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THEORY AND PERFORMANCE COF TURBO-MACHINERY
Introduction

A pumping machine is a portion of a total fluid transport
system where the required energy to move the fluid at a prescribed
rate-of-flow is added. All types of pumping machinery can be gener-
ally classified either displacement or impulse pumps. This paper
is concerned with the impulse machine.,

The displacement machine is characterized by a variable
volume cavity bounded on all sides by rigid walls and into which fluid
is forced during expansion of the cavity volume by an energy gradient
favorable to fluid flow toward the cavity. On contraction of the
volume of the cavity fluid volume is forced to a higher energy level
by an external energy source, usually mechanical in nature. The flow
rate in the system, in all cases, is, to a degree, oscillatory in
character, the-amplitude of the variation being a function of the
number of cavities in action and the frequency with which the cavities
complete the expansion and contraction cycle.

The turbo-machine, on the other hand, is characterized by
an in-line type of enclosure, unbounded by rigid surfaces at right
angle to the flow path of fluid. Fluid is forced, by a favorable
energy gradient, into the machine. Energy additions to the fluid,
in all cases, occur by an impulse action of a rotating blade system.
Energy is supplied to the rotating blade system usually by & mechan-
ical source of power, is transferred to the fluid by blade system
action, the transfer in all cases resulting in a "change-of-whirl,"
The passages for fluid flow are relatively unrestricted in the path
of flow of the fluid. In the immediate vicinity of the rotating
blade system, a periodic fluctation occurs that is damped out by
resistance to flow such that, for all practical purposes, the machine
may be regarded as a steady flow device under equilibrium system re-
quirements.

Obviously, if an energy gradient exists without the inclu-
sion of a pumping machine that will off-set the loss of energy in
the transport system, a pump should not be included. This specific
reference is intended to reinforce the following. "The characteristic
behavior of an impulse pumping machine is completely regulated by the
requirements of the transport system."

.
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The term "external system" will be used throughout when
discussing that portion of a gystem external to the flanges of the
pump. The term "internal system" will be used in the discussion
of that portion of the total system between the flanges of the pump.

The following sections constitute the body of this paper:

I) General Energy Relationships.
II) Behavior of Fluids.

III) fTheory and Perfcormance of Turbo-Machinery, and

IV) Capacity of a Pumping System,



I. GENERAL ENERGY REILATIONSHIP

The reason to use any form of pumping machinery is to
utilize a source of energy and to convert that energy to a form
that may be used to advantage. The pump depends on a source of
mechanical energy which is converted into forms of stored energy
required to transport fluid. It is a part of an engineering system.

The behavior in all engineering systems is governed by the
natural and physical laws of the universe. Although these laws are
intuitive, continued successful application has established their
validity, and consequently form the basis for all engineering analyti-
cal procedures. The Laws of Thermodynamics, Newton's Laws of Motion
and Gravitational Forces, and the Conservation of Mass form the basis
for the engineering system analysis with which this paper is concerned.
The laws of thermodynamics are accounting processes; the laws of motion
provide an insight into the mechanism of energy transition.

The term, Work, is defined as follows:

+ W =ffds (1)

where (W) with the minus sign (-) indicates work done upon a system;
(f) is a force in pounds moving through an incremental distance, ds
the product of which when integrated (/) is the work done by the force
(f) moving through a total distance.

The First Law of Thermodynamics states that the sum of heat
added plus the work done upon (minus sign - ) or the work done by
(plus sign +) an engineering system is equal to the total change of
energy in the system.

In equation form

Qg+ W = le (2)
where (q) is the heat in BTU added to the system, + W is the work
done by or upon the system in BIU, and Ae is the total charge of
energy of that system in BTU.
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Figure 1 is a sketch of a machine where the items of stored
energy, energy in transition, heat, and work are indicated. Since we
are concerned with the pump, shaft work (W) is indicated as being
gone upon the machine.

~/
0

i
!
J |
Vl - 2
\ 2
g _/
Zq Pl
vy |
Uy - I
Figure 1.
7, = potential energy (ft.lbs/lb)
P pressure - (1bs/sq.ft.)
v = specific volume - (cu.ft./1b.)
u = internal stored energy - (BIU/1b.)
V = mean absolute velocity - (ft./sec.)
J = T78 ft. lbs. per BTU.
W, = Shaft work - (ft. 1lbs. per 1b.)
q = heat added - (BIU/1b.)

Expansion of Equation (2) yields

2 2
-2 = + + < ) + (u, - u) (3
1Ty < J > < 2gJ > J (v - vy )

Ttem 1 on the right hand side of the equation being the total
change in flow-work, item 2 being the total change in kinetic energy;




item 3 being the total change of potential energy; and item 4 the
total change of internal energy as indicated by a temperature change.

Equation (3) has particular significance when written in
the differential form.

AWy Pdv - vdP  Vav
dq - = + + dz + du (4)
J J gd

and when re-arranged

<E£11+du-dq +l<vdp+\@f.+dz, (5)
y J g /

It is important to understand the sum of the first three terms on
the right hand side of Equation (5).

Supposing we construct a special closed cylinder (Figure 2)
and piston arrangement which permits a volume expansion or contraction

by a movement of the piston° Application of the First Law of Thermo-
dynamics to the cylinder can be made where:

w1

Jqp o

——— AW

|
L
|
!

av!
L

—= dhp

Figure 2

d4 = incremental length of piston movement.
Ap = area of piston
Apdﬂ = dv (change of volume)
Then
PApdz = Pdv (6)
dh. = resistance to piston motion (ft.lbs).

f
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And
dWs Pdv an (
= e — 4
J 7T R

In applying an energy balance to the closed cylinder on (2) for the
closed cylinder

aWg _
s +dg = du (8)

And substituting the value of dWS from (7) the following results:

If the rigid boundary of the cylinder sketched in Figure 2 were replaced
by a fluid particle with flexible boundaries and you, as an observer,
were stationed at (A), and the particle was moving in a steady-flow
process, the observer would see a contraction or expansion of the
boundaries, would experience a rise or

P P
dq
p/ <= p
dne
Figure 3.

fall of temperature, and would note a shear stress at the boundary of
the particle and the adjacent fluid. The observer would recognize
Equation (9) as the analytical description of his observation. And
for the machine, Equation (5) becomes

Vav
AW, = (vap + e + dz) + dhp (10)

The above form of the General Energy Equation is of use where it is
required to know the mechanism of fluid motion and will be found to
be of particular benefit in solving the problems associated with
relatively incompressible fluids.



In the case of the pump handling water the specific volume
(v) can be treated as a constant and since v = 1/y (y = specific weight)
and P = 144 p (p = 1bs. per sq.in.)

)
- Vo =V

(o P)lhh L e 1, (
Y 2g

_WS =

Zp - Z1) + hey g (11)

For the special case when WS = 0 and the resistance to fluid
flow = O (hf = 0)

‘ 2 2
' v v
(p2)1h 2, 7, = EE}Z;EE + L+ 2, = constant  (12)

4 °g 7 2g

which is recognized as Bernoulli's equation as derived from the concept
of Conservation of Energy.



SUMMARY

1) Equation (10)
-aWg = (vaP + I 4 gz) + an,
g

results from a general analysis of a mechanically driven machine.

The pump that handles a liquid is a special case. Reasonable assump-
tion that the specific weight (y) and the inverse, specific volume (v)
remains constant in the case of the pump leads immediately to Equation
(11) in which all terms are measureable in terms of average values.
Further, the term, hg,_;, becomes a portion of the "internal" system
energy requirement which by necessity must be a part of total "work"
supplied by the energy source.

2) The h term requires attention. Referring to Equation (9
fou1

E%ﬁ + du - dq = dhf
it is immediately apparent that Pdv = O following the assumption that
(v) is constant. The term (dq) mey or may not be zero. The ambient
temperature surrounding the machine or more precisely, the differential
temperature between the ambient and the temperature of the fluid pass-
ing through the system will determine the effect of the term. In any

case
du = c(T, - Ty)

where ¢ is a proportionality constant and (T, - Ty) is the absolute
temperature rise of the fluid.

Equation (9) may thus be rewritten

c(Tp - Ty) = dhfg_l + dq

Thus indicating that effects of viscous force interaction between the
boundaries of the machine passage (rotors and casings) and the fluid
causes a temperature rise in the fluid. In many pumping applications,
the temperature rise is so small as to be reasonably neglected, how-
ever, only after due consideration of the term.



IT. BEHAVIOR CF FLUIDS

A. Properties of Fluids

Fluids can generally be classified as gases or liquids
and for most engineering purposes can be judged to be homogeneous.
Both fluids have properties as specific weight (r - lbs. per cu.ft.)
specific volume (v = cu.ft. per 1b.); density (p - mass/cubic volume =
r/g); and vapor pressure (p, = unit pressure/unit area at the temper-
ature at which a liquid and its gaseous phase are in equilibrium).

_ A gas is defined as a fluid which will conform to the shape
of its container and will occupy the entire enclosed volume. A liquid,
on the other hand, will conform to the shape of its container and will
occupy only that portion of its container proportional to the weight of
fluid.

Both liquids and gas typically yield continuously under
shear stresses} both fluids are capable of supporting compressive
stress if confined within fixed rigid boundaries.

There are several properties of real fluids that need
attention.

1. Viscosity

Viscosity is a measure of the resistance a fluid offers
to a continous shear force. If two plates are separated
a finite distance and one of the two plates is caused to
move at a velocity, Vp, relative to the other, the fluid

Figure k4.
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between those plates will deform and will resist the
force that is required to move the plates. The velocity
of movement of a real fluid layer next to each plate is
equal to the velocity of the respective plate. The
velocity of fluid motion, u, intermediate between the
plates will take on some distribution as indicated in
Figure 4, The coefficient of viscosity, u, of the fluid
is defined as follows:

F -, & (1)
A dy
F
i (Shear stress)
_ du
T = —_—
dy
I_
du
o e
r 9] dy

Pressure at a Point in a Fluid

The pressure at a point in a fluid under both equilibrium
and accelerated motion conditions is equal and opposite in
all directions. This statement is subject to proof; however,
it is stated here in order to develop a fundamentally import-
ant relationship between pressure and the height of a homo-
geneous fluid. Many fluid pressure measurements that are
necessary to establish an energy level are made by measure-
ment of height. For instance, the pressure of the atmosphere
against the surface of the earth or the surface of a lake is
proportional to the height of the atmosphere above a given
point. The gauge pressure at the bottom of a lake is propor-
tional to the height of water above the point of measurement.
The absolute pressure at the bottom of the lake is the sum

of the pressure exerted by the atmosphere against the surface
of the lake plus the pressure exerted by the water above the
same point.

Measurement of Pressure at any point in a fluid may or
may not be a measure of a continuing energy supply.




-]] =

Pressure-Height Relationship

The pressure-height relationship that measures pressure
only is illustrated in Figure 5.

P+ dP

- dP - pgdz = 0

2
- /th =g J[ P4z

1

In the case of air the density, p, is a function of height,
whereas, for water, p is considered constant over rather

wide variations in height. The integral may be written

for water as follows:

2 2
- L/‘ dP = 08 L/‘ dz
1

1
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and (Pl - PE) = pg(22 - Zl)

P = 1likp

pg = 7

Pp - D

(B=t) bk =z - 2 (16)

B. Fluids in Motion

At any instant in fluid motion and at a given point within the
fluid body, it is theoretically possible to describe the motion in terms
of an absolute velocity, V-ft./sec., and assign to an incremental mass
a fluid vector which has both magnitude and direction. This vector may
likewise describe the motion of an adjacent fluid increment in either
magnitude or direction, or both. Depending upon such fluid parameters
as density (p) and viscosity (u) and upon the dimensions of the fluid
channel, it is entirely possible, however, that the vector, V, that
would describe the motion of an adjacent particle may be completely
different. '

Although the isolation of individual mass particles is practi-
cally impossible, it is necessary to understand incremental descriptions
if one is to have an understanding of gross fluid flow behavior. The
understanding of gross fluid flow behavior is an important part of all
fluid machine design. Momentum and shear stress as applied to an incre-
mental fluid volumeé lead to & regularly used term - Reynolds number , Re.

The concepts of rotational and irrotational motion lead to
an understanding of the term circulation and the fluid vortex. Further,
the understanding of Reynolds number leads to the evaluation of laminar
and turbulent motion and the accompanying fact of resistance to flow of
all real fluids.

1. Reynolds Number

Momentum is defined as the product of the mass of a body
times the velocity with which the mass is moving. If the
mass is caused to accelerate an inertial force equal and
opposite to an external force, causing the change in motion,
exists. This is internal force as follows:

d
f = 7y (mv) (17)
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Figure 6 is an isolated incremental mass of fluid in a
rectangular coordinate system. A system of forces acts

upon it, namely: 1) forces that will cause it to accelerate,
2) viscous forces from surrounding fluid at its boundaries
tending to resist its motion, and 3) pressure forces normal
to its boundaries which in a limiting case have been said to
be equal and opposite in all directions. This latter state-
ment is subject to proof not demonstrated in this paper.

The following demonstration of effects in the y-direction
can be extended to both the x and z directions of motion.

oT
z +=—d
%
I //1
L L L. 4z
- i L o
v =T }X" v ; dy

Figure 6.

If the general statement of (17) is applied to the fluid
particle illustrated in Figure 6, the following results:

(Inertial forces) = fj

a a ov

f. = — (mv) = pdxdydz — | (v + — dy) - v
L= L) = ety & [ ee Zay) )

dv dy

= pdxdydz 3y at

But &y =
dt
f, = pv dxdydz v (18)
1 ay
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Further, the shear forces interacting on the surfaces of
this incremental particle may be determined:

(Viscous Force) = T

v
£, = {(H%az) ; T} axdy
= %ﬁ dxdydz

Viscosity (u) has been previously defined as the ratio of
shear stress to (1) to rate-of-shear strain. Therefore
(referring to Figure 6):

o _ 3 (. v
2 Y%\ Y%l

o, (&
£, =H ) (Bz> dxdydz (19)

The unit (pressure - pi) force required to overcome the
inertial effects of this fluid element is:

£y dxdydz oV dv

pvdxdydz 2
= === = = gvdy — = oV 2
Py A dxdz dy pvay dy P (20)

The unit force (pressure - pv) to overcome the resistance
to fluid motion caused by shear stress is: '

d (ov
L & DA () ag e Y (21)
VoA dxdy dz 0z d

where V-ft./sec., is the absolute velocity, p is the fluid
viscosity and (d) is a linear dimension associated with the
body of fluid such as boundary dimension location radially
with respect to a center point of interest, etc.

Reynolds number is a ratio of inertia forces to viscous
forces. It is a dimensionless number.
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2
\'A Vd
L e (22)

Reynolds number (Rg) = —
EUB.
d

As Reynolds number increases in value, inertia forces be-
come predominant and, as a matter of fact, are the control-
ling forces associated with turbulent fluid motion.

Irrotational and Rotational Motion

In the preceding section some measures that help to predict
the behavior of fluid have been developed. Since there are
forces involved that cause the fluid to behave in a certain
manner, it should be anticipated that a clear understanding
of this fluid behavior is important to the performance of
turbo-machinery.

Axis

Figure 7.

Figure 7 (a) is developed from Figure 6 of the fluid element
onto which certain forces were applied. Only the profile of
the particle in the z-y plane is considered in Figure 7 (a);
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however, a similar discussion of the particles deformation
applied simultaneously to both the x-y and the x-y planes.

If the isolated particle is a part of a body of fluid in
motion one of three deformations and consequently its
orientation can occur. In each of the three cases the
particle is assumed to move forward in a time,dt, from

its initial position designated by (0) on the lower left
hand corner to a new position (0') in the period of time
under discussion. In each of the three cases the diagonal
on the face of the particle extended from lower left to the
upper right hand corner can be assumed to be the direction
and velocity, V, that describes the fluid motion. The
three cases are:

&) The particle in moving from position (0) to (0') may
do 8o with no deformation in which case (d ) and (dB) = O,
the relationship of sides of the particle remains unchanged,
and the magnitude and direction of the diagonal (V) remain
unchanged, The indicated rotation, w, around its axis
parallél to the x-axis = 0.

b) The particle in moving from position (0) to (0')
can deform in such a manner that df in the clockwise direction
is equal to do in the counterclockwise direction, in other
words doy = -dB. In this case the diagonal will remain in the
same direction as when the particle was in position (0).
There 1s no rotation of the vector, V, about the axis parallel
to the x-axis:

The fluid motion for cases (1) and (2) is described as
having an irrotational motion.

¢) The particle in moving from position (0) to (0')
can deform in a manner that value of d8 in both magnitude
and direction can be different than do. In this case the
direction of the vector, V, cannot remain oriented to the
same direction as it was in the initial (0) position.

In a descriptive manner, one can visualize that it rotates
as does the hand of a clock. The name of this angular
motion is vorticity and is assigned value of 2w, twice

the average angular motion of the vector, V, about the
axis of the particle (0). The fluid motion resulting from
this angular motion is said to be rotational.
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A vector, V, may be resolved into components. In Figure

7 (b) the vector, V, can be resolved into two components,

v, perpendicular to the x-axis and, w, perpendicular to the
z-axis. Since the remainder of this discussion will be con-
fined to a radial system of coordinates, the absolute
velocity, V, will be resolved into a radial component, Vs

and a tangential component, Vu‘ Figure 8 is a fluid particle
in a radial coordinate plane in which it is assumed that the
particle has unit depth perpendicular to the plane of Figure 8.

¥
Sr (r + dr) ae
Vr + S—-dQ “
o
\ ®
% 33 \
V, + <2 dr
T © Xf u r
Y
: pe
Figure 8.
Circulation

An initially abstract idea Circulation that will later have
meaning is being introduced at this point. Circulation (K)
is defined as the product of a velocity times the distance
along the side of a fluid element in the direction of the
velocity. In mathematical language:

K = gf? vds  or dK = vds (23)

where v is a velocity, ds is a distance in the direction of
that velocity and the symbol ¢ is an indication that this
product must be summed for all velocity vectors and distance
products around the fluid element. This definition is
applied to the radial element shown in Figure 8.
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' 3vr
dK = V,dr + [(Vu 5 dr)](r+ dr) d6 -V, rde - (V. + S de)
After cancellation of terms
K = [(V arde + Mu racar) - QV_I:J
or S0
) ,
{ [ar (Vur) :l - BT' } drde (2)4.)

The area of the element shown in Figure 8 is rdrd®, therefore

7 oV
&K = = { B—r (V)| - Nrl dodr

Tor ] 3 J
ax =3‘. é_ "-%} 2
rdedr r {[Br (Vur)J 09 (25)

It can be shown readily that the left hand side of Equation
(2k) is vorticity as discussed in Section 2-c and consequently

K _ 20
rdedr
where lw] > 0.
Therefore
.l.{[é_ (v r)] el o o] >0 (26)
r {Lor do -

If w =0 (Zero Vorticity) then

9 (V) - ¥z = o (27)
or J6
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The Fluid Vortex

a) Free Vortex

If either the first or second term in Equation (27) equals
zero the remaining term is zero. The integration of either
term alone is equal to a constant, These facts should be ,
kept in mind for the following. Suppose that Vr = 0 and that
V. # 0 and, further, there are no additions or depletions of
energy in a fluid flow, one element of which is shown in
Figure 9,

p+dp

Figure 9.

In a flow of constant energy the results developed in
Equation (12), Section I may be applied:

2 2

(V.. + av
<p—-———+ dp) ) (B) 14 + 20
4 2g Y 2g

which is

av
+<-dﬁ> e e (28)
Y g

Further, the pressure rise across the element caused by
centrifugal force of the mass on the surrounding fluid is:



=20~

)4 = £<V_u%>
dr g\t
or
d v 4
<_3> Wy o= o & (29)
Y & r
Combined Equations (28) and (29) yield
dav
8, .d (yr) = o0 (30)
v r dr U
u
or
V,r = Constant (31)

From which it can be immediately stated that, in a free
vortex motion of constant energy, the radial rate of change
of angular momentum is zero and a condition of zero vorticity
(see Equation 27) exists.

b) Forced Vortex

The solid line in Figure 10 is a plot of the equation
Vyr = constant. The exponent of (r) in Equation (31) is (1).

\

\

/ /
// ‘\———Forced Vortex

J————-Free Vortex

Figure 10.
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There are many other exponents of (r) in a relationship
between V.. and r. Each will describe a different pattern
of flow.

Vurn = constant

A pattern of particular importance occurs when n = -1
yielding Vu/r = constant which is also plotted in dotted
lines in Figure 10. This relationship is known as a
forced vortex or solid body rotation.




SUMMARY

The above analysis concerning the behavior of fluids at
first glance appears somewhat paradoxical. On one hand, the con-
tention is held that a fluid is homogeneous, indicating at least,
that there is molecular stability, if not, total uniformity. On
the other hand, the mechanics of the analysis leads one to isolate
a body of fluid surrounded by fluid of the same kind. The limiting
process justifies the means, nevertheless, and, in turn, provides
a gross understanding of the events in a pumping machine cycle which
are of very great importance to the performance of the machine.

1. Viscosity (u), density (p), and specific weight (y),
are all properties of a fluid which when introduced into certain
combinations provide insight into the effects of interactions between
the fluid and its surroundings. Reynolds number (Re) is a ratio of
the only two active forces within a fluid body (pressure is considered
inactive in that its effect is independent of the other forces), nemely,
inertia and visions forces. As will be noted later hp is a function of
Reynolds number, Re.

2. Although the significants of rotational and irrotational
motion is not immediately evident, the relationship between Vorticity,
Ciréulation, and Radial Rate - of - Change of Angular Momentum is
important. Equation (26) provides the insight into the gross behavior
of the fluid passing through a rotating blade system.

l{ P_ (v r)}-%: = Jew] > 0 (26)

r{ lor Y -

3, The free and forced vortex are the theoretical extremes
that might be expected in a pumping machine. The only ideal condition
under which a free vortex may exist is; a) no addition of energy in a
radial direction and, b) zero Vorticity (|2w| = 0). Since a radial
pumping machine must add energy to the fluid (Equatidn 11) then the
conditions for Circulation between the blades exist, Vorticity is to
be expected and the angular distribution (oV,/d6) of fluid flow with
respect to the periphery of the rotor is almost certainly to be non-

uniform
Ny
3+ 0)

2=



ITI. THEORY AND PERFORMANCE OF TURBO-MACHINERY

A, Introduction

Although the theory of fluid flow behavior provides certain
insight into the performance of pumping machinery a simple, straight
forward approach through use of Newtons Laws of Motion applied to a
fluid traversing a rotating blade system has formed the basis for
initial design considerations. These considerations, the understandings
of theoretical fluid behavior, and the associated Concepts of Similarity
provide the bulk of the technology for impulse pumping machinery.

For the purpose of the following (one-dimensional) analysis
of the stationary and rotating blade systems the following assumptions
are made:

1. .The fluid traversing the blade system is ideal,
i.e,, nonviscous.,

2. The blades are infinitely thin in section and
infinitely close together. Therefore the fluid
is perfectly guided.

5. The fluid enters the vane system without shock,
i.e., everywhere the fluid flows tangentially
to the blade surface

B. Stationary Radial Blade System

Figure 11 is a radial blade assembly. Blade (a) above the
horizontal center line is different than blade (b) below the horizontal
center line, each illustrating a different set of blades for different
assemblies will be accordingly analyzed.

Two items should be noted in Figure 11,
a) The absolute velocities (V) at entrance and exit

from the blade section for both cases (a) and (D)
are tangent to the blade surface,

-23-



)

b) All vanes throughout the periphery (assumption
(2) above) are identical for cases (a) and (b).

Let

Q = fluid flow cu. ft./sec.
V = absolute velocity of fluid - ft./sec.
B = positive angle between tangent to circle
and tangent to blade surface.
V, = radial component of absolute velocity (V).
V. = tangential component of absolute velocity (V).

u
1& 2 = subscripts to indicate entrance and exit,
respectively, to rotor blade system.
Ft = tangential force acting perpendicular to radial line.
r = radius of point in fluid flow channel.
b = width of passage at any radius, r.
Vr Vr
Vl = — L and V2 = — 2
SlnBl SinBs
Vrl = 9 and Vry 9
2:trlbl 2n r2'b2

(a)
VANE

(b)

Figure 11.
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For the ideal fluid (fractionless) the special form of the
General Energy relationship (Equation 12) may be written as follows:

2 2
-Dp Vi -V
<g?——-1-'- 14l = _é___..__g_
4 2g

- Q9,2
(et - S (2F - (2 (2] oo

Assuming Q, r1,rp, by, and by are constant for cases (a) and (b),
and the product rb = constant then

<§2 L4 = <§l> 1k + K [<Sigﬁljf - (siggejf} (33)

where K and C are constant.

If B, is an obtuse angle (62 > 90°) and By = 90° as shown in case
(a) then Po < pj since sin Bp< sin B1. As a result, the absolute velocity
(V2) is greater than'(Vl). The fluid has been accelerated with a resulting
Jecrease in pressur~. This is the action of a typical guide vane section to
be found on a water turbine.

If 51 > 5; and Bl is an obtuse angle as shown in case (b), Figure

11, then the sin By > sin By and pp > py. This is the action of the diffuser
vanes on a diffuser type of centrifugal pump.

The acceleration of the fluid is caused by a force interaction
between the fluid and the guiding vanes. From Figure 11

Vul = V1sinB; and Vrl = VytanBy

Vu2 = Vesinﬁ2 and Vrl = Vltansl

and the magnitude of the force from Newton's Law is

F, = Ma where the mass flow, M, in time, t,

w = ()
g

is:
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and
(Vup - V)
1

Therefore

7Q 3+ EYEE.:.XEL!
t g %

eS|
L}

- 289
= é‘ (Vu2 - Vul) (34)

Then from above:

=
]

B E) B ]

K (CycotBy - Cycotsy) (35)

The force ihteraction between the fluid and vane system produces
a moment (T) on the vane system. This moment is frequently called shaft
torque.

T o= Ry o gLQ (Vagrs = Vugry) (36)

C. Theoretical Performance of a Rotating Radial Blade System

Figure 12 is a sketch showing one blade profile of a radial
system, assuming the conditions for analysis as set-forth in the
Introduction to Section III. The rotor is turning at a constant angular
velocity, w. The tangential velocity of the blade system at entrance is
u; = er) and at exit, u, = @r,.

In a rotating vane system the relative velocity of fluid flow,
v, is a component of the Absolute Velocity, V, its magnitude and direction
being identically that of the absolute velocity of flow in the case of the
stationary blade system. Then

]

v

vul vy sinBq and Vrl up tanfq

1]
]

Vu2

where again V, = Q/Qnrb at inlet and outlet respectively.

vy sinf, and v V,, FenBs

1 u2
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[l
‘(a) (b)

Figure 12,

The absolute velocity, V, is the vector sum of the relative
velocity, v, and the tangential velocity, u. In vector notation,
¥+ U=V, These vector sums are shown associated with the individual
blade in Figure 12a and shown oriented to a common radius line in Figure
12b, The difference and the effect in megnitude of the vector, u, become
more clearly displaced by the orientation.

The action of the rotating blade on the fluid causes an
acceleration of the absolute velocity, V. The moment of that interacting

force is

L=
L}

Ftr = gLQ (VU.QI'Q = Vulrl) (56)

and the power (H.P.) required is:

P, = & =20 <Vuwr2-Vua)r\
550 550g \ 2 1 U

gp, = 22 (v .y
550g \ 242 ulul>
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In pump applications power is frequently written:

P, = LA
H.P =

where H is defined as head in ft.lbs/lb. of fluid being discharged by the
machine and by Equation (37) is:

H = 21(v -V
g ( Ut ulul)
or
= & -
B o= 2 (yry = Vapr) (39)

The difference in absolute energy levels at entrance and exit
must be equal to the energy (H) added to the fluid in its passage through
the rotating blade system. Therefore,

2
- Vo -V
<u>l)+)++_2__l_ +Z2_Zl=-]-'-(
Y . 2g g

Vuzuz i Vulul) (ko)

Because of relative magnitudes of energy items and because of the center
line reference, Zp - 727 =0 is assumed. Equation (40) can be rearranged
and developed to show some very important features in performance.

<P_g_;_lg> L+ [ <"22 -2:u2Vu2> i <"12 ;g2u1Vu1> } 0 (k1)

Figure 12b and the Cosine Law yields

2 _ g 2 2
V2 = V2 + U.2 - 2u2V2005062
Vl = Vl + ul - %llVlcOSOél

where ¢ is the angle between the direction of the tangential velocity, u,
and the absolute velocity vector, V. Certain substitutions may be made:

V2 COS&Q = Vu2

Vl cosal = Vu]_
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2 2 2
Then Vo = Uy = \' %2 V112
2 2 _ 2
vl - ul B Vl ul ul
Therefore
2 2 2 2
-D Uy = U Ve =V
(Pe 1> o= 2 1. 2
Y eg 2g
Further
Vo cosB2 = vu2 or Vy = vu2 secﬁ2
vy cosBl = vul or v, = vul secfsl
and
2 2 2 2
(oo m) o o, (vuy secs) ) - (vup secBp)® )
4 28 2g

Equation (42) indicates that the capability of a rotating blade
system to develop a pressure increase is strongly dependent on, w, and
upon the difference between rp and ri. (uy = wrp) and (u = wrl) Further,
the pressure rise is influenced by the rotor blade form since 0 £ Bl
Bo < 180 For the special case where fy and B, = 90 , the pressure rise
is equivalent to that pressure corresponding to solid body rotation.

Equation (39) may be oriented into a second form of particular
use in examining further the effect of the angles, B. From Figure 12b:

Vu2=u2-vu2
'
v = —2
U2 tang,
and
Vul =u - v(Dl
v
L
U1 tang,

Substituting these values into Equation (59) yield

2
R e e ) )
g Uy tanfy g u; tanf
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Figure 13 is plotted to show the theoretical influences of 62
upon thg performance of a rotating blade system in solid line, assuming
By =90,

0
5> 90

2 2
Yo oM

g g

Theoretical

- B, = 90°
heoretical

o)
Bo < 90
2 2
o -4 ~____‘_\f32<900
2g T —
\\.\
(O v,
Figure 13.

D. Actual Performance of a Rotating Radial Blade System

The actual rotating radial blade system which is called an
impeller in a centrifugal pump cannot be built to even closely approximate
the assumption of an infinite number of blades, infinitely thin as initially
assumed. It becomes necessary, therefore, to deal with several engineering
considerations and to assay if possible, the effects of those considerations.

One of the initial limitations facing the engineer is the determi-
nation of the required area for fluid flow at the inner radius of the blade
system. The minimum open area is that area of passage which will insure
passage of that quantity of fluid for which the pump is designed.

Manufacturing methods have a substantial influence upon the
number of blades that may be considered. The required practical thickness
of blade as determined by the selected processing methods reduces the area
for flow at the area of opening occupied by the number of blades of finite
thickness. If the pump is designed to handle a fluid in which solids are
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suspended then the minimum area in any one passage must be large enough
to allow the solid to pass through the rotor.

A third restriction on the number of blades in the rotor may
be cost. The intricacies of manufacturing of a blade system is increased
as the number of blades are increased. The problem of processing, clean-
ing, polishing and machining all contribute to increased costs of the more
complex rotor.

_The initial determination of the allowable number of blade in
a rotor has direct influence on actual pump performance,

The function of a rotor of a pump is to add energy to the fluid.
According to Equation (40) the energy forms are 1) (po-py/y) 144 and 2)
(V224V12/2g), namely flow-work (a force (pressure) moving a distance) and
kinetic energy. This addition of energy from rotor action on the fluid
results in a "change-of-whirl" (Vypup - Vyjuy). The pressure increase,
item 1 above, is noted to depend to a major degree on the tangential
velocity (u = wr) of the rotor. At zero flow (Vy = 0) the actual pressure
rise across a pump is as shown by dashed lines on Figure 13 and is the
exact rise one would experience in a forced vortex motion of a fluid body.

Item 2, above, is the kinetic component of the total energy
added to the fluid which is likewise dependent for the magnitude on the
tangential velocity, u. This may be quickly realized by examination of
the summation of vectors as in Figure 12. 1In all cases the relatively
high absolute velocity of flow at exit, Vg? requires specilal design con-
slderations. The single volute and double volute casings have been designed
and are found in use with moderate speed pumps producing modest pressure
rises. The diffuser casing is in use where high pressure rises per stage
are required and where high kinetic energy components would be expected,
The efficient conversion of kinetic energy to equivalent flow-work is the
objective in either case.

It is important to understand the fluid flow effects that the
physical design requirement produce.

It will be recalled that considerable emphasis was placed upon
the concept of "Vorticity," the analysis resulting in Equation (26) repro-
duced at this point.

%{[i(v )J S—Zﬂ = Jew| > 0 (26)
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Further, it was shown that

(v

ar ur) =0

could happen only if the fluid was in a region of constant energy. A
pump rotor is ir a region where energy is added according to Equation (39).

H = 2(v

g | uoro - Vulrl) (39)

or in differential form its value must be greater than zero., (Equation 44
below).

1
51

(v >0 (4h)

= )
dr ur
Therefore, unless oV,/38 = d/dr (V,.)(Equation 26) a condition exists for
Vorticity in the spacing between rotor blades. A counter-current tendency
as indicated in Figure 14 results and an accompanying deviation of flow
from the theoretical at exit from the rotor occurs., The magnitude of the
effect of Vorticity d&pends upon the spacing between the blades, the
deviation from theoretical consideration increasing as the spacing accomp-
anying a decreased number of vanes, become larger.

Actual Velocity

Pl \y

Theoretical Velocity, Vo

e e —

5ot

Figure 1k,



E. Similarity Considerations for Pumping Machinggz

As has been noted in the foregoing presentation several sets
of variables have been importent in esteblishing the performance of
turbo-mechinery. First, the geometric variebles which establish the
boundaries of fluid flow passages hed & direct bearing on megnitude of
the several energy items the sum of which determines the total energy
stored in the fluid. Second, the kinematic veriebles such as V, v, and
u, all directed quentities end all dependent on the passage configuration,
were used in combination to establish mechine performence. And, third,
through the process of dynamic consideration both fluid characteristics
end the characteristics performance of a machine have been determined,
the former use leading to Reynolds number (Re) and the latter to Figure 13,

A very useful and relisble set of criteria known as the Affinity
lews of turbo-machinery are found by further extension of the use of the
variables referred to above.

Geometric Similarity between two bladed rotors or casings is
satisfied when a change in any one dimension of a design is accompanied
by a proportional change of all other dimensions of the blade system and
all angles remain constant.

Figure 15.

From the condition for Geometric Similarity

= = b

where kq is & proportional constant.



-3h-

Kinematic Similarity is satisfied when any vector change in
magnitude, not direction is accompanied by a like change in all other
vectors. Figure 16 will illustrate this requirement.

1
\
T2
Figure 16.
For Kinematic Similarity
Vro _ k, = Vrp
1
u2 u2
where k, 1s a proportionally constant.  Further,
b = kD and. vV, = Q and Uy = ZDN
1 ) E;;D”E 2 60
'EL—Q
Vrg _ KlﬁD - 60 y Q- Ky
u2 DN lﬁa/ ND5
60
From which the first of the Affinity lLaws emerges.
kﬂg
First Law - A = (5 k2 = K (45)
7 \60 /

Dynamic Similarity is satisfied when the interacting forces
between the rotor and the fluid varies in a manner proportional to the
changes resulting from Kinematic Similarity.
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The gross energy added to a fluid by a rotating blade
system is:

2 2
u v v
I = _?__<1_ r2 \-E.L(l___il_> (43)

& ustanfo ultanﬁl
For Kinematic Similarity
v v
—L1=_2 = K,
ul up

For Geometric Similarity p; and B, remain constant. Therefore
2 DI \°
H = knu = kll- <_-6—O-/
Second law - i = K (46)
=

Power Similarity is satisfied when both Kinematic and Dynamic
Similarity is satisifed and when the value of the fraction factor, f,
in the Fanning formula

no

hf = f

Ol
I\)l<l
o’

is independent of Reynolds number (Re).

The over-all efficiency of a pump (nP) is defined as

N = Energy added - Losses in Functional Resistance
P Energy Added

The power required to drive a pump is:

yoH
5501

In the Fanning formula it will be noted that Geometric Similarity may be
maintained by making
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% = k. (constant)

5

Further

V, = k2u

2 _ 222

Vr = k2N D

Then
2.2 2.2 2 2
) K2N D - klN D ) K2 - kl .
o Ko N°D= K, 4

Therefore,

BP = —2— Np°

550k),
BHP  _
Third }_a_w - W = K}-l- (’-}7)

The ratio of the two constants, Ky and K, are of great importance in the
technology of turbo-machinery. , Both values may be raised to an exponential
power without reducing their importance. Only the absolute value of the
ratio 1s changed. Therefore,

W S ke
(k,)3/* 3 Pt
=

which is known as Specific Speed and is usually represented as:

NQ1/2

NS = W ()"8)

It will be noted that Specific Speed results from so maneuvering
the Similarity Laws that the physical dimensions of a given machine is
eliminated. The value of Specific Speed becomes an index type of number




associated with the types of pumping equipment that will satisfy the
capacity requirements of a fluid transport system. The index number
concept is borne out by the frequently published chart reproduced in
Figure 17.

R | T TTTTI
r— oy
90 ~_|___]__OVER 10,000 6PM/
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60
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EFFICIENCY IN PERCENT

40

10 OO0}
15000

FEiion o

CENTRIFUGAL %/ PROPELLER ROTATION
MIXFLO

Figure 17.

Variation of Efficiency with Specific Speed for
Various Sizes of Pump.
(Courtesy of Worthington Corporation)

For complete similarity, it should be immediately apparent
that similar fluid flow conditions must exist - in other words, Reynolds
number

Re =&V.-2
)
and should remain constant or else there should be a logical explana-
tion why the friction factor, f, as used above can be treated as being
independent Re. It will be noted that from Reynolds number that

VoL L (a)
D
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while for Kinematic Similarity

v W
L o= I (b)
u nDN
or
VI.cile =V

In case (a) V is inversely proportional to D and in case (b) V is

directly proportional to D. The conditions as established for Similarity
of Flow and Kinematic Similarity are incompatible. The use of the Affinity
Laws are therefore confined to those regions in which resistance to flow of
fluid through passages is independent of Reynolds number. Fortunately, but
not without justification the Affinity Laws do provide a very powerful set
of relationships in pumping machine technology.

F. Use of the Affinity Laws

The foururelatlonshﬂps Q/ND5 K1, H/N2D2 = Ko, BHP/N5D5 =
and Ng = /Z/HB/ form a set of functions, the variable for which may
be externally measured, of very great significants.

The first use of these has been previously indicated, namely,
the cataloging of machine types based upon specific speed values (Ns)o
An extension of this concept to the inlet of a pumping machine is fre-
quently found in the Net Positive Suction Head function

_ NQ1/2

s = & _ (48)
H, O/t
ov

where H = a value of energy level required at inlet to a pump of

such total value that the liquid being pumped will not vaporize, thus
causing a reduction in liquid capacity of the machine, possible damage
to the rotor inlet, and in the extreme failure of the pump to perform.
HSV is frequently given as follows

Hyy = by * (B - 1) (49)

where h, = total potential energy of the atmosphere above the liquid
source of supply, h, is the equivalent head corresponding to the vapor
pressure at the temperature of the liquid supply and h is the sum of
2
b
(L) hy o T + 7
14 2g



A second use of the Affinity Laws is the possibility that
they provide to predict the capacity of a pump, handling a given liquid,
at driving speeds Nl different than the available capacity data. At
constant diameter, D, the quantity of liquid delivered by the pump is
proportional to the speed N as follows:

N N
%2 = 2 or Q=9 ﬁl
1 Ny 2

and the energy delivered to the fluid by the rotor by that same pump
of diameter (D) will vary as the speed ratio square:

) 2
H N (§y)

The result of the application of these functions is shown in Figure
It should be borne in mind, further, that the efficiency of a unit is
assumed constant for any condition of similarity.

Figure 18.

A third use of the Affinity Laws is in the desjgn considerations
for a new size of pump. Based on the concepts of Geometric Similarity of
design, predictions of capacity of the new machine from the known perform-
ance of an existing machine is possible. Conversely, when the capacity re-
quirements are known it is equally possible to predict, with judgment, the
required size of the machine.



IV. CAPACITY OF A PUMPING SYSTEM

Introduction

The most important determination to be made in the consideration
of any combination fluid system to transport fluid is the net work that
must be done on the system to accomplish the entended result. Since any
such system is subject to losses, it follows that a method of calculating
those losses is necessary. In addition, methods of determining the level
of the separate energy items such as flow work, potential and kinetic energy
must be established. Obviously, the output energy of the internal system
must be in those forms required by the external system if a pumping system
is to function.

A, Hydraulic Losses

The détermination of the mechanism of losses and the conduct
of the theoretical and experimental studies of fluid flow have extended
over many years. The efforts of many men, whose abilities are established
world-wide, have gone into this task. To attempt a detailed study of the
mechanism alone would require more space than can be allotted to this
paper. It is the present purpose to establish a relatively simple analyti-
cal procedure such that a uniform calculation will result.

The flow of a fluid in a conduit is known to behave in two
distinct manners depending upon a relation of physical quantities which in
combination are dimensionless. This fact was established by Osborne
Reynolds in a series of experiments reported in 1883, His experimental
apparatus was essentially in accordance with Figure 18 in which fluid was
caused to flow from a relatively large undisturbed reservoir. Within the
tube, a small outlet for a die was installed. Essentially it was found
that for various diameters of pipe and various fluids that below a certain
numerical value of R = pVD/u. R being called Reynolds number, the die
streak in the fluid downstream of the outlet remained in a constant relative
location with respect to the conduit walls. In a range of increased values
of R, it was found that the die streak dispersed through the channel in an
entirely unpredictable manner. Later experimental work has shown that the
exact value of R to predict the change from laminar to turbulent flow
varies mainly depending upon conditions under which the tests were conducted.
For a constant test condition, however, the original finding that a ratio as
described above could predict the condition of flow was correct.

iTeM
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The concept of the boundary layer was introduced by L. Prandtl.

Suppose that a viscous fluid approaches a flat submerged plate at
a uniform distributed velocity, V, as pictured in Figure 20a. At an incre-
mental distance to the right of the leading edge of the plate only the layer
of fluid next to the surface of the plate is affected. The adjacent layer
to that layer of fluid on the plate experiences a reaction due to a change of
velocity from V to 0. As the fluid front progresses across the plate, a
velocity gradient such as is sketched in Figure 20b, is established which is
proportional to the shear stress developed between adjacent layers.

v=0 e TT T 7T T T 7777777 oY T T TS

-——4 dx L-——

a) b)

Figure 20,



~hoo

It is apparent that this relation can hold only so long as the flow in
the region of fluid space above the plate remains laminar in character.

Experimental work has established further information concerning
the behavior of the boundary layer on the flat plate which can be reasonably
used to establish flow conditions within a closed conduit. Assume a flat
plate submerged in an extended fluid flow as is sketched in Figure 2la, At
the leading edge of the plate, the boundary layer is essentially zero but
increases in thickness, 8, as the fluid front progresses over the plate
length. If the velocity is increased, a criticallength, £, from the lead-
ing edge 1s found beyond which the boundary layer changes from an ordered.
motion to a turbulent motion. Experimental work has established that ratio
PVﬁ/p = constant predicts the point of change from laminar to turbulent
flow (Figure 21b).

=

— T Laminar -

o ° ° °
?
o ¢ 2 T“Turbulent
s »

2%,
2 )

—w [ T 7 777777/

Figure 21a.

Subsequent work has established that there are additional zones
in the process which can be identified. Figure 21b indicates the zones,

/////fCritical
Turbulent
o n

—

/ ‘ Laminar
Sub Layer

Figure 21b,
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In the region between the laminar layer next to the plate at the leading
edge and the turbulent layer beyond the critical length there is a tran-
sition zone in which turbulence is started by a type of oscillatory motion
between the fluid layers. Within the turbulent region, a sub-layer has
been identified which is laminar in character due to the approach to zero
velocity at the surface of the plate.

If instead of a uniformly distributed fluid flowing over a flat
plate it is directed into a tube, the entrance edge of which is well
rounded, a velocity distribution and a boundary layer build-up similar
to the flat plate is found. The velocity distribution as the fluid
front progresses through the length of the tube progressively changes
until a "developed flow" is reached where the velocity front is a stabi-
lized pattern. The ratio of the length along the tube to where the flow
is "developed" to the diameter of the tube, is a function of Reynolds
number. If at the point where the velocity distribution is stabilized,
the boundary layer has continued to build up in a laminar flow, the flow
will be laminar and a parabolic velocity front will be developed. The
pressure differential caused by such flow can be analytically predicted.
If the boundary Jdayer becomes turbulent as predicted by Reynolds number,
before the point of "developed flow" is realized, the flow proceeding
down the conduit will be turbulent. The result of such flow cannot be
exactly predicted analytically. There are solutions for many special
cases where simplifying assumptions can be made.

The physical phenomena resulting from turbulent flow were
demonstrated in the dye-release experiment of Reynolds. Such a transfer
of fluid across the fluid boundary must necessarily have resulted from a
transfer of mass at right angles to the average flow direction. An ex-
change of momentum between successive layers of fluid was the result
where a higher veloéity mass particle from the inner stream filaments
caused an acceleration of lower velocity particles in a layer closer to
the boundary. In turn, the lower velocity mass particle due to continuity,
must transfer to the higher velocity area, the net result being a complete
random mixing of the fluid. In the transfer process, the velocity profile
of the developed flow is more nearly uniform over a larger portion of the
conduit passage than it was for the ordered laminar flow. This is illu-
strated by Figure 22.

A very high velocity gradient of the boundary layer accompanies
the characteristic turbulent velocity profile since the layer of fluid next
to the conduit wall has zero velocity. Within this boundary where a high
velocity gradient exists a turbulent and a sublaminar flow may be found.
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It was proposed by Prandtl that it be considered that the total resistance
for flow is developed within the boundary layer and that exterior to this
layer the irreversibilities be treated as zero. Experimental results have
substantiated this approximation.

With the exception of isolated cases, the engineer is concerned
with turbulent flow, and because of this fact finds it necessary to depend
to a considerable extent upon experimental results for his determination of
system requirements. This certainly does not mean that the engineer is not
benefitted by the large amount of effort that has been expended upon analyti-
cal procedures. Interpretations of experimental results must be made with
full knowledge of the analytical techniques if correct correlations are made.

Based upon experimental evidence and analytical procedure, it
becomes evident that the shear stress at the conduit walls, To? in a fully
developed flow in a closed conduit is a function of V, D, u, p, and the
roughness of the conduit wall which is given in terms of an absolute height,
€, of a projection above a line corresponding to a smooth wall. Without
extending an analytical justification it can likely be seen and is being
stated here that the friction coefficient, the values of which have been
determined by the sum total of many investigators is

_ ¢(& @D
f ‘f<n’u (47)

and the energy required to overcome the resistance to flow is given by the
Fanning formula is

(48)
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friction factor

V = average absolute velocity (ft/sec)
D = inside diameter of conduit (ft.)
L = length of conduit in ft.

where T

and the energy equation for the length of pipe, L, folowing a real fluid is:

2 2
(P, - Py) Vs -V
1 2 1 LV
y 14k + o +Z2-Zl=f5 §g_ (49)

B. Determination of the Friction Factor

Figure 2% is a chart prepared and presented by Mr. L. F. Moody,
from numerous tests and data available to him to establish a relationship
between the friction factor, f, Reynolds number, R, and the relative rough-
ness of various new and clean pipes and conduits of circular cross section.
The data specifically apply to steady, isothermal flow of a homogeneous
fluid which is considered to be incompressible. This chart and others to
be used will form a convenient presentation of the data for the engineer's
use. Since Reynolds number includes fluid properties within its calculation,
it can be readily seen that the chart can, within limits for which it was
initially developed, be used to calculate the resistance offered to a wide
variety of fluids in motion.

There are several reasons why a presentation such as Figure 23
cannot give to its user a high degree of accuracy in the determination of
the friction factor, f. This is partially due to the more or less arbitrary
procedure used in the determination of the relative roughness ratio, e/D,
where € might be approximately defined as the height of a projection into
the fluid stream from the nominal smooth inside diameter of the pipe.
Other items such as the shape of the projection and the spacing of the
projection have an effect on the relationship between the Reynolds number
and the friction factor, f, such that an accuracy of + 10 percent is
usually predicted. For a smooth pipe where the ratio e/D approaches zero,
the probable accuracy of + 5 percent might be considered.

For a Reynolds number less than 2000 it will be seen in Figure
25, the friction factor, f, has a value f = 64/R. Since f, for this zone
is independent of roughness of conduit, it is reasonable to suppose that
although projections from the pipe wall intefere with the flow in the
boundary the changes in momentum of the fluid resulting from the interference
cover the force of such small magnitude that the laminar flow is not disturbed.
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There is a second region in values of Reynolds number between
2000 and 4000 in which either laminar or a degree of turbulence might be
expected. The area of the chart is referred to as the critical zone.
The uncertainty of the value of the fraction factor, f, in this region is
indicated by the shaded area. Depending upon such influences as the
entering of the fluid into the conduit, the exterior disturbances that
are usually present to some degree, the flow may be laminar and independ-
ent of roughness, or turbulent.

Three additional regions at R greater than 4000 may be identified
in Figure 23. Between the area of turbulent flow in the smooth pipe and
the region where the value of f is practically independent of R, may be
found a transition zone where the lines of constant relative roughness
tend to converge to a value of f for a smooth pipe and also to a common
value at the left hand side of the chart. The regions above the transi-
tion zone in the area of high relative roughness and below the line for
a smooth pipe are of qualitative interest with respect to the momentum
exchange of turbulent flow. In the region of high relative roughness, e/D,
it would be expected that the boundary layer would be turbulent because of
the momentum changes dve to roughness. The case of the smooth pipe would
continue to exert influence. It is to be noted that for a smooth pipe the
friction factor, f, is a function of R at least within the limits of the
court.

Figures 2% and 25 are included to aid the solution of fluid-
handling system problems. Figure 24 is a chart showing typical values
for new clean commercial pipe. Since the relative roughness will vary
because of method of manufacture and place of manufacture, the ratio e/D
should be considered carefully and accordingly. Figure 25 is a composite
plot, the left hand side of which is a relation between kinematic viscosity,
p, and the temperature of the various fluids. To the right of this chart
and oriented to it is a plot of the VD product values, where V = the average
velocity in feet per second, and D = the inside diameter of the pipe in
inches. The value of Reynolds number required for Figure 23 can be read
off the upper horizontal scale immediately above the intersection of the
VD product line by the horizontal line connecting the fluid description
with the constant VD product line. The combination of the three charts
in Figures 23, 24, and 25 respectively, provides the engineer with inform-
ation to establish the friction factor, f.

C. Energy Requirements of Systems

There are very few cases in the engineering application of fluid-
flow systems where exact duplications can be found. Some piping systems
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are very long, constant-diameter systems with few changes of section and
gradual bends such as is found in cross-country pipe lines. The other
extreme 1s the usual piping scheme found in industrial processes where
fittings of all types in relatively close proximity are found. It is
apparent that a friction factor, f, determined by an experimental deter-
mination in the region of developed flow could be applied with much more
confidence in the first case than in the latter industrial system. Any
fitting has a tendency to cause a disturbance downstream that will produce
a distribution other than "developed flow" and will, to a limited extent,
disturb the upstream flow to the fitting.

There are many equally successful empirical methods in use to
establish the differential pressures which cause fluid to flow at a
required rate. Certain methods seem to find favor in particular types
of applications or in industries mainly due to the fact that engineers
have found that that method or methods have given satisfactory results.
Alternate methods are likely to be in favor in application of fluid systems
in other industries.

There are many designs of valves and fittings, so many as to
make impossiblé a detailed accounting of their individual characteristics,
It is, however, possible to classify such items into groups. For instance,
a valve can broadly be classified as a gate valve or a globe valve; fittings
can be classified as branching, reducing, expanding, or deflecting. Any
attempt to assign to these groups a value for the resistance to flow must
necessarily be approximate. It has been found, however, that the error
resulting from the assigning of values to the various groups, is nominally
of sufficiently small magnitude to justify such procedures.

With the exception of the unusual designs, many laboratory
experiments within the usual flow range have indicated that the pressure
drop through valves and fittings caused by resistance offered by that
fitting to fluid flow can be expressed

A = £(V7) (45)

where n has a value very close to 2.0, which is usually used for engineer-
ing calculations, V is the average velocity of flow in feet per second
leading to the fitting. Energy, unavailable for further use in the system
because of the fitting or valve characteristics, is usually expressed 1n
the following manner:

h o= K- ' (46)
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The coefficient K is known as the valve or fitting coefficient. A similar
value for orifices, changes of section of pipe, entrances and exits may
also be developed. The determination of this coefficient is difficult due
to the disturbance caused by the fitting in the connecting piping to either
side of the fitting. Further, in the use of this coefficient, variations

of the results sought through its use will vary depending upon the relative
roughness of the pipe connected to the flttlng and the spacing of one
fitting relative to the second.

In any designed piping system the total length through which
the fluid would pass would include both the length of pipe plus the sum
of the lengths of all the required fittings in the system. Assume that
a straight length of pipe as sketched in Figure 26 includes a fitting of
length d. Assume further that there is more than the critical length of
pipe to either side of the fitting, lengths a and b, such that the flow
will be fully developed at sections corresponding to A, B, and C respectively.
It would appear from intuition that py is greater than Py even though
c=a+b+d This, of course, is the case and the difference in values
between p; and p, would be directly assignable to the added resistance
offered by the fitting of length d. In either case, the physical length
of the fluid system from A to B is the same. It would be a comparatively
simple matter to calculate the energy requirements for the system as
sketched in Figure 26b using the system factor, f. Calculating a reliable
value for the system as sketched in Figure 20a would be less accurate due
to the undetermined portion of the length of the pipe, a and b, to which
the fraction factor, f, could be applied.

- AR

n § =< Ll
a -4 d |~ b -
- AP, >

(2) § b (b)
- ¢ -

Figure 26.
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Suppose that in an extension of the length of the pipe, c, as
sketched in Figure 26b were made until the final length of the straight
pipe of constant diameter, in which length the developed flow pattern
remained constant, caused the same pressure drop at the same flow rate
as occurred in Figure 26a. The resistance to flow caused by an added
pipe length beyond the length of Figure 26b is obviously equal to the
resistance to flow caused by the fitting in Figure 26a. Since the actual
systems of Figure 26b and Figure 20a are the same physical length, it
appears that the extended length of the piping proposed as an addition
to the system of Figure 26b is the "equivalent" length of pipe added to
the actual length of the system in which the length of fittings or valves
is considered to be a length of pipe of a kind similar to that to which
they were attached. This method of calculation is known as the "equivalent
pipe length method."

Suppose that for a given value or'fitting the energy required
to overcome resistance to flow through that fitting could be given as
follows:

n, = K1 (50)

The coefficient K which is known as the resistance coefficient, is a
proportionality constant related to the particular type of fitting, valve,
change of section, entrance, exit or pipe bend in a manner that resistance
to flow of a fluid varies as the square of the velocity of flow through
the particular section. The same energy is required to cause flow of
fluid through a constant diameter of straight pipe and is given by

(51)

_ nk
L =Dz (52)

where L' is the equivalent length of pipe in feet which will require
the same energy to overcome its resistance to flow as was required by
fitting. If K is considered constant, then the equivalent length will



vary inversely as the friction factor, f, which is a function of Reynolds
number.

The value of the resistance coefficient K has been found to be
essentially constant for a given type and size, for instance, of a valve.
The value of the coefficient varies with size and to a degree for various
designs of a given type and size, The variation of K in the latter case,
that is design, an average technique produces results sufficiently accurate
to justify the use of the pipe designation. Table I below is a representa-
tive list of average values of the coefficient K for various sections in
common use.

TABLE I

VALUES OF THE COEFFICIENT K FOR VARIOUS FITTINGS

Fittings K

«Globe valve 10

Angle valve 5

Close return bend 2.2
Standard tee 1.8
Standard elbow 0.9
Medium sweep elbow 0.75
Long sweep elbow 0.60
45 -degree elbow 0.h2
Gate valve : 0,19

In the actual physical system of length, L, which includes
the length of all fittings and valves in the system, one must add an
equivalent length Lé of the same diameter as the pipe. The total

equivalent length for the system of length L to which the fraction
factor, f, may be applied is

Lo = Lé + L (53)

and the energy required for the piping system including the energy
requirements of the piping, valves and fittings is given as follows:

1, @
S L (5k)

he

The resistance offered to the flow of fluid through the various types of
flow section has been the subject of many experimental studies. The
results are widely published.
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D. Capacity in Parallel and Series Systems

Equation (49) may be re-written for a complete engineering
system or any portion thereof as follows:

2 2

<?2_:_B;> 14k + Vo - V1 + (2 - 27) = by =7
4 2g 2-1

Ult—*
o
\Y)

(55)

I‘OI<
o

Figure 27 is a sketch of a single length of pipe which is a part of a system
and includes an medium sweep elbow of the same diameter as the pipe. The
velocity of flow V in the entire length of pipe including the elbow for a
given quantity, Q, is a function of the selection of the diameter, D

Further, a length of pipe of diameter, D, that would cause the same loss
as the medium sweep elbow as given by Equation (52). From Table I

K= .75, f is given by Figure 23, and D is determined as related to the
velocity, V. It is important to note that an engineering judgement or
choice is needed at this point because of the dependence of two parameters.
Equation (55) applied to Figure 27 may be written as follows:

Po P1 1 Le y2
H“T) 14k + Zg):' - [(;—) 1k + (-zl)} [ =53
and if plotted as in Figure 28, the left hand side of the equation is an
ordinate and the right hand side is an abscissa.
Figure 29 is a sketch of a complete pumping system. The system

includes a closed source of supply and closed tanks at the points of dis-
charge. It is important to understand the following:
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1) The energy required to transport fluid to two or more por-
tions of a series system is the sum of the energy requirement for the
partial systems at constant quantities (Q) flowing through the series
system.

For instance L2 (the actual physical length) connecting points
(2) and (7) is in series with two branching systems from point (7), Ly
and L6a

2) At any point of entry to a parallel system the absolute
energy level avallable to the parallel systems is constant for each
system.

For instance point (7) is a junction of two parallel systems
L5 and L6° Therefore the quantity of fluid flowing in each system will
be a function of the energy requirements of each system at any given
level of constant energy.

Finally the capacity of a pumping system may be found. Figure
30 is a plot which will determine the quantity distribution of fluid to
the points of discharge (4), (5) and (6) based upon the characteristics
of the pump (A).
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