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Abstract. Effective and efficient tools for segmenting and content-based indexing of digital video are essential 
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1. Introduct ion 

The progress of  computer systems towards becoming true mult imedia machines depends 
largely on the set of  tools available for manipulating the different components of  mul- 
timedia. Of these components digital video is the most data intensive. Effective tools 
for segmenting and content based indexing of  digital video are essential in the design of  
the true mult imedia machine. This paper presents an innovative and novel approach to 
modeling and segmenting digital video based on video production techniques. 

The problem of  segmenting digital video occurs in many different application of  video. 
Content based access of  video in the context of  video databases requires access to video 
in a more natural unit than frames. Video segments based on edit locations provides 
a higher level of  access to video than frames. Mult imedia authoring systems which 
reuse produced video need access to video in terms of  video shots. The edit detection 
algorithms presented in this paper can be used in digital video editing systems for edit  
logging operations. There are several other applications in video archiving and movie  
production which can use the segmentation techniques presented here. 

Video segmentation requires the use of  explicit models of video. Most  of  the current 
approaches to video segmentation [1], [19], [24], [22] do not use explicit  models. They 
pose the problem as one of detecting camera motion breaks in arbitrary image sequences. 
The solutions that have been presented typically involve the application of  various low 
level image processing operations to the video sequences. These approaches have not 
util ized the inherent structure of  video. Defining models of  video which capture the 
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structure provides the constraints necessary for effective video segmentation. Hampapur 
et al [10] have presented initial results on model based video segmentation. The work 
presented in this paper uses the production model based classification approach to video 
segmentation. 

This paper presents a video edit model which is based on a study of video production 
processes. This model captures the essential aspects of video editing. Video features 
extractors for measuring image sequence properties are designed based on the video 
edit model. The extracted features are used in a production model based classification 
formulation to segment the video. The models are also used to define error measures, 
which in conjunction with test videos and correct video models are used to evaluate 
the performance of the segmentation system. Experimental results from segmenting 
commercial cable television data are presented. 

Section 2 discusses modeling of digital video based on video production techniques 
and proposes a classification of edits. Video segmentation is defined in section 3. The 
formulation of video segmentation as production model based classification is discussed 
in section 4. This section also presents the design of feature extractors. The classification 
and segmentation steps are discussed in 5. Section 6 presents a comparison of this work 
to other research in the field. Segmentation error measures are formulated in section 7. 
Section 8 presents the experiments performed and the results obtained. A summary of 
the work and future directions concludes the paper. 

2. Modeling Digital Video 

Video (the term video is used generically to cover movies, video, cable television pro- 
gramming etc) is a means of storing and communicating information. There are many 
different ways in which video is used and many different aspects of video [8], [14]. The 
two most essential aspects of video are the content and the production style. The content 
of video is the information that is being transmitted through the medium of video. The 
production style is the encoding of the content into the medium of video. The production 
style of video is the aspect which is directly relevant to the problem of segmenting digital 
video. 

The process of producing a video involves two major steps, the production of shots 
(a sequence of frames generated by a single operation of the camera [17]), shooting and 
the compilation of the different shots into a structured audio visual presentation, editing 
[17], [2]. In order to segment video it is essential to have a computational model of the 
editing process. Figures 1, 2 illustrates the process of editing. The two phases are as 
follows: 

Editing This is the process of deciding the temporal ordering of shots. It also involves 
deciding on the transitions or edits to be used between different shots. The result of 
the editing process is a list or a model called the Edit Decision List[6]. 

Assembly This is the physical process which the Edit Decision List is converted into 
frames on the final cut [2]. This is the process involves taking the shots from the 
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Figure 1. Video Production Model 

shot set in the specified order, and implementing the edits between the shots. The 
assembly process in general adds frames called edit frames to the final cut in addition 
to the frames from the original shots. 

2.1. Video Edit  Model  

The video edit model presented here captures the process of editing and assembly dis- 
cussed in the previous section. The model has three components, the Edit Decision 
Model which models the output of the editing, the Assembly Model which represents 
the assembling phase of video production and the Edit Effect Model which describes 
the exact nature of the image sequence transformation that occurs during the different 
types of edit effects. 

Consider a set of shots S = ($1, $2, ....SN) with cardinality N. Each shot Si c S can 
be represented by a closed time interval: 

Si = [tb,/;e] (1) 

where tb is the time at which the shot begins and te is the time at which the shot ends. 
Before the final cut is made tb = 0 '~' Si C S since there is no relative ordering of the 
shots. Let E = (El ,  E2, . . .Ek) be the set edits available. Each edit E is represented by 
a triple: 
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Figure 2. Video Production Model: Assembly Operation 

E = {[tb, tel, T, e} (2) 

where [tb, t~] is the duration of the edit, T e (T1, ~'2, ..T,~) is the type of the edit (typical 
examples include cuts, fades, dissolves) and e is the the mathematical transformation 
that is applied during an edit or the edit effect model. Consider a video V. Let V be 
composed of n shots taken from the set S. Then the Edit Decision Model V~dm can be 
represented as follows. 

Y e d m  = $1 o E12($1,  $2) o $2 o E23(~'2, $3) o 

. . .  o s(~_1)  o E(~_I)~(S~-I, S~) o S,~ (3) 

where S i c  S, the subscript i denotes the temporal position of the shot in the sequence 
(i.e. if i < j shot Si appears before shot Sj in the final cut ) and Eij  denotes the 
edit transition between shots S{ and Sj. The o denotes the concatenation operation and 
E~j C E. The Assembly Model for V is given by: 

Y a m  = $1 o Se l  2 0  S 2 o Se23 o . . .  o S (n_ l )  o S e ( n _ l )  n o S n (4) 

where Sx represent the shots used to compose the video and S~x represent the edit 
frames. The assembly model can be rewritten as follows: 

Y c  = 81 o 82 o s 3 o 8 4  o . . .  o 8(n_1) o s n o S(n+l  ) o8(2n_1) 

si  = {its,  t~], I d  
li e (edit, shot) (5) 
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Table I. Edit Types 

Type Name T~ Tc Meaning Duration Examples 

1 Identity T I Concatenate Shots Zero Cut 

2 Spatial Ts I Manipulate shot pixel space Finite Translate, Page 

3 Chromatic f Te Manipulate shot intensity space Finite Fade, Dissolve 

4 Combined Ts Tc Manipulate pixels and intensities Fini te  Morphing 

V~ is called the video computational model. In this representation, every segment of 
video is a temporal interval with a label indicating the content. Segmentation of video 
requires two labels namely,(shot, edit). It is important to keep in mind that the edit frames 
are also image sequences, they differ from shots in the production technique used. Cuts 
are a special type of interval with zero length. This computational model of video is 
used to define error measurements in the later sections. 

2.2. Edit Effect Model 

The edit effects commonly used in video production are modeled by using 2D image 
t ransformations [23]. The mathematical model for the process of generating edit frames 
from a pair of shots is discussed in this section. Consider an image sequence, where 
the pixel positions are denoted by x, y and the frame number is denoted by t. Let r, g, b 
denote the three (red,zgreen,blue) color values assigned to each pixel. Let the image 
space be denoted by ~ = {x, y, t, 1} and the color space be denoted by ~ = {r, g, b, 1}. 
Homogeneous Coordinates [5] are used for representing both the image and color spaces 
in order to accommodate affine transformations. Using these notations and assuming 
linear affine transformations, the possible set of edit frames E(x ,  !I, t) given two shots 
So~t ( x, y, t) and S ~  ( x, y, t) can be denoted as follows. 

E ( x , y , t )  = So~t ( (x  T8I) x Tcl | Sin((X Ts2 ) x Tc2 (6) 

Here Sout represents the shot before the edit or the out going shot and S~,~ represents 
the shot after the edit or the incoming shot, Ts and Tc denote the transformation applied 
to the pixel and color space of the shots being edited and | denotes the function used to 
combine the two shots in order to generate the set of edit frames. In general T8 and Tc can 
be any type of transformation (linear, non-linear) and @ can be any operation. In practice 
however, the transformations are either linear or piecewise linear and the operation | 
is addition. The remainder of the discussion assumes this simplified edit effect model. 
Edit effects are classified into four types based on the nature of the transformation used 
during the editing process. Table 1 shows a classification of edit effects, f denotes the 
identity transformation. 
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The classification presented in table 1 has a simple physical explanation. The classes 
correspond to the different types of operations that an editor can perform when editing 
two shots. The options are: 

Type 1: Identity Class: Here the editing process does not modify either of the shots. 
No additional edit frames are added to the final cut. Cuts comprise this class of 
edits. 

Type 2: Spatial Class: Only the spatial aspect of the two shots is manipulated by this 
class of edit effects. The color space of the shots is not affected. This class is 
comprised of effects like page translates, page turns, shattering edits and many other 
digital video effects. 

Type 3: Chromatic Class: Edits in this class include fade in's, fade out's and dissolves. 
Here the edit effect manipulates the color space of either of the shots without changing 
the spatial relation of any of the pixels. 

Type 4: Spatio-Chromatic Class: Here both the space and color aspects of the shots is 
simultaneously manipulated during the editing process. This class consists of effects 
like image morphing and wipes. 

3. Video Segmentation: Problem Definition 

Video segmentation is the process of decomposing a video into its component units. 
There are two equivalent definitions of video segmentation: 

Shot Boundary Detection: Given a video V (equation 3) composed from n shots, 

V Si E V locate [~b, re]the extremal points of the shot (7) 

Edit Boundary Detection: Given a video V (equation 3) composed from n shots, 

~/Ei E V locate [tb, re]the extremal points of the edit (8) 

The above two definitions are equivalent as edits and shots form a partition of the 
video. These two definitions are analogous to the the region growing vs edge detection 
approaches to image segmentation [20]. 

The techniques proposed in this paper treat video segmentation as edit boundary de- 
tection. The reasons for this choice is the relative simplicity of edit effect models as 
compared to shot models. Edits are simple effects that are artificially introduced using an 
editing suite to compose a video [2]. Shots on the other hand incorporate all the factors 
that affect the static image formation process and the changes of these factors over time. 
This makes shots much harder to model analytically as compared to edits [8], [9]. 
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4. Video segmentation using production model based classification 

Video segmentation is formulated as a production model based classification problem. 
In production model based classification the essential aspect is the existence of a com- 
putational model of the data production process. This data production model is used in 
designing feature extractors which are used in the automatic analysis of the data which 
is being classified. The use of the data production model distinguishes production model 
based classification from the traditional feature based classification [3]. The video edit 
model (equation 3,4,5) and the edit effect models (equation 6) are the data production 
models in video segmentation. 

f Production Model based ~'~ 
Digital Video Segmentation 

tion Model 

dit M~ J 

Video [ Feature L f f I 

F vide~ s V 

~ J  

Figure 3. Production Model based Video Segmentation: Block Diagram 

Figure 3 shows the stages in model based classification. The design phase of the 
problem has the following steps: 

Production Model Formulation: This step involves the study of the data production 
process (in this case video and film editing) to develop a model of the process. The 
first step is to isolate the essential steps used in data production. These steps are 
then translated into computational models. 

Feature Extractor Design: Here the production models developed in the previous step 
are used to systematically design features extractors which can be applied to the data 
in the automatic analysis phase. 
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The analysis or online portion of the production model based classification approach is 
the feature based classification process [3] where the feature extractors previous designed 
are used. The steps in feature based classification are: 

Feature Extraction: The data to be classified is processed by the feature extractors to 
generate features which are indicators of the data classes of interest. 

Classification: The different features extracted in the previous step are combined using 
a discriminant function to assign a class label to the data set being classified. 

In the current formulation of video segmentation as production model based classification, 
the four edit classes (table 1) are the classes of interest. Feature extractors are designed 
for each of these classes (in this work only the first three classes are used). The feature 
extractors are applied to the individual frames of the video. The features are combined 
using a discriminant function to assign to each frame of video the label edit or shot. 
The segmentation block essentially groups the frames into segments based on the labels 
assigned. A finite state machine is used to achieve this segmentation step. 

The following subsections present the different steps of the formulation. Section 4.1 
presents the details of the identity edit class. The various details of the chromatic edit 
class are discussed in section 4.2. The spatial edit class is presented in section 4.4. 
The computational requirements of the feature detectors and a summary are presented in 
sections 4.6, 4.7. Section 5 discusses the classification and segmentation process. 

4.1. Cut Detection 

A cut is an identity edit and unlike other edits cannot be modeled or defined independently 
of the two shots it concatenates, since it does not contribute any edit frames to the 
video. Cuts can be categorized in terms of the shots that they concatenate. When a 
video with a cut is presented to a viewer, the viewer will experience a sudden transition 
(or discontinuity) of visual properties across the transition. Visual properties of a shot 
include factors like speed and direction of motion of objects and camera, shapes, color, 
brightness distribution, etc. During the editing phase of video production, the director 
controls various visual property transitions across a cut. Some directors try to minimize 
the visual discontinuity experienced by the viewers across a cut. This criterion is termed 
as a graphic match[2], [7] in editing literature, others maximize the visual discontinuity 
across the cut to evoke a specific viewer reaction. 

A cut detector is an algorithm which can detect the discontinuity of a certain visual 
property across two consecutive frames in a video. Most of the cut detectors used 
in literature [1], [19], [24], [22] rely on the color space of the frames to identify a 
discontinuity. The techniques also have an implicit shot model in terms of the expected 
variation of the visual property within the bounds of the shot. The performance of 
these detectors is fairly acceptable and accuracies in the range of 90% to 95% have 
been reported. There are two ways of achieving better cut detection, use additional 
visual properties and use explicit models of shots. There are several techniques [21] 
which can be used to identify discontinuity of feature tracks in image sequences and 
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Table 2. Cut features 

Name Measurement Formula Description 

Template Matching )-'~z,y IS(x, y, t) - S(x, y, t + 1)1 Intensity Difference 

G (Ht(i)--H~+l(i)) 2 X z Intensity Distribution comparison Histogram X 2 ~-~i=o H t +  a (i) 

other such properties. The problem of developing general models of video shots is an 
extremely difficult problem due to the number of factors that affect the nature of the 
video data. However different aspect of video can be individually modeled and used in 
developing tuned cut detectors. Work on modeling video for the purpose of video analysis 
is presented in [8]. Cut detectors used in this work are based on results presented by 
other researchers [1], [19], [24], [22] in the field. The operators presented by Nagasaka 
et al and Smoliar et al were used in an extensive experimental study using cable TV 
data. 

Table 2 shows two features for cut deiection that have been proposed in literature. 
Consider a shot S. Let the pixel size of the frames be N~ • Ny. Let G be the number 
of gray levels. Let t denote the time or the frame number. Let the shot length be L. Let 
x, y denote pixel location within a frame. Let H~ be the histogram of the t th frame of 
the shot. These features were extracted from videos with cuts between different types of 
shots (object motion shots, camera motion shots, etc). The two features shown in table 
2 were used in the development of the segmentation system presented in this work. 

4.2. Chromat ic  Edi t  Detector  

Chromatic editing manipulates the color space of the two shots being edited (table I). 
The goal of the chromatic edit detector is to discriminate between intensity changes due 
to chromatic editing as opposed to intensity changes due to scene activity. The intensity 
changes in the image sequence resulting from chromatic editing have a particular pattern 
which is modeled analytically by the edit effect model. The chromatic edit detector 
analyses the video data and detects the presence of the data patterns conforming to the 
edit effect model. Fades and Dissolves are the two most prevalent types of chromatic 
edits. These edit effects are used as the focus of the rest of the discussion. 

4.2.1. Chromatic Scaling 

Fades and dissolves can be modeled as chromatic scaling operations. During a fade one 
of the shots being edited is a constant (normally black). A dissolve typically involves the 
scaling of two shots that are being edited. Thus a detector which can detect chromatic 
scaling in a video can be used to detect both fades and dissolves. The following discussion 
presents the model for a chromatic scaling of an image sequence, and derives a feature 
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for detecting such an effect in a video. Once the scaling detector is designed, the use of 
that detector for detecting fades and dissolves is discussed. 

Consider a gray scale sequence g(x, y, t). Let the color space of the sequence be scaled 
out to black over the length of ls frames. Then the model E(x, y, t) for the output video 
of the scaling operation is: 

E(x ,y , t )  = g(x,y,t)  x ( 1 -  ~ )  (9) 

During a single frame scaling, only the last frame of the shot is used in the scaling 
operation, i.e. the last frame of the shot is frozen and the intensity is scaled to zero (or 
the intensity is scaled from zero in the case of a fade in). Thus during a single frame 
scaling there is no motion within the sequence. In this case equation 9 can be written as 
10 where k indicates that the k th frame of the shot is being used in the scaling. 

( l ~ - t ~  
E ( x , y , t ) = g ( x , y , k )  x \ ls J (10) 

Differentiating E(t) with respect to time: 

bE _ -g(x ,  y, k) (11) 
5t ls 

Equation 11 can be rewritten as 

~__E - 1  
~t _ (12) c z ( t )  - g (x ,y ,  k) 

where CZ chromatic image, is the scaled first order difference image. This image is a 
constant image with the constant value being proportional to the fade rate. A simple 
function based on the distribution of intensities can be designed to provide a measure 
of the constancy of an image. Let Fc~(t)be the chromatic scaling feature which is a 
measure of constancy of CZ (section 4.5). 

Fr = LI(CZ(t)) (13) 

For multi-frame scaling, the scaling is done over a sequence of frames. Thus there 
is scene action in progress during the scaling edit. Here the differences in the pixel 
values during a scale will be due to a combination of the motion generated intensity 
difference and the scale generated intensity difference. The chromatic scaling feature, 
Fcs, is applicable if the change due to the editing dominates the change due to motion. 

4.3. Fades and Dissolves as Chromatic Scaling 

The fade and dissolve operations can be represented as some combination of chromatic 
scaling operations. 
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Fade Detection Two types of fades are commonly used in commercial video production, 
fade in from black and fade out to black. In both these cases the fades can be modelled 
as chromatic scaling operations with a positive and negative fade rate. Eyo equation 
14 represents the sequence of images generated by fading out a video gl to black. 

11 is the fade out rate in terms of the number of frames. 6 represents the black 
image sequence. Comparing equations 6 and 14, for a fade out one of the shots 

Sour = gl, Sin = 0 and | = +. Similarly, Eyi (equation 15) represents the images 
generated by fading in a sequence g2, at the rate of 12. Here Sour = 0 and Sin = g2 
The equations (14, 15) represent how the fade operation maps on to the edit effect 
model (equation 6). Since the operations on the individual sequences in the fade 
are chromatic scaling operations the chromatic scaling feature 12 can be used for 
detecting fades in videos. 

(14) 

Efi (x ,y , t )  = 0 + g2(x,y) t (15) 

Dissolve Detection A dissolve is a chromatic scaling of two shots simultaneously. Let 
Ed be the set of edit frames generated by dissolving two shots Sout= gl and 
Sin -- g2. Equation (16) models the process of dissolving two shots. 

(11 - +g2(x'Y) ( t ) 
Ed(x,y,t)  =gl (x ,y )  \ ll ,] (tl,tl+gl) ~ (16) 

Here ( t l , t2)  are the times at which the scaling of gl,g2 begin and (/1,/2) are the 
duration for which the scaling of gl, g2 lasts. The relative values of these parameters 
can be used to group dissolves into different classes. Such a grouping can be used 
to analyze the effectiveness of the detection approach. Comparing equations (15,14) 
and equation 16 it can be seen that the dissolve is a combination of the fade in and 
fade out operation occurring simultaneously on two different shots. 

A dissolve is a multiple sequence chromatic scaling. Designing the dissolve detector 
can now be treated as a problem of verifying that the chromatic scaling detector 
(equation 13) can be used to detect the dissolve. The approach followed in this work 
is to classify the dissolves into groups based on their qualitative properties and to 
verify the detectability of each group using the chromatic scaling operator. 

Figure (4) presents the sequence activity graph (SAG) during a dissolve edit. It 
shows the qualitative labeling of dissolves. The hatched area indicates the Out Shot 
activity and the filled area the In Shot. A positive slope in the SAG indicates a fade 



20 ARUN HAMPAPUR, RAMESH JAIN AND TERRY E. WEYMOUTH 

in operation and the negative slope indicates a fade out operation. A zero slope in 
the SAG indicates no sequence activity due to editing. 

The basis used for the qualitative labeling is the start time and the dissolve length. 
The labels are based on Shot of  Initial Activity-Dominating Shot attributes of the 
sequence, which are defined as follows: 

Shot of  Initial Activity: This is defined as the shot s, where ( t l , t2)  are the times 
at which Out, In  shots begin scaling. 

s = In if t l  > t2 ~ Fade In begins before Fade Out (17) 

s : Out if t l  < t2 ~ Fade Out begins before Fade In. (18) 

s = Both if t l  : t2 ~ Fade In, Fade Out begin together. (19) 

Dominating Shot: This is defined as the shot s where (/1,/2) are the dissolve lengths 
of the Out,  In shots respectively. 

s : In if 11 < 12 ~ In Shot dominates dissolve (20) 

s : Out if 11 > 12 ~ Out Shot dominates dissolve (21) 

s = Equal if /1 = 12 ~ No Shot dominates dissolve (22) 

A shot is said to dominate the dissolve if its activity slope is higher. In other words, if 
the shot contributes more to the inter frame change [12], [13] in the video sequence. 

From figure 4 it can seen: 

1. that except in the case of Both-Equal type of dissolves, all the other types have 
portions during which there is an exclusively single sequence chromatic scaling in 
progress. 

2. that except in the case of Equal Dominance Sequences the change contribution of 
one sequence dominates the other. 

Thus the cases in which the chromatic scaling feature (equation 13) will not respond to 
the dissolve are those in which very similar sequences are being dissolved with precisely 
equal fade rates over the dissolve. In most commercially produced video sequences 
dissolves are seldom executed with such precision and dissolving very similar sequences 
are avoided. Hence the chromatic scaling feature can be used to detect most dissolves. 
The experimental studies conducted confirm these observations over a wide range of 
commercial video. 

4.3.1. Limitations of Chromatic Edit Detector 

There are several limitations of the chromatic edit detector: 

Additional Chromatic Transforms: The chromatic edit detector presented can be used 
for detecting chromatic edits which are scalings of the color space. There are other 
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Figure 4. Sequence Activity Graph during a dissolve 

possible types of chromatic transforms like chromatic translations, rotations etc which 
have not been addressed in this work. However this is not a serious practical limi- 
tation as chromatic transformations other than scaling are seldom used in practice. 

Multiple Sequence Scalings: The scaling detector is primarily designed to detect the 
scaling of single image sequences. It can be used to detect two sequence scalings as 
in the case of dissolves provided that the effect of sequence domination is present 
(section 4.3). If  there are segments of video with dissolves of more than two se- 
quences the chromatic scaling detector cannot be guaranteed to respond. 

Piecewise Transformations:  The detectors are designed to respond to global image 
transforms. The detector responses become unpredictable if the chromatic transforms 
are applied to spatial sub windows in the sequence. 

Transformation Rates: This is the inverse of the duration for which a particular trans- 
formation is applied to create an edit. When the transformation rate is very high the 
extended edit approaches the cut or identity. In this case the change will be large 
enough for the cut detector to respond. In the case of extremely small transformation 
rates (dissolves and fades over 100's of frames), the change due to the effect between 
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frames may be too small. In such cases detecting these effects based on two frames 
of video will not be possible and approaches involving extended set of frames will 
have to be adopted. 

4.4. Spatial Edit Detector 

Spatial edits are achieved by transforming the pixel space of the shots being edited. These 
are Type 2 transforms in table 1 where Tc = I and T8 has different values depending 
on the exact nature of the spatial effect used. takes on different values depending on the 
specific type of spatial edit. One of the most commonly used edits is the page translate, 
where the shot preceeding the edit is translated out of the viewport uncovering the shot 
that follows the edit. This type of edit is used as an exemplifier of the class of spatial 
edits and a feature derivation is presented. 

Consider a video E ( x ,  y, t) with a translate spatial edit. In such an edit the first 
shot translates out, uncovering the second shot. Let E (x ,  y, t) be a gray scale sequence 
for notational simplicity. Let gout(x, y, t),  gin(x, y, t) be the gray scale models of the 
incoming and outgoing shots in the edit. Let c~x, c~y be the translation coefficients in 
the x and y directions respectively. Let N~, Ny be the number of pixels in the x and y 
dimensions of each frame. The translate edit can now be modeled as 

E ( x , y , t )  = g o ~ t ( x + ~ z . t , y + ~ v - t , t )  

i f0  <_ x + ~  < Nx and 0 _< x + ~ y  < Ny 

= gin (x, y, t) else (23) 

Equation 23 represents the process where a pixel in the final cut is taken either from gout 
if it lies within the bounds of the frame, or from gin. In the case of a pure spatial edit 
the brightness of a particular point does not change over time, the change in the video is 
caused by the motion of the point due to the edit. This fact can be used to write down 
the constant brightness equation [18], [4], [ 11 ] for the edit. 

d E  
- -  0 ( 2 4 )  

dt 

Using the chain rule for differentiation equation 24 can be rewritten as equation 25. 

d E  5E  dx ~E dy 6E  
d-T = 6---~-" d--~- + 6y dt + - ~ -  0 (25) 

substituting for E from equation 23 in equation 25 and assuming that the motion in the 
incoming shot is negligible as compared to the motion due to the edit ( ~ -- 0) the 
following equation can be written. 

d E  6E d(x  + ~ . t) ~E d(y + ~y . t) 6E  
d----t = 6---~ " dt + 5 y  " dt + ~ = 0 (26) 

which can be rewritten as 

d--~=6-~- ~+c~x +-~-y ~ + ~  +-~-=0 (27) 
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Assuming that there is no scene action in progress during the edit (i.e. the first shot 
freezes before the translation begins) there will be no relative changes in the image due 
to scene motion. Hence d_x d_y_ = 0. Therefore equation 27 can be rewritten as dt  z d t  

follows: 

5E 5E 5E 
�9 ~ + oyT- ~ y  + 7 / -  = 0 (28) 

For the case of pure translation in the x direction (~y = 0. Hence 

5 E  
5t 

8 : r ( t )  = a x  - e ~  

5x  

(29) 

Equation 29 shows that in the case of the edit being a pure translation in the x direction, 
the scaling of the difference image by the X gradient image results in a constant image 
S:T., the spatial image. Let Fsgx represent the spatial translate feature. 

F ,  gx = U ( S Z ( t ) )  ( 3 0 )  

where b/denotes the measure of uniformity of the scaled difference images (section 4.5). 
Thus the feature Fsax can be used as an indicator of the spatial translate in x. Similar 
features can be designed for detecting spatial translate edits in different directions. This 
is feasible given that the cost of computing each feature is limited and the number of 
directions in a quantized image are small. Many other types of spatial transforms like 
the page turn and several other digital editing effects can be modeled as piece wise 
transforms applied to image windows. A similar process can be used to design detectors 
for these various types of edits. However as the edits effects become more complex with 
significant local effects the design of effective detectors becomes more difficult. 

4.4.1. Example of spatial edit detector operation 

This section presents a simple example to illustrate the operation of the spatial edit 
detector. Let S~n, Sour be the frames from the two shots being edited using a spatial 
x-translate effect. Here the incoming shot is in the background and the out going shot 
moves out to the right. Let E(0),  E(1),  E(2)  be the edit frames generated by the editing, 
it can be seen that the pixels of the out shot move to the right uncovering pixels of the 
in shot. Let the spatial translate detector be applied to the edit frames at E(1).  Now 
__eE~t = E(1) - E ( 0 )  and ~fE = E(x  + 1,y, 1) - E (x , y ,  1). From table 3 we see the 

,sE 
eE~t -- _~E, hence the ratio ~ is a constant. For the spatial edit detector to be applicable to 

any translate edit, the motion of the frame must be lesser than the sampling interval in the 
gradient computation. This can be ensured by processing the images at an appropriately 
reduced spatial resolution. 
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Table 3. Translate Edit Example 

[ 111 I I12 I I13 I 

Si~ : I Izl I I22 I I33 I 
1 131 I I32 I I33 I 

1~  I 013 1~  I 

Sour =1 031 1 023 I 023 I 
1 031 I Oa2 I oa3 I 

I O l l  1 o12 I o~3 I I hl  I o a l  I ox2 I I I lx I Zel I O l l  I 

E(0) =1 o~1 I o~  I o~3 IE(Z) =1 I21 1o31 I o~ IE(2) =1 '21 113~ Io21 I 
1 o 3 1  I oae  I o3a I 131 1 o31 I oa2 I I t~1 I I32 I o31 I 

I 1 1 1  - -  0 1 1  ] 0 1 1  - -  0 1 2  

~ ( 1 )  =1 z21 - o21 Io21 - o22 
I l a l  - o a l  I o31 - oa2 

0 1 2  --  O I 3  I I I l l  -- 0 1 1  I O l l  - -  O 1 2  I O i 2  --  O 1 3  

5 E  022 - o2a ITfx (1) =1 r21 - Ozl I o21 - o22 I o22 - Oza 
0 3 2  --  0 3 3  I I I31 -- O 3 1  I O 3 1  -- 0 3 2  [ 0 3 2  --  0 3 3  

4.4.2. Limitations of Spatial Edit Detector 

There are several limitations of the spatial edit detector some of  which are design limi- 
tations and others which are practical limitations of  the detectors. 

O the r  Spatial Transforms:  The detector designed according to the previous section are 
capable of detecting spatial translates in various directions. However with the large 
scale use of  digital video editors the number of  different types of  spatial transition 
effects between shots is growing. Designing detectors for many of  these effects is not 
possible. In addition it is conceivable that in future videos will have edit information 
coded along with the SMPTE time code that is currently used. 

P e i c e w i s e  T r a n s f o r m s :  Similarly, the application of  varying spatial transforms to sub- 
regions of  the image makes the design of  detectors more complex. And since the 
properties being measured are no longer global, the detectors tend to be less reliable. 

4.5. A m e a s u r e  of  Image Uniformity 

The output of  the image manipulation operations both in the case of  the chromatic edit 
detector equation 13 and the spatial edit detector equation 30 are gray scale images with 
a constant value. In the case of  real images this will seldom be the case, a constant image 
will have a uni-modal histogram. The following is a measure which responds to images 
with a uni-modal histogram: Let I (x ,  y, t), t ( x ,  y, t + 1) be the two consecutive frames 
in the video for which the features are being computed. Let x C (1, N~) and y E (1, Ny) 
where N -- Nx * Ny is the total number of  pixels in the image. Let X Z  represent the 
image whose constancy is being measured, where X Z  = CZ for the chromatic scaling 
detector and S Z  for the spatial operator. There are two aspects that can be measured 
from X Z  
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Spatial Uniformity For the ideal case where X Z  : / C  Vw t all the pixels in the image 
will have the same value. In the case of a real image the X3f(w ~) is valid only if 
the difference pixel at that point is non-zero, because a constant set of frames in the 
video will yield P(27 = ?'. Hence the uniformity measure is directly weighted be the 
number of non zero difference pixels or the Area of the non zero difference image. 
Also a computationally cheap measure of the spatial uniformity is the location of the 
centroid of the valid pixels of ,-Y2". In the ideal case the centroid should be located 
at the physical center of the image. Thus the uniformity measure can be inversely 
weighted by the distance centroid from the physical image center. 

Value Uniformity For the ideal case where ,-Y27 = /C  Vw t the variance of P(Z will be 
zero. Hence inversely weighting the uniformity measure by the variance guarantees 
that the measure will have a strong positive response for a constant image. 

Based on the above consideration H shown in equation 31 is the measure of image 
constancy. The meaning of the different symbols and their computational formulas are 
presented in table 4. 

A(T(D(I(t)),O) 
Uniformity Measure = H = a(-V~x(I(t))) �9 (1.0 + C(T(D([(t), 0))) - (cx, Cy)) 

(31) 

4.6. Computational Requirements of Feature Detectors 

This section presents the computational requirement analysis of the three feature detec- 
tors used. Let N be the number of pixels per frame in the digital video sequence being 
segmented. Let kada, ksub, kaiv, kmult, kabs, kcomp be the cost of performing one oper- 
ation of addition, subtraction, division, multiplication and absolute value, comparison 
respectively. Table 4 lists the costs of various operations in the feature extraction process 
and estimates the complexity of the computation. Let A represents the cost of a com- 
pound operation in terms of the basic image computations. More detailed discussions on 
each of the operations listed below can be found in [15] 

From table 4 the cost of computing all the three features for detecting edits is Ac~,t + 
Achrom § which is (9(Af). Thus the total feature computation cost for all the three 
types of edit features is O(n). In the experimental system that has been implemented 
using this approach, all the frame processing is done on reduced resolution images with 
about 20K pixels per image. This computational requirement of (9(104) is one order of 
magnitude larger than the requirement reported by Arman [1]. However their technique 
does deals only with cuts and does not consider other types of transition effects. The 
current set of algorithms can be further optimized to improve the performance. 

4. 7. Feature Detector Summary 

The above sections presented a systematic approach to designing features. The feature 
design was based on the edit effects models. Figure 5 shows a flow diagram for extracting 
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Table 4. Computational Cost Table 

Operation Symbol Computation Formula Cost Order 

Histogram H(I( t ) )  Vx,yH(I(x,  !I, t)) + + N * (kadd) O(.N') 

Difference 7)(I(t)) Vx,vI(x,  y, t + 1) - I(x,  y, t) N * (ksu b + kabs) O(Jkf) 

Division S(I( t ) )  Vx,yI(x, y, t + 1) + I(x ,  y, t) N * (kdlv) O(J~f) 

Gradient ~ (I(t)) Vx,vI(x + 1, y, t) - I(x; y, t) N * (ksub) O(JV') 

Threshold T(D( t ) ,T )  Vx ,yB(x ,y , t )  = l i f I ( x , y , t )  > T g *kcomp O(Jkf) 

Mean ~(/(t)) ~ , ~  x(~,y,t) N N * kadd + kaiv O(H)  

Variance ~(I(t))  ~-~x,y(I(x,y,t)  - ,a(I(t))) 2 N * (kmutt + Ksub) O(Jkf) 

Area A(B( t ) )  ~ , v B ( x , v , t  ) N * k,~m O(Af) 

Centroid C(B(U)) Cx = E ~ ' v  x Id(x,y) 
A 

E ~ , y  y ld(x,y) 
Cy = A N * (2 * krnult) -t- kdi v O(JV') 

Chromatic ling CZ equation 12 A d l f f  + Adl v O(JV') 

Spatial Img $Z  equation 29 AdiM + Agrad + Adiv O(Jkf) 

Uniformity LI(XZ, 7)) equation 31 Adiy] -}- Athresh + 
Aarea + A v a r +  
Acentroid + A thresh+ 
kdi v + k a d  d 0 ( ~ ( )  

G (Ht(i)-HL+I (1)) 2 3 * N * kadd't- Cut ~cut ~ i = o  Ht+l (i) 
G * (kad d + kdiv + kmul t  ) O(d~ + 6)  

Chromatic ~chrom Lt(CZ) Auniform~ty + ACZ O(N)  

Spatial ffrspace LI ( SZ) Auni f orm~ty "4- ASZ O(N)  

all the features from a pair of images I ( t )  and I ( t  + 1). The cut  feature involves the 
computation of  a histogram for each image and a X 2 comparison of  the histograms. The 
chromatic  feature requires the computation of a difference image, an image division and 
a image constancy computation, while the spatial  feature requires an image difference, 
image division and a constancy computation. The most important aspects of  the feature 
detectors designed are: 

Local  Computa t ions :  The extended edit effects like fades and dissolves are being ex- 
tracted based on using just two consecutive frames in the sequence. This is a very 
efficient method of  extracting extended edit effects. 
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Algori thm Simplicity: The computations needed to accomplish the task of extracting 
extended edits are very simple and hence reliable. 

Modularity:  The set of operations necessary to compute all the features is modular and 
the results of some computations can be used in more than one feature detector. 

f ' -  Feature Detector 
Computational Block Diagram 

Figure 5. Feature Extractors: Computational Block Diagram 

5. Classification and Segmentation 

The features extracted from the video undergo several steps of processing before the 
video segments are identified. This section preseats the various steps involved. Figure 
6 provides an illustration of the details involved in the classification and segmentation 
process. A modification of a standard two class discrete classifier [3] has been used to 
achieve the segmentation process. The lack of prior probability density functions for the 
various features makes the use of standard Bayesian decision models unsuitable for this 
application. 

Feature Thresholding The first step in the classification and segmentation process is 
feature thresholding. The response space of each of the features, namely cut, chro- 
matic edit and spatial edit, are discretized into a number of regions. A single threshold 
is used to categorize the response as either positive or negative. The thresholds Ti 
for the different features are chosen based on the conditional probability distributions 
of the features over an experimental data set. 
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Classification & Segmentation 

Cut Feature 

Chro~tic 
Feature 

Spatial 
Feature 

Feature 
Thresholding 

Feature 
Thresholding 

Feature 
Thresholding 

Segments 

~ a t i o n  

J 

Figure 6, Steps in classifieation and segmentation 

f - -  . . . . .  F i n i t e  S t a t e  Machine 
for Video Segmentation 

Input / (Begin Seg, End Seg) 

0 / 1 0  , ,~  ~ ~ " ~  1 /10 

~v 0100 

I /  10 
O/ 01 

11 O0 

Figure 7. Finite State Machine for Segmentation 

Discriminant Function The discriminant function is a function designed to combine 
the feature responses of the three features. The output of the discriminant function 
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thus assigns to each frame in the video one of two labels edit or shot. The label 
assignment takes into account the correlation that exits between the features and 
the conditional distributions of the features. The discriminant function used in this 
system is D(fc, fcs, fsp) = fc A fc~ A f~p where A is the logical OR operator. Thus 
the output of the discriminant function is a two label pulse train that needs to be 
segmented. 

Segmentation The two label pulse train (i.e, each frame is either called an edit or shot) 
is segmented by using a finite state machine show in Figure 6. The notation used 
is the standard notation of finite state machines[16]. The circles indicate states and 
the arrows indicate the transition between states. The machine for segmentation has 
3 states Sq, So and $1 where Sq is the quiescent state, So is the shot segment state, 
$1 is the edit segment state. The machine has two outputs namely begin segment, 
end segment. 

6. Comparison to existing work 

Most of the existing work in the area of video segmentation has used a bottom up 
approach to the problem of segmentation resulting in segmentation being viewed as a 
problem of effect detection. The lack of explicit edit effect models has been instrumental 
in the limited success that other techniques have had with detecting extended edit effects. 
The work presented in this paper has taken the top down approach to video segmentation 
resulting in the use of effect models which have allowed the design of simple and effective 
techniques for segmenting digital video. 

Comparison of cut detection techniques in videos essentially has to depend on rigorous 
experimental comparisons performed on well characterized data, due to the fact that cuts 
are null edits. Such a comparison is not possible at this time. Hence the comparison 
presented below compares the proposed segmentation technique without considering cut 
detection. 

Zhang et al [24]: This work addresses the problem of cut detection and the problem 
of detecting extended edit effects in video. Their approach to extended edit effect 
detection suffers from several draw backs. The principal problem is that they do not 
have an explicit model of the effects. The effect is defined in terms of the interframe 
difference measure. The solution proposed is based on a two pass, dual threshold 
algorithm. They have also used optical flow based computations for detecting other 
imaging effects like zooms and pans. Contrasted with the approach presented in this 
work, which uses models of the effects resulting in the systematic design of effect 
detectors. The approaches presented in this paper rely on the edit effect models to 
design detectors which use consecutive pairs of frames to detect extended effects. 
The detectors designed in this work provide single pass, two frame analysis approach 
to detecting effects as opposed to the two pass, dual threshold, multi-frame analysis 
approach proposed by Zhang et al. The approaches presented in this work are 
computational much more efficient than the approach presented by Zhang et al. 
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Nagasaka et al [19]: The work presented detects cuts in the context of partitioning 
video to perform search on the segments for certain objects. The paper presents an 
excellent comparison of various frame comparison algorithms. This work however 
does not address the complete segmentation problem as it does not consider the 
detection of other extended scene transition effects. 

Akutsu et al [22]: This work addresses video segmentation as a part of the larger prob- 
lem of structured video computing. They use an interframe differencing operation for 
detecting cuts. The authors point out that they perform gradual transition detection 
by performing frame comparisons over extended time intervals. However they do 
not provide details on the exact nature of the algorithm. 

Arman et ai [1]: This work on has adopted the novel approach of dealing with video in 
the compressed form. Thus the techniques developed here are very computationally 
efficient. They have presented techniques for detecting cuts based on the inner 
product of the DCT coefficient representation of frames. They have however not 
addressed the problem of detecting extended edit effects in video. 

The production model based segmentation approach presented in this work has the 
additional advantage of using the feature based classification formalism. This formalism 
separates out the feature extraction and the decision processes. Thus additional features 
for detecting new effects or for improving the system performance can be accommodated 
into the system by modifying the discriminant function. 

7. Error Measures for Video Segmentation 

The video computational model (equation 5) is used for the purpose of measuring seg- 
mentation error. Shots and extended edits (fades,dissolves,spatial edits etc.) are closed 
intervals with non zero length. A cut however is not an interval. But for the sake of 
consistency cuts can be treated as a closed interval of length zero. The error in segment- 
ing a video is the difference between the correct model of the video V and the output of 
a segmentation algorithm V'. L e t V  have n segments. Let V' have k segments. Then 

V = $1 o ,5'2 o S3 o Sa o . . .  o S(n-1) o Sn (32) 

V' = O l o O 2 o O 3 o . . . o O k  (33) 

where Si and Oi are segments in the correct video computational model and the output 
of the segmentation algorithm. The difference between two videos with reference to 
segmentation has the following two error components, the Segment Boundary Error due 
to the improper location of the segment boundaries, and the Segment Classification Error 
due to the improper labeling of the segments. Thus the overall segmentation error E can 
be defined as follows: 

E(V, V') = EBb(V, V') x Wsb + Esc(V, V') x W~c (34) 
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Esb represents the segment boundary error and Es~ represents the segment classification 
error. The weights W~b, W~e allow the error measure to reflect the bias of the application, 
and can be set based on which error involves more cost to the user. 

7.1. The Segment Correspondence Problem in Video 

Given two video computational models, the process of measuring errors involves com- 
paring the individual segments in the two models. This requires a mapping between 
the individual segments of the two models. The process of generating this mapping is 
referred to as the segment correspondence problem. 

Definition: A correspondence C between videos V and V' can be defined as a mapping 
I t g I 

C : V ~ V '  where V v ~ c V  3 v i E  (V' U 0) andV% c 3 v ~ E ( V U 0 ) .  A 
correspondence set optimizes some given correspondence criteria. 

The correspondence criteria used to assign the correspondence between two videos can 
vary widely depending on the application. If the purpose of assigning the correspondence 
is to compare the story content of two videos, the correspondence criteria will be some 
semantic property of the video. For the purpose of computing the segmentation error, a 
simple criterion like the temporal segment overlap can be used. Correspondence criteria 
can be grouped into local criteria where local information from the intervals in question 
is sufficient to determine the correspondence and global criteria where the correspon- 
dence between two segments is dependent on the complete temporal structure of the two 
videos under consideration. The correspondence criteria needed for measuring the video 
segmentation error is a global correspondence criterion defined as follows: 

Maximal Global Overlap Given two videos 17, V' the correspondence set C : V ~ V' 
must maximize the total temporal overlap between the corresponding segments in the 
two videos. 

The following is an algorithm for computing the correspondence between two videos 
V, V' using the maximal global overlap criterion: 

Step 1: Intersection Computation For every segment S c V and O c V', compute 
the intersecting intervals from V' and V respectively. The temporal ordering of 
intervals in a video can be used to efficiently compute this intersection set. 

Step 2: Overlap Computation For every intersection computed in Step 1 the overlap 
must be computed. Given two intervals 771 = [tlb, tie] and T2 = [t~b, t2e] the overlap 
O is given by O(T1, T2) = [tlb --t2el- (Itlb - t2b[ + [tl~ --t2~l) 

Step 3: Overlap Ordering Order all the intersections based on a descending order of 
the overlap values. 

Step 4: Correspondence Assignment Choose the correspondences (intersections) which 
yields the maximum total temporal overlap while ensuring that each interval is as- 
signed to only one other corresponding interval. 
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Step 5: Null Assignment Assign all the remaining segments in either video to a null 
segment, indicating that it has no corresponding counter part in the other video. 

7.2. Segmentation Error Classes 

Given a correct video model V (equation 32) with n segments and an output model V' 
(equation 33) with k, let n'  and k' be the number of unassigned segments in V and V'  
after computing the correspondence. Then the segmentation can be classified as follows: 

Under Segmentation k' n' < The number of unassigned segments in the output model 
are fewer than in the correct model. This implies that the segmentation algorithm 
has missed a number of boundaries and that the number of false positives in the edit 
detection is lesser than the number of missed edits. 

Equal Segmentation k' = n'. The number of segments unassigned in both the output 
and the correct model are the same. This implies that the number of false positives 
and missed edits are the same. 

Over  Segmentation k' n '  > . The number of unassigned segments is greater in the 
output model as compared to the correct model. This implies that the video has been 
broken up into more segments than necessary or that the number of false positives 
in the edit detection is greater than the number of missed edits. 

The classification of a segmentation error provides a qualitative labeling of the error. 
In addition to this the error classes are used in the definition of the error measure. In 
most real videos the number of segments in the video tends to be much smaller than the 
number of frames. This causes the under segmentation error to be bounded to a much 
smaller number than the over segmentation error. For example given a 10 segment video 
with a 1000 frames, a video algorithm that results in an under segmented video can yield 
outputs with 1 to 9 segments, while an algorithm which over segments video can output 
11 to 1000 segments. This effect is accounted for by the use of different scaling factors 
in the definition of the error measures. 

7.3. Segment Boundary Errors: Esb 

Once the corresponding segments have been assigned between V and V' the boundary 
error can be computed as the absolute difference of the corresponding intervals scaled 
by the length of the video. An additional penalty is added for the unassigned segments 
from both the correct and output models. 

Esb(V,V')  = E ~ I  e~(S~'O~) n '  + k '  
Length(V)  + ~ (35) 

where )~ = n for under and equal segmentation and ~ = Leng th (V)  for over seg- 
mentation, e~ is the interval error between Si and Oi. The error between two intervals 
T1 = [tlb, tle], T2 = [t2b, t2e] is defined as follows: 
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e~(T1,T2) = [tlb--t2b[+[tle --t2~l (36) 

7. 4. Segment Classification Errors 

Given two corresponding segments sl  and s2 with labels/sl and 182 the segment classi- 
fication error is defined as follows: 

esc = 1 i f  181 ~ 182 (37) 

= 0 i f  lsl = ls2 (38) 

The overall segment classification error for the entire video is given by 

n n '  k' 
Esc(V, V') = E =I + + n ~ (39) 

where A = n for under and equal segmentation, A = Length(V) for over segmentation, 
esc is the classification error between Si and Oi. The video segmentation error between 
V and V'  can now be defined using equation 34. 

7.5. Behavior of Error Measure 

The goal of defining the error measures is to evaluate the performance of the segmentation 
system as a function of various parameters of the system. In order to achieve this the 
error measure must be monotonic. Given a reference video R and a comparison video V, 
the error measure e should be a monotonic function of the actual error, as V moves away 
from R, e should increase. The boundary error measure was applied to a set of simulated 
videos to verify these properties. The reference video contained 32 equal segments. The 
under segmented videos were generated by deleting segments from the reference videos 
while keeping the length constant. The over-segmented videos were generated by adding 
segments to the reference video without changing the locations of existing segments. 
Figure 8 shows the variation of the segment boundary  er ror  across the set of simulated 
videos. The plot shows the error as a function of the number of segments in the video. 
The error is zero at the location of the reference video and monotonically increases as 
the comparison video gets increasingly under (over) segmented to the left (right) of the 
reference video location. This is the error measure used to evaluate the performance of 
the segmentation system in the next section. 

8. Experimental Results 

This section reports on the experiments performed based on the techniques proposed in 
this paper. The goals of the experimental evaluation have been to study the performance 
of the detectors (sections 8.2, 8.3), to tabulate the performance of the overall segmentation 
system (section 8.4) and to analyze the sensitivity of the entire system to variations in 
the threshold (section 8.5). The experimental results presented in here are a snapshot of 
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Error Measures in Video Segmentation 
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Figure 8. Error Simulation for Video Segmentation 

the ongoing work. Experimental characterization on much larger video data collections 
are currently in progress. 

8.1. Experimental Setup and Data Description 

The experiments were conducted on video data stored on a laser disk player. The laser 
disk player was remote controlled from the host computer via a serial link. Video was 
digitized on the fly, the laser player was synchronized to the desired frame and the image 
was digitized using a digitizer card on the host machine. The combination of the host 
computer and laser disk player essentially provided random frame access to the video 
stored on the video disk. The host computer ran the segmentation software which had a 
graphical user interface front end which allowed easy handling of video and facilitated 
experimental analysis of the segmentation system. 

The data used for experiments was gathered from the local cable television system here 
in Ann Arbor. The types of programming included in the data include news footage, 
music videos, commercials, sitcoms, sports casts, etc. 

8.2. Experiment 1: Large Scale Feature Plots 

This set of experiments presents feature plots of the chromatic and spatial features over 
a relatively large time spans. The plots show the detector responses to different types 
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of video content like object motions, camera motions and edit effects. The goal of 
this presentation is to illustrate to the reader the large scale qualitative behavior of the 
detectors. The graphs have been annotated with the various effects that are in progress. 
The corresponding video sequences have been presented in figure 9 
Example  1: Fade Sequence: Figure 9 (left) a fade in sequence (top to bottom). There 
is a significant amount of object motion in progress close to the camera as the image 
sequence is being faded in. Figure 10 shows the response of the chromatic scaling feature 
to this sequence. The detector responds positively during the fade in part of the sequence. 
The response drops off considerably after the fade in, although the same object motion 
continues. The detector also responds to a cut. The cut is the last frame in figure 9 (left) 
Example  2: Dissolve Sequence: Figure 9 (middle) shows a dissolve sequence. The 
response of the chromatic scaling feature is shown in figure 11. The first peak in the 
response corresponds to the dissolve shown in figure 11. It should be noted that the 
detector misses a dissolve and gives a spurious response. Images corresponding to the 
missed dissolve and the false positive are not presented. On examining the sequences 
carefully it was found that the spurious response was due to a large object moving very 
close to the camera in a low contrast scene, and the missed response was due to a dissolve 
between very similar sequences in the music video. 
Example  3 Translate Edits: Figure 9 (right) a page translate edit between two shots, 
the first shot is a zoom in shot and the second shot is a pan shot. Figure 12 show the 
output of the translate edit detector. An observation of the result shows that the detector 
responds well to the edit while suppressing both pan and zoom, 

8.3. Experiment 2: Feature Switching Behavior 

The experiments in this section were performed to compare the chromatic and spatial 
detectors proposed in this work to features that have commonly been used in segmenting 
video [19], [24], [22]. The features used for comparison are the template matching 
(sum of difference pixels) feature and the X 2 histogram feature shown in table 2. The 
experiments had the following steps. 

Step 1: Representative sequences were chosen for each of the extended edit effects (fade 
in, fade out, dissolve, spatial translate). 

Step 2: The feature responses of the proposed feature and the existing features for these 
sequences was stored by extracting the features over all the frames that comprised 
the edit effect. Let these feature responses be denoted by Effect/, i.e. the response 
of feature i over the frames of the edit effect under consideration. 

Step 3: The feature responses of each of the detectors for a cut across the edit effect 
was measured. This measurement indicates the detector response if the edit effect 
under consideration had been replaced by a cut between the two shots. Let this 
measurement be referred to as Cuti, i.e. the response of feature / to a cut between 
the shots. 
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Figure 9. EXPERIMENT 1: Left: Fade Out Middle: Dissolve Right: Translate 

Step 4. Based on the measurements of the previous two steps, the normalized feature 
values were computed. These feature values are shown in figures 13,14,15. 

Effect~ 
Normalized Feature Values = - - -  (40) 

Cuti 
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Figure 10. EXPERIMENT 1: Chromatic Scaling Feature Response: Fade In Sequence 
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Figure 11, EXPERIMENT 1: Chromatic Scaling Feature Response: Dissolve 

8.3.1. Interpretation of  Feature Comparison 

Figure  13: This plot shows the variation of the chromatic feature when it is applied 
to a fade out followed by a fade in. The ideal response graph shows how an ideal 
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Figure 12. E X P E R I M E N T  1: Spatial Translation Feature Response 
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Figure 13. E X P E R I M E N T  2" Chromatic Scaling Feature applied to fades 

fade detector would have responded to the sequence. The other three graphs show the 
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Figure 14. EXPERIMENT 2: Chromatic Scaling Feature applied to dissolves 
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Figure 15. EXPERIMENT 2: Spatial Feature applied to spatial translate 

response of  the chromatic feature, the chi-square feature and the difference pixel feature. 
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Table 5. EXPERIMENT 3: Segmentation Performance 

Type Correctly Detected False Detection Total Number % Correct % False 

Cut 145 16 159 91% 10% 

Fade In 3 1 4 75% 25% 

Fade Out 3 0 3 100% 0% 

Dissolve 14 4 19 73% 21% 

Spatial 3 3 5 60% 60% 

TOTAL 168 24 190 88 % 12 % 

All the graphs are normalized with reference to the cut feature value. Assuming that the 
threshold is nominally set at 50% of the response to a typical cut, the chi-square feature 
would pick up the end of the fade out and would miss the fade in, the difference pixel 
feature would miss the fade out and pick up the the middle frame of the fade in. The 
chromatic edit detector picks up the complete fade in and the entire fade out except for 
the last frame. 
Figure 14: This plot shows the variation of the chromatic feature when it is applied to 
dissolve. The ideal feature response is shown. Assuming 50% of the cut feature value 
as the threshold, it can be seen that the chromatic feature picks up the entire dissolve 
except for frames the beginning and end frames of the dissolve. The X 2 feature would 
pick up a cut in between the dissolve and the difference pixel feature would entirely miss 
the dissolve. 
Figure 15: This figure shows the variation of the spatial edit feature applied to a spatial 
translate edit. When compared to the ideal response and a threshold level of 50% of the 
cut response, it can be seen that the difference pixels does not pick up any edit, while 
the X ~ picks up two frames in the middle portion of the translate edit. The spatial edit 
feature misses out on frames in the beginning and end part of the edit. 

8.4. Experiment 3: Segmentation Performance 

Here the segmentation system was used to segment the test video data. The thresholds 
were picked empirically and the results were tabulated based on the number of edits 
detected and missed. Table 5 summarizes the results obtained using this algorithm. The 
result summary indicates an 88% correct segmentation which implies that 12 out of every 
100 edits were missed, while about 12 edits were falsely detected. 

8.5. Experiment 4: Sensitivity Analysis 

The goal of this set of experiments is to measure the stability of the segmentation system 
with reference to variation in the thresholds. The experiment has the following steps: 
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Step 1: An experimental video is chosen which incorporates the set of transition effects 
being considered. The video is manually segmented and a reference model of the 
video is developed according to equations 3,4,5. The results presented here are for 
a CNN Headline news video which incorporated fades,dissolves, cuts and translate 
edits. 

Step 2: The segmentation algorithm is run on the test video with a set of thresholds 
Tc, Tch, Tsp for the cut, chromatic and spatial features respectively. 

Step 3: The segmentation error (equation 34) is measured for the segmentation results 
with reference to the reference model developed in step 1. 

Step 4: The segmentation error is plotted as a function of each of the three feature 
thresholds that are used in the segmentation process. The thresholds are varied about 
the initial point at which the segmentation error was measured. 

Figure 16 shows the variation of error. The thresholds were varied from -90% to 
+165% of their initial value. The video was taken from the initial part of the CNN 
Headline News Cast which includes the logo of the headline news, an anchor person 
shot, and several indoor and outdoor news reports with cuts, fades, dissolves, page and 
other edits. 

The threshold sensitivity graph shown in figure 16 has a region of low error from 
+25% to +100% of the quiescent threshold value. This region is the stable operating 
region for the system when using either the cut, chromatic or spatial feature. The wide 
range of this region indicates that the performance of the system is independent of the 
threshold chosen over a wide range of thresholds. From the graphs it can be seen that 
the errors for the cut feature vary more widely than for the other two, indicating that 
the cut feature is more sensitive to the values of the threshold used. This is due to the 
fact that the cut detector as pointed out earlier is detecting a null edit where as the other 
detectors are designed to identify the occurrence of a certain data model. 

8. 6. Summary of Experimental Results 

The following is an evaluation and interpretation of the results presented in this section 
along with ideas for improving the results. 

Feature Detectors Three different edit classes were described and video features which 
respond to these edits were designed. The response of the features to the edit classes 
is very good as is illustrated in the sample measurements presented. The following 
experimental observations were made about the feature detectors on applying them 
to different sets of video sequences. 

Response to other effects The edit detection features presented are specifically de- 
signed to respond to specific models of the edit effect frames like chromatic 
scaling. However both the chromatic scaling feature and the spatial edit feature 
respond to other effects. The false positive responses are mainly to sequences 
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Figure 16. EXPERIMENT 4: Threshold Sensitivity Plots 

with large zoom's and to sequences in which there is object motion very close 
to the camera. In both these cases the image sequence activity tends to be 
spread out uniformly across most of the image. Since the chromatic and spatial 
features use uniformity of change as the main indicator of edit activity, they 
respond falsely to zoom's and large object motions. The false responses can 
be suppressed by altering the uniformity measure to incorporate image motion 
information. 

Partial Fades Application of the chromatic scaling feature to a wide variety of 
sequences and analysis of the results, shows that the measure is very sensitive 
to fades. The feature provided good responses to the case where the sequence 
incorporated partial fades. A typical example of such a sequence is the anchor 
person shot in a news video, where an icon (map etc) fades into the scene as an 
inset. 

Feature Correlations The spatial and chromatic edit features also display a strong 
response to cuts. From the perspective of video segmentation this correlation 
between the three detectors is beneficial as the outputs can be used to improve 
the confidence in the final segmentation. The reason for the strong response 
is the fact that many cuts (between sufficiently different scenes) cause a large 
change in the chromatic and spatial domains of the video. 
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9. Summary and Future Work 

A technique for segmenting digital video is developed. This technique relies on the idea 
of using explicit models of video production to design feature extractors. The use of 
explicit models of video makes the technique very effective in dealing with a variety 
of transition effects. The formalism of production model based classification makes the 
segmentation system extendable to newer effects. The technique is applied to real video 
data taken from cable television programming and the results presented. 

Future work in the segmentation of video will include the design of tuned cut detectors. 
The edit effect models can be extended to handle a wider range of edits effects. The 
idea of modeling the video production process and using the models to design feature 
extractors can be extended to characterizing video shots [8]. 
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