution. .
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From equation (5) there also follows

t

11 \
o fY_E_(f?._). at' =1 (15)
0 Q

which means the area under the distribution curve of the pulse
function is equal to unity.

The formula for the concentration profile of tlhev pulse
function is then found by differentiating equation (39) of Appendix

I-C which can be written in the form

1
/o ) R- _ .8 ) Bty
c(z,t) = 1/2 1 - erf T 5 e [1 erf m] (16)

T

Since
2

X
2
sems a2 ) 2
& ax \ yx s
0

the derivative of c(z,t) with respect to R becomes

2
LRSy R‘7]
de(z,b) 1 2 9 JiRS)
a® 2T C -
. R+y 2
1 rs{l d [R+7 |
# £ e s e | y/gsy] (18)
r 3R
where

—— ———
-

aR b RSy R3S «73357 (19)

aLE——i——]
lLRSyzl 1 + 7 | _ Rty
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R+7]
Jh’RS =1 j / —R=2 (20)
T 3R L |Jdrsy 4% R5Sy
Since the dimensionless ratio, R, may be defined as
vt
R= — 21
& (1)

where V represents the void volume of the bed, equation (14) may be

written
aFEt) v aF@E) _ vcel) (14a)
dR -V dt - Q
or
Ve(t) _ aF(t)
e , (22)
Hence the pulse function distribution, v ;(t>, becomes
2
[z [;_ /Rer
JhRSy 5 JhRSy’
Ve(t) 1 R+7 _ R-7
Q N JR287 JR387

Ji23)
The maximum concentration of the pulse function occurs at R = 7, hence

the equation for the pesk point is

c(t
(), - 5=



APPENDIX II

SAMPLE CALCULATIONS



A. TFREQUENCY RESPONSE TECHNIQUE - SINUSOIDAL WAVE

Experimental Data

Run 28

Column properties:

Height: 3.0 £t
Particle diameter: 3 mm spheres
d. = .133 in.

Porosity determination:.

P

Volume water added to packed column: 190.73 ml

Height of water displacement: 27.37 cm
Pre-bed properties:
Height: 1.5 ft
Particle diameter: 5 mm spheres
Liquid flow rate:
Rotometer III .250
Chart speed: 960 in./hr
Period of sinusoidal wave: 2k seconds
Liquid temperature: ' 21.5°C
Photometer calibration:
: Inlet Qutlet Conc.
Clear solution 9.01 mv 9.00 mv 0
Dye solution 1.27 mv 1.23 mv 1

Sinusoidal waves:

Minimum and maximum readings in millivolts
taken from recorder charts of inlet and
outlet waves to determine amplitude ratio
are presented below:

Inlet Outlet
Minimum Maximum Minimum Maximum
1 1.61 6.89 2.67 4.07
2 1.61 6.88 2.58 k.06
3 1.61 6.84 2.57 k.03
L 1.61 6.8k _ 2.54 4.02
5 1.61 6.8k 2.55 4.01
6 1.61 6.84 2.54 4.03
7 1.61 6.91 2.60 4.07
8 1.61 6.80 2.57 4.00
9 1.61 6.79 2.53 3.97
10 L1.6L 6.85 2.54 k.02
Avg. 1.61 6.85 2.57 .03

~1k41-



| Calculated

-1k2-

Data

Packing height:

The true packing height was determined as follows:

£t

Gasket .0 0.1 in.
Column 3.0 0.0
Gasket .0 0.1
Spacer packing .0 0.25
5.0 £t 45 in. = 3.0375 ft

Porosity: k :

Flow

The porosity was determined prior to each set of runs
by adding a known amount of water to the packed column
and measuring the change in water levels.

c = (190.73 m1) = 3Lk
. (929 cm?/£t2)(.02182 £t2)(27.37 cm)

rates:

The true flow rate was obtained from the calibration
chart in Appendix III-A. The superficial velocity
through the unpacked column and the actual mean linear
velocity in the packed column were calculated from
known bed properties.

Flow rate: 0.235 gpm

Superficial velocity:

V. = {.235 gal/min)(.1337 fta/gal) = .0240 ft/sec
°. (60 sec/min)(.02182 £t2)

Interstitial velocity:

u =

Vo _ L0240 £t |
- = [sec _ .0698 ft/sec

Frequency:

The frequency was determined directly from the period,
T, as follows:

2 2n radians

= I oas = .262 radians/sec

D=
T 24 gecs

Liquid properties:

The density was that of water and was obtained from
Table 45, p. 175, Perry, J. H., "Chemical Engineers'
Handbook". The viscosity, almost identical to that of
water, was obtained from an experimentally determined
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chart of viscosity versus temperature, Figure 32,
Appendix III-C.

.998 gms/cc

972 cp

©
n

=
1}

Amplitude Ratio

The methods used to calibrate the photometers have been des-
cribed in the section titled Evaluation of Data, page 52.

Inlet amplitude:
Inlet calibration:

o = log A - log y
B -m

0
1

At y
y

9.01, c
l.27, c

I n
nou

9.01; log A = .9547
log 1.27 - log 9.01 = .1038 - .9547
-.8509

Hence A
m

nnn

_ W7 - log y
¢= .8509

Minimum and maximum:

9547 - log 1.61 _ .9547 - .2068 _ 8

‘min = 8509 =T 8509 19
_ 9547 - 1log 6.85 _ L9547 - .8357 _
“nax = .8509 - .8509 = .10
Hence

A = 879 - .1k0 = .739

Outlet amplitude:
Outlet calibration: (follows same procedure as

above)
A = 9.00; log A = .95k42
m = log 1.23 - log 9.00 = .0899 - .9542

-.8643

o = 29942 - logy
. 3643
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Minimum and maximum:

c

_ 9542 - log 2.57 _ .9542 - 4099 _ 630
min L0643 863 T

(¢

_ -95h2 - log k.05 _ .9542 - .6053 _ )
max .8643 - .8643 ’

Hence
A, = .630 - .hok = .226

Therefore the amplitude ratio is:

=

M 195
Ae 206

and
A,
1n — = 1.1848
Ae

Calculation of DL

The error in B resulting from the use of equation (12) is
too large, hence equation (13) is employed.

A Zw?DL 5za>L‘DL3

1n Ki =
e ’U.3 u7

(5.038)(.262)°D; 5(5.058)(.262)4DL5
(.0698)7 (.0698)7

1.185 = 612 D, - 8.85 x 10° p°

By trial and error
Dy, = .00207 ftg/sec

Calculation gf modified Peclet number

_ %M (.133)(.0698) _

Fe’ D  (12)(.00207) 5574
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Calculation of modified Reynolds number

et -2 % P
U

_ (133 ££)(.0240 ft/sec)(.998 x 62,4 1b@t5) = 25.4
- (12)(.972 x 6.72 x 10~* £t 1b/sec)

B. FREQUENCY RESPONSE TECHNIQUE - NON-SINUSOIDAL WAVE

Experimental Data

Run 6
Column properties:
Height: 3.0 £t
Particle diameter: 1 mm spheres
dp = ,039 in.

Porosity determination:
Volume of water added to packed column: 176.51 ml

Height of water displacement: 25.63 cm
Pre-bed properties:
Height: 1.5 ft
Particle diameter: 25/30 mesh
spheres

Liquid flow rate:

Rotometer II ' L0748
Chart speed: ‘ 240 in./hr
Period of non-sinusoidal wave: T4 seconds
Liquid temperature: 21.5°C
Photometer calibration: ,

Inlet Outlet Conc.

Clear solution 9.00 mv 9.00 mv 0

Dye solution 1.14 mv 1.16 mv 1

Periodic waves: The recorder values given in millivolts of
the inlet and outlet periodic waves at in-
tervals of one-twelfth of a period are pre-
sented in Tables XII and XIII.
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Calculated Data

Calculations described in the previous section of the appendix
are only summarized in this section.

Packing height:

Gasket .0 ft 0.1 in.
Column 3.0 0.0
Gasket .0 0.1
3,0 ft 0.2 in, = 3.010 ft
Porosity, e:
(176.51) - 340

€ = 1929)7.02182) (25.63)

Flow rates:
Flow rate: .OT44+ gpm
Superficial velocity:

_ (Lo7kh) (.1337) '
Vo = “{60)(.05182) = -00T60 ft/sec

Interstitial velocity:

u = :9%%29 = .022h ft/sec

Frequency of periodic wave:
w = = .0850 rad/sec

Liquid properties:

p = .998 gms/cc

972 cp

M

Photometer calibratioﬁ:
Inlet:

log 9.00 = .9542

log 1.14 - log 9.00
.0569 - 9542 = -.8973

m

n o

Hence

_ 9542 - log y
.8973




-149-

Outlet:

log 9.00 = .9542

m = log 1.16 - log 9.00
= ,0645 - .9542 = -,8898
Hence
o = 2ok2 - log y
.88938

Inlet periodic concentration values:
The values of the inlet concentration wave at intervals
of one-twelfth of a period were obtained by averaging a
series of ten periodic inlet waves as shown in Table XII.
The recorder values given in millivolts were converted
to concentration units by the above equation for the
inlet photometer calibration. The minimum and maximum
values of the outlet waves are presented in Table XIII.

Harmonic analysis of periodic inlet wave

A 12-ordinate numerical scheme of harmonic analysis was used
to determine the coefficients of the Fourier series having
the form

_ 85 \ .
c = = + alcos e + bls1n e + aecos 20 + b231n 20 + .

The derivation of the method and the layout employed in the
calculations is presented in Wylie L

Assume that the period of the concentration wave is 2x, so
that the interval between the concentration ordinate is
Az = n/6. Applying the trapezoidal rule to the definitions

of a, and bn there results

1 <co cos(nzo)
& = [AZ ——3— *cpcos(nzy) + . . . c, cos(nz,)
) 15 cos(nzlafj]
2 7
1 e, sin(nzo) |
b, = - ljcz (:—————5——-—- *+ ey 51n(nzl) + ... ¢y 51n(nzll)

, c15 sin(nz12)>]

2




_150_

where

_ k=

_ X _ kx = (5%
Az = c z = and ¢ f(6 )

k k

Because of the periodicity of the wave cj = Ci,. Also

cos(nz ) = cos 0 =1

cos(nz,,) = cos 2x =1 ;

12)
hence the first and last terms in the series for an are

identical and can be combined. Moreover,

sin(nzj) =sin 0 = 0

sin(nzlg)

and thus the first and last terms in series for bn are zero.

The sums can be further simplified by noting that

n§12 - k} L

cos cos X
6 - 6

and

. nng - k!ﬁ nks
Sin =

= -gin —
6 :

6

which shows that cosine terms in the first series are sym-
metrical about the term c  sin(nx) and that the sine factors
in the second series are negatively symmetrical about the

term,c6vsin(nﬂ). Hence the series become

a, = %» [}o + (cl + cll) cos %g + .. .(05 + 07) cos 2%£

+ ¢ cos(nn)]
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by = % [}cl - Cll) sin %; + ... (05 - 07) sin EEE

The tabular form for this prdcess for forming the sums and

differences of the given ordinates is as follows:

c .781 |c 807l e .726 ¢z 500 ¢, SBUT L e 266 cg 21k

o 1 2 |75
i1 .728 g 645 cy .500 cq .288 \07 193

Sum so..78l 51 1.535 85 1.372 s5 1.000 5), 635 85 459 S¢ 21k
Diff d; .080 d, .081 d5 0.000 {d, .059 d5 073

In terms of s's and d's, the series becomes

o == i s +5 cos 4. .. +s cosZZ4s cos (nn)

nT 6| o 1 6 5 6 " 6
bn=% E! sin96£+ et si‘n5—2“-]

If n is an even number the cosine factors in an are symmetri-
cal about the middle term sy cos(nn/2) and the sine factors
in b, are negatively symmetrical about the middle term,

dg sin(nn/2). Therefore

-
1 o -
8 =7 [ (so + s6) + (sl + 56) cos — + (s2‘+ su) cos =3
+ s cos = ] » 0 even
3 2
1 oo . nx . nx
bn—6[(dl-d5) s1n—-6—+(d2-d4) 51§?fd551n2]

7

Also if n is odd, the cosine terms in an are negatively sym-

metrical and the sine terms in bn are symmetrical. Hence
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7
a, = % [ (s, - 56) + (s - 35) cos %; + (52 - SA) cos %?
+ s5 cos %?] » n odd
-1 i BX .nn . nx
bn—6[(dl+d5) sin = +(d2+dh) sin < +d5 sin 2]J

The above processes can be organized in the following tabular

forms:

s, 781 |s; 1.535 5, 1.372 55 1.000

sg +21k s5 459 5), .635

Sums e .995 ) 1.994 2.007 |e, 1.000

Differences |f :567 fl 1.076 | £, .737

d, .080|d. .081 |4, .000

5 -Q?3 dy, .059

Sums g -153 |, 140 .000

Differences | h. .007 |h, .022

Substituting these quantities and the appropriate trignometric

forms in the series for a, and b , there results
n

a, =% ’-(eo +e3) + (e +e2)] =%[jl + 32]
8, = % -(eo - éj) + l/2(el - ee)]b= %-[kl +1/2 k2]

Y PR
6 [ 1 2



al‘.=

o\ |+

o\ I o |+

o |-

o\ |-

o\ I
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1
l:(eo-eB) - (el—eg)] =7
(3 1 _aT
L?(hl+h2)_4 _6_h1*+h*
e Y
_-é_(hl'he)_ T Mot
1 [ V3]
g[(fo+l/2f2)+2fl] =

1

"6
_fo—fg]

I N3 1 1
h(f°+l/? f2)_- > fl‘ =%
- Jg- -1 l
(l/2gl+g)+-2—g2_ =7
_1

6




b5 =% [(l/égl + gf) -

Hence, determining the

-15k4 -

2 &

Jz‘]_;[

"6

q-g>*

e, .99 |e 1.994

e5 1.000 e2 2.007

. . . u.
Sums Jl 1.995 Jg 001
Differences kl - .005, k2 - .013

and the values of

T %
)

*
k2

the tabular form for the calculation of a,s

5

2.
.5k

2

and bu results

j-)(-

's, k¥'s, and h¥*'s

2.000 h *

1

. *
.006 h2

.866hl
.866h2

Al

.006

.019

/|

values of j's and k's as follows

a2, au, a6, b2

jl /}.995 kl -.005 jl 1.995 kl -.005 hl* .006
j2 .4.001 kg* -.006 j2* 2.000 k2 -.013 h2* .019
Sum 6a0 = 5.996 6a2 = -,011 | 6b2 = ,025
Diff 6a) = -.005 | 6a, = .008 6b4 = -.013
Likewise, determining the values of f*'s, g¥'s, p and q
£.% = .5f2 = .367 fl* = .866fl = .933
g* = .58 = .076 gg* = .866g2 = ,121
p = f, +f% = .567 + .367 = .93k
q= 8%+ 85 = .076 + .000 = .0T6
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there results the tabular form for the calculation of al,

35’ aS, bl, b5’ and b
| P .95k £ 567 {a  .076 g 153
£, ¥ .933 f2 LT37 gg* 121 g3 .000
Sum 6al = 1.867 6bl = .197
Diff 6a5 = .00l 6a5 = .170 6b5 = -.0k45 6b5 = .153

The Fourier series representing the inlet periodic wave, with
the coefficients as determined above but omitting negligible
terms is then:

c = .500 + .311 cos w9 + .028 cos 3we

+ .033 sin w8 + .025 sin 3w - .008 sin 508
The corresponding Fourier series for the outlet wave is then:

c = .500 + 311e~B cos & + ,028e'9B cos 3%
-B -9B -25B .
+ .033%"™® sin & + .025e sin 3% - .008e sin 5%
~Calculation of B
'The maximum concentration, ¢, and the corresponding angle,

5, were averaged for ten outTé waves and found to be:

— _ X
Cmax = .73)4' at d = E

Substituting this poiht into the above Fourier series for
the outlet wave
' -B -9B
734 = .500 + .31le  cos n/2hk + .028 e cos /8
+ .033%"2 sin n/2k + .025 e™B sin /8
e - .008 ™28 sin 5n/24

and solving by trial and error procedure for B, there results

B = .2841
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Using this value of B, the outlet wave can be calculated
from the Fourier series representing the exit wave and
compared with the experimental data. Figure 17 is a com-

parison of the calculated and experimental outlet waves
for Run 6.

Calculation of DL

The axial diffusivity was then calculated from the formula

or

b . _(.02ek gt/sec)’ (.2841)

L= 5 = .000147 fte/sec
(.0850 rad/sec)” (3.01 ft)

Calculation of modified Peclet number

el

(.039) (.022%) _ )06
(12) (.000147)

Calculation of modified Reynolds number

Re! = dp Yo P (L039)(.00760) (62.4 x .998)

= = 2.36
n (12)(6.72 x .972 x 10-4) 2

Comparison of methods of evaluation

Assuming wave was sinusoidal:
Inlet amplitude = A; = 808 - .192 = .616

Outlet amplitude = Ae = 734 - 266 = 468

A
2L L616 _ 5p,
A 468
Al zZ m? DL
In— = .2718 =B =
e w

~ (.0224)° (.278)
L™ (.0850)2 (3.01)

L0001k ££°/sec
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Hence the error in £his value of axial diffusivity, obtained
by assuming the periodic function to be sinusoidal, i well
within the experimental error.

PULSE FUNCTION TECHNIQUE

Experimental Data

Run P6

Column properties:

Height of packing: 5.11 ft
Particle diameter: 1 mm spheres

dp = .039 in.
Porosity determination: : -
Volume water added to packed column: 88.35 ml

Height of water displacement: 12.81 cm
Liquid flow rate: :
Rotometer II .030
Liquid temperature: : 29.5°C
Chart speed: 240 in./hr
Pulse length; on-off flick
of switch

Photometer calibration:
Clear solution 9.00 mv

Pulse concentration profile: The millivolt readings of three
pulse waves taken from recorder
charts ‘at intervals of six sec-
onds (60 seconds for pulse tails)
are presented in Table XIV.

Calculated Data

Calculations described in the previous sections of the ap-
pendix are only summarized in this section.

Porosity:

- 88.35) )
- (929) g.02182) (12.81) ~ 340

Flow rates:
Flow rate (corrected); .0303 gpm
Superficial velocity:

(.030%) (.1337) _
Vo = “(60) (.02Ba) - 0009 ft/sec
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TABLE XIV. PULSE CONCENTRATION PROFILES - RUN P6

Time After Pulse C Pulse D Pulse F
Iﬁgegzigz Recorder Conc Recorder Conc Recorder - Conc .
Reading gm/li Reading gm/li Reading gm/li
sec mv b 102 . mv x 102 mv .x 102
276 9.00 0 9.00 0 9.00 0
282 9.00 0 8.94 8a19 8.94 0019
288 8.94 0019 8.79 0069 8.82 0059
29k 8.83 '0056 8.56 0146 8.63 0122
300 8.65 0116 8.22 0265 8.36 0214
306 8.32 0229 7.75 ok36 8.02 0336
312 8.10 0307 7.14 0676 7.62 0486
318 7.75 oL36 6.37 1007 7.18 0659
32 7.36 0587 5.42 1479 6.66 0879
330 6.79 0822 4,35 2120 6.05 1158
336 5.99 1187 3.20 3016 5.10 1656
34o 5.0k 1690 2.09 4258 k.00 236k
348 k.29 2160 1.38 5468 3.09 3117
354 3.9k 240o8* 1.06 6238 2,54 3689
360 k.00 2364 1.02 6350% 2.43 3818%
366 448 2033 1.26 5734 2.70 3511
372 5.33 1527 1.96 Lhys 3. 44 2804
378 6.31 1034 3.17 3043 k.57 1976
384 7.19 0655 4.63 1938 5.79 1286
390 7.81 ok13 6.02 1172 6.85 0797
396 8.19 0275 7.06 0709 7.61 0490
ko2 8.90 0201 7.68 ok63 8.09 0311
Lo8 8.53 0156 7.95 0362 8.33 0225
Sl 8.60 0132 8.12 0300 8.L4L 0187
k2o 8.64 0119 8.24 0258 8.49 0170
ko6 8.68 0105 8.30 0236 8.53 0156
432 8.71 0096 8.3k 0222 8.57 o1k2
438 8.73 0089 8.38 0207 8.60 0132
Ll 8.76 0079 8.k 0198 8.62 0126
450 8.78 0072 8.45 0183 8.6k 0120
T (conc.)  1.9367 x 1072 5.1017 x 10™2 3,1018 x 1072
6 sec
= = .0L756
341.6 sec 1
480 8.86 0046 8.60 0132 8.74 0085
540 8.92 0026 8.79 0069 8.88 0039
600 8.98 0006 8.89 0036 8.97 0010
660 9.00 0 8.95 0016 8.99 0003
720 9.00 0 8.99 0003 9.00 0
780 9.00 0 9.00 0 9.00 0
-2 -2 137 x 102
L (cone.) .0078 x 10 0256 x 10 0137 x
M= _60sec = 1756
341.6 sec
*Note: Maximum value of pulse waves
Pulse C D F Avg.
Time, seconds -356.4 357.7 358.5 ---
Recorder reading, mv 3.93 l.01 2.k2 ---
R. 1.043 1.047 1.050 1.047
Concentration, gms/1i x 10° 2416 L6379 .3830 R
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Interstitial velocity:

u = ifgggg%l = .00910 ft/sec

Liquid properties:
.996 gms/cc
812 cp

Dimensionless ratio, R:
Time for R = 1

5.11 ft

= 341.6 seconds
.00910 ft/sec '

Wave Concentration Profile

The millivolt readings taken from the recorder traces of the
pulse waves are converted to concentration units of gms/li
by the photometer calibration formula

L9542 - log ¥
¢ = 148,92

where y is the millivolt reading. The concentrations of the
" pulse waves are also presented in Table XIV.

The area under the pulse profiles is obtained by numerical
integration as follows:

[o¢]

Jf cdR = (Xe) (&R)
0

Area

Hence

102 (M) (Ze)] = (.01756) (1.937)+(.1756)(.0078)

Pulse C

= .03539 gm/1i
1021 (4R) (Ze) ]

(.01756)(5.102)+(.1756)(.0256)
Pulse D
= .09402 gm/1i



-160-

10°T () (Te)] = (.01756)(3.102)+(.1756) (.0137)
Pulse F
= .05689 gm/11

and average area = .0621 x 1077 gm/1i

The area under a concentration profile for a unit pulse is
equal to one, when the ordinate is in terms of the dimen-

sionless concentration ratio, Vé/Q; hence by multiplying

each of the concentration points of a pulse wave by the re-
ciprocal of the area calculated for that pulse wave, a con-
centration profile with Vé/Q as ordinate is obtained. Hence
the peak points for each pulse are obtained as follows:

(_\Q_) _ M6 x10%° -
Q - -2
e = 1.ok3 03539 x 10
Pulse C
(YE) _ 679 x 1070 6.7820
Q -
R = 1.047 .09402 x 10
Pulse D
<_¢) " _ 3830 x 1008 _ 6.7326
\Q 2 ol
R = 1.050 -09689 x 10
Pulse F

The average (Ve/Q)y., of the three pulse waves is 6.7807
at an average R of 1.047.

Calculation of DL -

The value of Dy is found by substituting.the experimental
values in the formula T

(:%f) = 1 where R = R v
max

Q
or
\/S—z 1 = 1 = 6
a ik (E) AT .
Q max
D
S = .001581 = —=

zZu



-161-

Dy, = Szu = (.001581)(3.11 £t)(.00910 ft/sec)

il

.0000447 ££°/sec

Reynolds number:

Re = o Yo P _ (.039)(.00309)(.996 x 62.4) _ |
u (12)(6.72 x .812 x 10°%4)

Peclet number:

Pe = 2% _ (.039)(.00910) _ e

D (12)(.00008L7) ~




APPENDIX TII

CALIBRATION DATA

Flowmeter Calibration Curves - Figure 30
Photdmeter Calibration Curve - Figure 31

Solution Viscosity vs. Temperature - Figure 32



READINGS

FLOWMETER

.04}

02

50
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40

| 1] L

FLOWMETER

1

FLOWMETER Il

.008

.010

1.0

FLOWMETER IlI.

FIGURE 30 - FLOWMETER CALIBRATION CURVES

.6
GPM

(K3
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MILLIVOLTS

»

RECORDER READING

0.5 N I NN R NN N NN
0 .002 004 .006 008

gm/li PONTAMINE SKY BLUE 6BX DYE

. FIGURE 3| - PHOTOMETER CALIBRATION
CURVES - INLET AND OUTLET - PONTAMINE SKY BLUE 6BX
- DYE IN DISTILLED WATER BUFFERED WITH KHCgH,40,
(0.001 MOLAR)
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NOMENCLATURE

constant, slope

coefficients of cosine terms of Fourier series
constant of photometer calibration (log A = intercept)
outlet amplitude

inlet amplitude

amplitude of inlet concentration waves

amplitude of concentration wave at z

amplitude of n-th harmonic in periodic wave

constant, slope |

coefficients of sine terms of Fourier series

function representative of the decrease in amplitude ‘
of outlet wave '

concentration of tracer in solution, moles/unit volume
or gms/unit volume

mean composition about which concentration oscillates
in frequency response experiments

concentration values employed in numerical harmonic
analysis

initial concentration of solution admitted to bed
constant, (log C = intercept)

constant, (log ¢, = interéept)

concentration gradient, moles/ftB/ft

particle diameter, inches
tube or column diameter, in. or ft

effective axial diffusivity (in longitudinal direction),
ftg/sec

effective radial diffusivity, £t°/sec
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total effective diffusivity, ftg/sec
molecular diffusivity, fte/ sec
intensity of emergent light beam
intensity of incident light beam
reaction-velocity constant
adsorption velocity constant, sec'l
absorption coefficient

constant of photometer calibration, slope
number of harmonic

mass transfer rate, moles/sec-ft2

Peclet number; radial, dpu/DR of axial, dpu/DL

quantity of tracer inJjected in pulse function experiments,

‘moles

radial cobrdinate in cylindrical coordinate system
dimensionless time ratio, ut/z

Reynolds number, ap v, p/u

dimensionless diffusivity ratio, Dy/zu

time, secs

mean linear velocity (interstitial velocity), ft/sec
superficial velocity based on empty column, ft/sec
void volume of bed, ft5

fraction of reactant which has reacted during passage
through a reactor ’

recorder reading, millivolts

longitudinal coordinate in cylindrical coordinate
system
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Other Symbols:

4

function of adsorption velocity constant, equivalent
k

to 1+ ﬁk

angle of periodic wave, equivalent to (wt - o)

mixing diffusivity, £t°/sec

fraction void or porosity of packed bed

amount of tracer adsorbed on particle surface,

moles/unit volume of bed

viscosity of solution, cp
volumetric flow rate, ft5/sec

density of solution, gms/cc

period of periodic function, secs

function representative of the phase shift of outlet
wave '

phase lag of n-th harmonic in periodic wave
angular frequency of periodic wave, rad/sec
infinity

partial derivative
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