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Abstract

We define sources of heterogeneity in consumer utility functions related to individual differences in response
tendencies, drivers of utility, form of the consumer utility function, perceptions of attributes, state dependencies,
and stochasticity. A variety of alternative modeling approaches are reviewed that accommodate subsets of these
various sources including clusterwise regression, latent structure models, compound distributions, random co-
efficients models, etc. We conclude by defining a number of promising research areas in this field.
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1. Introduction

We explore how heterogeneity affects the specification and estimation of various choice
response models developed and used in Marketing. As to be discussed, heterogeneity is a
result of the individual differences consumers evince with respect to the judgments they
make and the processes involved in making such judgments. For decades, Marketers have
debated over the value of estimating such response models at a variety of alternative levels
of aggregation to perhaps gain additional insight into this heterogeneity.

1.1. Level of aggregation

Modeling approaches in Marketing have typically been implemented at one of three levels
of data aggregation: aggregate, market segment, and individual consumer levels. At the
aggregate level, one response function is estimated pooling across the data collected for
the entire sample. The parameters of this aggregate response function may or may not be
explicitly posited to have a distribution across the population of study. Predictions outside
of the sample are typically made with this single set of parameter values, and thus may not
fully capture individual consumer differences in the sample. In modeling at the market
segment level, response parameters are typically estimated per market segment (in either
apriori or post hoc segmentation schemes). In many of the post hoc approaches, the size
and structure of the market segmentation scheme are also estimated simultaneously. The
assumption here is that heterogeneity is adequately captured by discrete classes or groups.
Predictions for individual members are conditioned upon their segment membership.
Finally, at the individual consumer level, response parameters are estimated for each
individual consumer separately. For example, conjoint analysis studies often involve in-
dividual level estimation from which market choice simulators are calibrated. This ap-
proach typically involves the collection of rather detailed replicated data per consumer as
well as the estimation of a potentially huge number of parameters which may jeopardize
degrees of freedom and parameter stability. Yet, individual level estimation can provide
the maximum amount of flexibility in appropriately modeling consumer heterogeneity.
Obviously, the selection of which level of aggregation is most appropriate is an empirical
issue depending on the nature and form of consumer heterogeneity, which we next dis-
cuss.

1.2. The nature of heterogeneity

To illustrate this issue, assume the following general utility function (choice probability,
intention to buy, preference, etc.):
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Yijt 5 Fit@Xijkt; B0it, Bit# 1 eijt (1)

where:

i 5 1,…, I consumers;
j 5 1,…, J brands;
k 5 1,…, K brand attributes;
s 5 1,…, S market segments;
t 5 1,…, T time periods or purchase occasions;
Yijt 5 utility for brand j in period t by consumer i;
B0it 5 intercept;
Bit 5 response parameters for the K brand attributes;
Xijkt 5 the value of the k-th attribute for the j-th brand evaluated by consumer

i in the t-th time period;
Fit 5 the functional form utilized by consumer i in period t;
eijt 5 error distributed as g(u).

Note that utility, Yijt, may be directly observed as with preference ratings, or may be latent
and unobserved as in the case of stated or revealed choices where the observations are
binary. In this context, one can discuss the nature or sources of heterogeneity in terms of
the following:

1. Response heterogeneity. Different consumers utilize response scales differently. A “4”
on a ten point response scale (e.g., preference) may mean different things cognitively to
different consumers. Similarly, different consumers may have different predispositions to
purchase in the product class. Such types of heterogeneity are typically reflected in the
intercept term B0it in equation (1) above.

2. Structural heterogeneity. Different consumers may arrive at similar (or different)
levels of utility through different means. That is, individual consumers may value brand
attributes differently due to their individual needs. As such, the Bit may vary across
consumers reflecting such structural heterogeneity.

3. Perceptual heterogeneity. Consumers may differ in their perceptions, familiarity,
and/or recall of the underlying attributes utilized in their decision processes. This can be
reflected via different values of the Xijkt akin to an error in variables or stochastic regres-
sors problem.
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4. Form heterogeneity. Consumers may also vary in terms of the particular utility
function they utilize to evaluate and value the brand attributes. Here, some consumers may
use a simple linear model, while others may utilize a more complex non-linear function.
Some consumers may process brand attributes in a compensatory fashion, while others in
a variety of non-compensatory manners. This particular form of heterogeneity affects Fit

in equation (1).

5. Distributional heterogeneity. The error term may vary over consumers in one of two
major manners. One, the parameters (u) of the error distribution may be different for
different consumers. For example, some groups or segments of consumers may possess
higher or lower variance or shape parameters in equation (1). Two, different distributions
may be required for different consumers. Thus, such heterogeneity affects the error dis-
tribution g(u), either with respect to its moments or with respect to the particular distri-
bution itself. (Note that in many choice models there is a direct relationship between the
form of g(u) and F[ in equation (1).)

6. Time heterogeneity. Consumers differ in their reactions to their past purchase expe-
riences and behaviors. Some consumers may be more time loyal to a brand than others,
where it may take several negative experiences with a brand to invoke switching or a
reassessment of attribute importance. Other consumers may possess more volatile utility
functions whose structures change over time vis-à-vis word of mouth messages from
influential friends or opinion leaders. As such, time heterogeneity can affect virtually any
aspect of the utility function posited in equation (1).

1.3. A simple illustration

We illustrate a very simple example of one form of heterogeneity (structural) and the
potential costs associated with ignoring it. Let us assume one independent variable or
attribute—price, with the dependent variable being probability of purchase. Suppose there
are two (unknown) market segments of approximately equal size, and that the utility
function is linear in price. For market segment one, members utilize price as a proxy for
quality and wish to buy the highest quality good; thus, an upward sloping utility function.
Market segment two, on the other hand, can be characterized as extremely price sensitive
where the members of this segment wish to purchase the cheapest brand available; thus,
a downward sloping utility function. If one were to ignore these fundamental market
segment differences and estimate one aggregate utility function, the result is a flat line
suggesting that price does not significantly affect purchase probabilities. This aggregate
function thus “masks” the truth in this simple example since structural heterogeneity is
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not considered. (Note that as the number of segments, S, gets large, individual level
estimates are obtained in the limit.) The result of neglecting such heterogeneity here is a
misrepresentation of the real effects of price on these two separate domains or market
segments. (For the marketer, perhaps a sizable profit could be made in solely targeting the
quality sensitive segment alone.) While simple plotting routines would have easily illus-
trated this structure apriori, as the number of attributes and/or segments get large, plotting
mechanisms are near impossible to adequately employ.

2. Methodological approaches

2.1. Aggregate level estimation methods

Marketers have benefited from the application of compound distributions from the Baye-
sian statistical literature (cf. Lilien, Kotler, and Moorthy (1992) for a recent review) to
model heterogeneity in consumer responses. Assuming the likelihood f(y?µ) belongs to the
exponential family, and a continuous distribution of some parameter µ: m(µ), (such as a
normal distribution for the mean of a normal, a beta distribution for the probability of the
outcome of a binomial, a gamma distribution for the mean of a Poisson, etc.), then a
conjugate distribution in the exponential family leads to a form of the compound distri-
bution which is also in the exponential family:

h~y?j! 5 *
2`

`

f~y?µ!m~µ?j!dµ. (2)

The Normal-Normal, Beta-Binomial, Negative-Binomial, and Dirichlet-Multinomial have
been well known compound distributions applied in Marketing.

In a more formal Bayesian sense, if a conjugate prior distribution for µ, m(µ), is in the
exponential family, then the posterior distribution, h(µ?y), for that parameter also has the
same parametric form as the prior in that exponential family (when f(y?µ) belongs to the
exponential family):

h~µ?y! a f~y?µ! m~µ!, (3)

where the prior distribution renders some notion of the heterogeneity or the distribution of
µ across the population. Such conjugate prior distributions have the practical advantage of
computational convenience and are often interpreted as additional information.

If instead of a distribution for the mean, a prior distribution can be formulated for the
response coefficients (Bit in (1)); the formulation in equation (2) leads to the class of
random coefficient models (cf. Longford 1993), where specified subsets of the coefficients
in the response model follow a distribution across the population. For example, suppose:
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yi ; N~XiB̃i; u!

and

B̃i ; N~B, (
~

!. (4)

Here, the covariance matrix (
~

describes between-subjects variation in the B coefficients.
Those coefficients that are assumed constant correspond to zero variances in the diagonal
elements of (

~
. The corresponding likelihood is:

L 5 )
i51

I

*
2`

`

… *
2`

`

f(yi,B̃i) m (B̃i?u)dB̃i, (5)

and its maximization is non-trivial for K . 3 for non-conjugate m(B̃i?u). Zeger and Karim
(1991) have applied the Gibbs sampler to this problem to simplify the computational
aspects of the estimation. Such an approach can estimate individual level Bi assuming one
has repeated observations per individual (see Allenby and Rossi 1996). An important
special case that has been extensively treated in the econometrics literature is where only
the intercept term varies randomly in (1).

2.2. Market segment level methods

1. Clusterwise regression. Clusterwise linear regression was a term first coined by Spath
(1979) to describe the difficult problem of simultaneously finding clusters or market
segments (their size and composition), as well as the associated response coefficients by
market segment. Consider the following conjoint analysis scenario where:

X 5 ((Xjk)) 5 the (J 3 K) design matrix of dummy variables;
Y 5 (y1,y2,…,yI) 5 the (J 3 I) matrix of preference/choice vectors for

each of I consumers,
B 5 (b1,b2,…,bS) 5 the (K 3 S) matrix of conjoint part-worths for the S

segments;
G 5 (g1,g2,…,gI) 5 the (S 3 I) matrix of vectors Gi defining cluster

membership for each consumer i. The individual en-
tries, gis, may be Boolean or fuzzy probabilities,
with certain restrictions possible concerning indi-
vidual membership;

E 5 (e1,e2,…,eI) 5 the (J 3 N) matrix containing random errors.
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The clusterwise regression model for this problem can be formulated as:

Y 5 XBG 1 E, (6)

where given Y, X, and a value of S (the number of segments), one is interested in
estimating B and G in order to optimize some desirable objective function (e.g., tr(E’E)
as in Spath (1979, 1985)). Hagerty (1985) estimates a transformation or reweighting of the
responses to maximize the average expected mean squared error between predictions and
validation trials from a hold-out sample. His scheme amounts to a principal axis factor
analysis of the correlation matrix of respondents (whose elements are rarely bounded
between zero and one). Kamakura (1988) proposed a hierarchical clustering least-squares
based procedure to maximize Hagerty’s predictive accuracy index where the allocation of
subjects to segments is found using an agglomerative clustering procedure. Wedel and
Kistemaker (1989) introduced an extension of Spath’s (1979) procedure using an ex-
change algorithm to arrive at a non-overlapping partition of consumers to segments.
DeSarbo, Oliver, and Rangaswamy (1989) develop a flexible clusterwise linear regression
procedure utilizing simulated annealing discrete optimization algorithms to jointly esti-
mate B and G in (6). Their methodology can accommodate multiple dependent variables,
overlapping or non-overlapping clusters/segments, as well as constraints on cluster mem-
bership (cf., DeSarbo and Mahajan, 1984). Wedel and Steenkamp (1989, 1991) propose
fuzzy clusterwise linear regression procedures which allow for consumers partial mem-
bership in more than one segment, as well as the joint fuzzy clustering of consumers and
brands. Krieger and Green (1996) present a K-Means based approach to clusterwise
regression to enhance the interpretation of the resulting segments. Finally, DeSarbo and
Grissaffe (1996) recently introduce a general clusterwise regression procedure that ac-
commodates multiple objective functions, as well as highly non-linear response functions,
utilizing genetic algorithms. See Vriens, Wedel, and Wilms (1996) for a Monte Carlo
evaluation of several of these deterministic methods.

2. Latent structure regression. In finite mixture models, it is assumed that a sample of
observations arises from a (initially specified) number of underlying classes of unknown
proportions. The form of the density of the observations in each of the underlying classes
is specified, and the purpose of the finite mixture approach is to decompose the sample
into its mixture components. Thus, unlike deterministic clusterwise regression formula-
tions, such finite mixture problems involve parametric distributions. In latent structure
regression formulations, one deals with finite mixtures of conditional distributions given
covariates X. Specifically, we assume a set of multivariate observations on a set of n
objects y1,…,yI as realized values of i.i.d. random variables Y. Each yi 5 (yij), (i 5 1,…,
I; j 5 1,…, J) is a vector of dimension J (J 5 1 handles the univariate case), which is
assumed to arise from a superpopulation which is a mixture of a finite number (S) of
segments or classes, GS (s 5 1,…, S), in proportions p1,…, pS, where it is not known in
advance from which class a particular observation arises. The proportions (prior prob-
abilities or mixture weights), ps, satisfy the following constraints:
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(
s51

S

ps 5 1, ps . 0, s 5 1,…,S. (7)

The conditional probability density function of yi (or conditional mass function in the case
of a discrete sample space), given that yi comes from class s, is:

yi ; fi?s~yi;Xi,Bi[s!. (8)

These conditional densities are usually assumed to belong to the same parametric family,
although this restriction is not strictly required. The unconditional density of observation
i is given by:

fi~yi;f! 5 (
s51

S

psfi?s~yi;Xi,Bs!, (9)

where f 5 (p,Q) denotes the vector of all unknown parameters to be estimated, and Q 5
(B1,B2,…, BS). The random vector yi is said to have a finite mixture distribution, with
component densities fi?s(yi;Xi, Bs) and mixing weights ps. Note that, conditional on
sample estimates of p and Q, the posterior probability of observation i into class s is:

Pis 5
p̂sfi?s~yi;Xi,B̂s!

(
s51

S

p̂sfi?s~yi;Yi,B̂s!

. (10)

These Pis’s provide a “fuzzy clustering” of the observations into the S segments or classes,
and have often been used to classify a given sample of individual observations into
groups. Estimation of f is performed via maximum likelihood typically using the E-M
formulation (cf. Dempster, Laird, and Rubin, 1977). Note, subsets of the parameters may
be allowed to vary (or remain fixed) across these mixture components. If only the intercept
terms are allowed to vary across mixture components, the traditional econometric ap-
proach by Heckman and Singer (1984) is obtained as a special case.

To derive the E-M algorithm for such conditional mixture regression models, non-
observed data, zis, are introduced, indicating if observation i belongs to segment s: zis 5
1 if i comes from segment s and zis 5 0 otherwise. It is assumed that the zis are i.i.d.
multinomial, consisting of one draw from the S classes with probabilities p1,…,pS. With
zis considered as missing data, and assuming that y1,…, yI given z1,…,zI are conditionally
independent, the complete log-likelihood function can be formed (Dempster, Laird, and
Rubin, 1977):

ln Lc~f! 5 (
i51

I

(
s51

S

zisln fi?s~yi;Xi,Bs! 1 (
i51

I

(
s51

S

zisln ps. (11)
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Using some initial estimate of f, f0, in the E-step the expectation of ln Lc(f
0) is calcu-

lated with respect to the conditional distribution of the non-observed data zis, given the
observed data yi and the provisional estimates f0. This expectation is obtained by replac-
ing zis in equation (11) by its current expected value, E{zis?y,f0}, which, using Bayes’
rule, is identical to the posterior probability that yi belongs to segment s defined in
equation (10).

In order to maximize E{ln Lc(f)} with respect to f in the M-step, the non-observed
data zis in (11) are replaced by their current expectations Pis. Maximizing E{ln Lc(f)}
with respect to ps, subject to the constraints (in equation 7) on these parameters, yields:

ps 5 (
i51

I

Pis/n. (12)

Maximizing E{ln Lc(f)} with respect to Bs leads to independently solving each of the S
expressions:

(
i51

I

Pis ~] ln fi?s~yi; Xi, Bs!/]Bs! 5 0, ~s 5 1, …S!. (13)

The E- and M-steps are alternated until no further improvement in the likelihood function
is possible. An attractive feature of the E-M algorithm is that the solution to the M-step
often provides closed form expressions for the parameter estimates, such as in the case of
the normal density. (Titterington, Smith, and Makov (1985) discuss the general form of
the stationary equations for the mixture of distributions from the exponential family.) A
second attractive feature of the algorithm is that it provides monotone increasing values of
the likelihood (Dempster, Laird and Rubin, 1977). Under mild conditions, the likelihood
is bounded from above, so that convergence to at least a local optimum can be established
using Jensen’s inequality (c.f., Titterington, Smith, and Makov, 1985). Boyles (1983) and
Wu (1983) discuss the convergence properties of the E-M algorithm. The problem of
multiple maxima of the likelihood of mixture models has been well documented (Titter-
ington, Smith, and Makov, 1985). This difficulty can be dealt with by performing several
parameter estimations with different sets of starting values. Wedel and DeSarbo (1994)
review the identification requirements in such latent structure regression models, as well
as various heuristics for selecting the number of segments or classes. These authors also
present an updated list of developments and applications of various forms of latent struc-
ture regression.

3. Hybrid approaches

1. Compound finite mixture regression models. We assume S segments with sizes p1,…,
ps, the random variable yi distributed as fi.s(yi.µs), a conjugate distribution m(µs) leading
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to compound distribution hi.s(y.µs) with expectation µs in segment s, and a link function
l(µs) 5 hs with linear predictor hs 5 XBs. The likelihood

L 5 )
i51

I

(
s51

S

pshi?s~yi?Bs! (14)

is maximized with respect to the segment level Bs. Ramaswamy, Anderson, and DeSarbo
(1994) and Bockenholt (1993) have developed such finite mixture compound regression
models.

2. Random coefficient finite regression models. This formulation follows a similar math-
ematical development as with compound finite mixture models concerning segments,
distribution, link functions, and linear predictors. However, now one specifies a distribu-
tion of the Bs, say F~Bs?uS! 5 N~Bs

*, (s
*!, where the likelihood becomes:

L 5 )
i51

I

(
s51

S

ps *
2`

`

…*
2`

`

fi?s~yi?Bs!F~Bs?uS!dBs. (15)

Lenk and DeSarbo (1996) and Allenby and Ginter (1996) have independently formulated
hierarchical Bayes models for a variety of different models. The Gibbs sampler is used to
simulate the integrals in (15) since they cannot be analytically evaluated or easily numeri-
cally approximated (see Gilks, Richardson, and Spiegelhalter, 1996 for computational
details for such Markov Chain Monte Carlo procedures).

In the context of discrete choice models, Gonul and Srinivasan (1993a) incorporate
random heterogeneity in intrinsic brand preferences as well as response parameters. Their
results underscore the importance of accounting for heterogeneity in the nuisance and the
structural parameters of their model. Incorporating state dependence or loyalty is always
problematic in the context of random coefficient models. Gonul and Srinivasan (1993a)
suggest the mover-stayer method to control for “hard-core” loyal households in the ran-
dom coefficient model.

A parametric representation of heterogeneity may not truly reflect the underlying dis-
tribution of the heterogeneity structure. Alternatively, a semi-parametric method of ap-
proximating the underlying distribution through a number of support points (Heckman
and Singer 1984; Chintagunta, Jain, and Vilcassim 1991) can be adopted. However, the
researcher must be aware that such models may encounter slow convergence problems.
More importantly, they may fail to represent the true structure (Heckman and Singer
1984). In a competing-risks hazard model, Gonul and Srinivasan (1993b) offer a direct
comparison of the fixed effects with the random effects specification. They find that the
Gamma distribution adequately captures the underlying distribution as given by the his-
togram of the fixed effects estimates.
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4. Future research directions

Given the extensive amount of research performed in this exciting area, there exists a
number of avenues for future productive research effort:

1. Selection of the number of market segment (S*). There are no existing statistical tests
available in segment level models for selecting S*—the appropriate number of groups or
segments. Heuristics such as AIC, MAIC, BIC, CAIC, ICOMP, NEC, etc. are useful
guides, but often suggest different values of S*. Simulation results by Jedidi, Jagpal, and
DeSarbo (1996) and Rust, Simester, Broadie, and Nilikant (1995) suggest that BIC and
CAIC are superior heuristics in recovering the true number of segments.

2. Predictive validation in mixture models. It is often difficult to generate accurate
predictions to a hold out sample in the mixture model framework, especially in those
empirical applications where substantial within segment heterogeneity exists. Because the
predictions will, by definition, be a convex combination of the segment centroids, the
variance of the predictions is restricted.

3. Model selection. There are few guidelines available as to when finite mixtures vs.
compound distributions, for example, are to be preferred. Most of the time, it reduces to
“try both and evaluate which one works best”. For example, are finite mixture approaches
uncovering underlying segments or are they merely approximating (semi-parametrically)
a continuous distribution? Extensive Monte Carlo testing is required to develop such
guidelines. Preliminary simulation results by Jedidi, Jagpal, and DeSarbo (1996) and
Vriens, Wedel, and Wilms (1996) suggest that the finite mixture approach is superior to
hierarchical, non-hierarchical, and clusterwise regression clustering in representing more
continuous forms of heterogeneity.

4. Profiling segments in mixtures. One of the profound difficulties encountered with
finite mixture models is the fact that membership in the derived groups or segments
typically relate weakly to any individual demographic or psychographic data. MacReady
and Dayton (1980) proposed a reparameterization of the mixing proportions:

pis* 5
exp~Zigs*!

(
s51

S

exp~Zigs!

, (16)

also utilized in Gupta and Chintagunta (1992) and Kamakura, Wedel, and Agrawal (1994).
However, in most applications, the likelihood tends to dominate the prior or mixing
distribution, and so the posterior probabilities tend to still be unrelated to these Z back-
ground variables. DeSarbo and Grisaffe (1996), and Krieger and Green (1996) have
presented deterministic clusterwise regression alternatives to these mixture approaches
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that explicitly attempt to take into account such background variables in the objective
functions being optimized. Multilevel models allow both demographic and causal vari-
ables to be incorporated in such models (see Ansari, Gupta, and Morrin, 1996).

5. Other forms of heterogeneity. The models discussed thus far accommodate response,
structural, and limited forms of error heterogeneity. Little has been done to explore issues
in form, time, and more complex aspects of error heterogeneity. Kamakura, Kim, and Lee
(1996) develop one of the first mixture models to represent different consumer decision
processes. The dynamic aspects of changes in market segments was first explored by
Poulson (1982), and later by Ramaswamy, Cohen, and Chatterjee (1996). More work is
required regarding these more complex forms of heterogeneity, as well as a set of diag-
nostics to reveal which forms may be present in a particular data set.

6. Endogeneity and simultaneity problems. Jedidi, Jagpal, and DeSarbo (1996) and
Jedidi, Ramaswamy, DeSarbo, and Wedel (1996) have recently proposed finite mixture
model specifications for general causal model frameworks. Their methodology accommo-
dates recursive models, simultaneous equations, standard and second order factor analy-
sis, and structural equations in a finite mixture setting. Future research should aim at the
construction of models to account for consumer heterogeneity involving factors that may
be both endogenous and exogenous.
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