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Abstract. A detailed theoretical understanding of pos- 
tural control mechanisms must be preceded by careful 
quantification of both the deterministic and stochastic 
aspects of postural behavior of normal and abnormal 
subjects under various dynamic conditions. Toward 
this end, concise parametric transfer function plus 
noise models were derived for both shoulder and waist 
position data obtained by applying a linear anterior- 
posterior bandlimited pseudorandom disturbance to 
the base of support of human subjects. Model orders as 
well as model parameters were determined empirically. 
One advantage of this modeling procedure is the 
conciseness of the postural models, permitting easy 
statistical analysis of the data obtained under different 
dynamic conditions from many subjects. Model fea- 
tures, including pole and zero locations, from 6 normal 
subjects each tested on 5 consecutive days under 3 
input amplitudes and eyes open and closed conditions 
are presented. The resulting transfer function models 
consist of only 1 or 2 poles near the integration 
position on the Z plane unit circle and 0 to 2 zeros. 
Locations of the poles indicate that the eyes closed 
responses are more oscillatory, less damped, and with 
higher gains than the eyes open responses. These 
transfer functions are similar to nonparametric ones of 
other authors. The noise model orders are also small. 
Their spectra are those of low pass systems. Also, the 
quantity and frequency range of the postural noise is 
positively related to the amplitude of platform motion 
as well as related to the presence or absence of vision. 

1 Introduction 

Upright human postural regulation is a complex 
motor function, dependent upon the integration of 
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information from several sensory modalities and upon 
the properties of subsystems at the spinal and higher 
levels of central nervous control. Because postural 
sway can be measured easily, quickly, and noninva- 
sively on human subjects, the posture control system is 
an excellent substrate for the study of human motor 
control mechanisms. Systems analysis has been useful 
in achieving understanding of many of the physiolog- 
ical processes which participate in the postural control 
system. For example, a great deal of effort has been 
invested in the development of theoretical models of 
the stretch reflex (Crago et al., 1976; Nichols and 
Houk, 1976; Poppele, 1973). Systems analysis has been 
useful in defining transduction properties of the semi- 
circular canals (Goldberg and Fernandez, 1971), the 
otoliths (Fernandez and Goldberg, 1976), eye move- 
ments (Stark, 1968), and joint receptors (McCall et al., 
1974). 

If the posture control system with all its compo- 
nents were linear, it should be theoretically possible to 
piece together transfer functions for the subsystems to 
obtain a complete model and hence understanding of 
the posture control system as a conceptually simple 
servomechanism. Nashner (1972) took this approach 
when he developed a vestibular feedback model for 
human postural control. Others (Koozekanani et al., 
1980; Stokic and Vukobratovic, 1979) have attempted 
to construct postural control models by making use of 
equations of motion for a single, double-stacked, or 
more elaborate inverted pendulum and various feed- 
back laws. 

Both theoretical and empirical considerations indi- 
cate that construction of a meaningful theoretical 
model of the posture control system is no small feat. 
Certainly the posture control system can be thought of 
as a complex system. Simon (1962) defines a complex 
system as follows: "Roughly, by a complex system I 
mean one made up of large number of parts that 
interact in a nonsimple way. In such systems, the whole 
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is more than the sum of parts, not in an ultimate, 
metaphysical sense, but in the important pragmatic 
sense that, given the properties of the parts and the 
laws of their interaction, it is not a trivial matter to infer 
the properties of the whole." Evidence for elaborate 
control structures in postural regulation abounds. 
Bernstein (1967) and Greene (1972) postulated that a 
hierarchial organization for motor control systems 
was necessary. The elementary subsystems such as 
those mentioned above are at the base of this hierar- 
chical organization while the system output depends 
upon the performance of these lower systems and on 
higher level systems, which in turn depend upon 
performance of the lower levels. Nashner (1976) de- 
monstrated evidence for synergies and hierarchical 
control in human posture. Synergies are marked 
coordinations of muscular activity of different parts of 
the body. Local control mechanisms, in which subsys- 
tems interact with each other and the environment in 
some optimal way that minimizes the need for higher 
level control have been demonstrated. An example of 
the latter is the evidence for a mass-spring model of 
motor control in unidirectional positioning tasks 
(Kelso and Holt, 1980; Polit and Bizzi, 1979). Recent 
investigations of postural control mechanisms of hu- 
mans (Nashner, 1976; Nashner and Berthoz, 1978; 
Soechting and Berthoz, 1979) and of dogs (Schuster 
and Talbott, 1980; Talbott and Brookhart, 1980) have 
demonstrated that postural control strategies are 
context dependent and adaptive. Also, conscious con- 
trol has been demonstrated to alter postural sway 
behaviour via changes in postural set (Seidel and 
Brauer, 1978, 1979), and in a biofeedback fashion 
utilizing auditory or visual feedback (Gantchev et al., 
1979; Takeya, 1976). 

An important preliminary step in the analysis of 
postural control mechanisms is careful quantification 
for large numbers of subjects under different con- 
ditions of the answer to the question: "What does the 
postural control system do?" Systems analysis pro- 
vides answers in the time and frequency domains by 
maximizing information available from observation of 
the system's behavior. Such models can be evaluated 
from mathematical points of view such as control 
system theory in order to gain insights concerning the 
underlying biological systems. These insights can aid 
in the design of physiological experiments to explore 
the actual structure of the underlying system. 

Control theoretical analysis of static postural be- 
havior has been used as a tool in the analysis of postu- 
ral mechanisms (Nashner, 1972; Dichgans et al., 1976; 
Diener et al., 1982; Aggashyan, 1972). Dynamic studies 
provide a more direct approach to the analysis of pos- 
tural mechanisms and organization. One can achieve 
a description of the output of the postural control 

system (movement of some part of the body or EMG 
response, for example) with respect to some known 
induced disturbance such as tilting or translation of the 
base of support, motion of the visual surround (Diener 
et al., 1982; Diehgans et al., 1976), and vestibular 
stimulation (Kapteyn, 1972; Njiokiktjien and de Rijke, 
1972). Dynamic studies are also more suitable for the 
study of systems possessing internal noise. Static 
postural sway can be considered the manifestation of 
the posture control system's internal noise, which, 
from a practical point of view, is the system's response 
to unknown inputs. Noise has been demonstrated to be 
a vital part of other physiological dynamic systems 
such as the pupiUary control system (Stark, 1968) and 
muscles (Joyce and Rack, 1974; Marsden, 1978; 
Matthews and Muir, 1980). Thus, a description of 
postural dynamics is incomplete without a description 
of the concomitant noise. Dynamic studies of re- 
sponses to disturbances of the base of support in 
several contexts have been done, including, predictable 
sinusoidal inputs (Andres, 1979; Gantchev and Popov, 
1973; Meyer and Blum, 1978; Diener et al., 1982), 
unpredictable inputs (Ishida and Imai, 1980; Meyer 
and Blum, 1978; Nashner, 1976), and absence of vision 
(Andres, 1979; Ishida and Imai, 1980; Diener et al., 
1982). However, with the spectral methodology used to 
derive the transfer functions in these studies, the 
internal noise signal was ignored so that descriptions 
of the dynamics provided by the functional systems 
analysis were incomplete. 

In this report is described a parametric black box 
model of the human postural control system in the 
contextural framework of a bandlimited pseudoran- 
dora disturbance applied to the base of support in a 
linear, anterior-posterior direction. The parameters of 
a noise model are estimated simultaneously with those 
of a transfer function, so that models for the postural 
noise under dynamic conditions for the first time are 
obtained. The models are simple linear time invariant 
difference equations which express the output (waist or 
shoulder position) as a weighted parametric sum of 
past outputs and past and present inputs, both deter- 
ministic (platform position) and stochastic (white 
noise). The sizes of the models are determined empiri- 
cally as well as the values of the parameters. Models are 
estimated for the shoulder and waist motion responses 
to 360 dynamic trials for each of 6 normal subjects. 

It is seen that satisfactory models can be obtained 
which possess small orders, so that statistical analysis 
of fundamental and derived model features can be 
easily done, permitting rigorous comparisons of re- 
sponses under different dynamic conditions. Here, the 
comparisons are done for three different stimulus 
amplitudes and for eyes open and dosed conditions. 
The pole and zero locations of both the noise model 



and  the t ransfer  funct ion are  the f u n d a m e n t a l  features  
since wi th  the except ions  of  ga in  terms,  they p rov ide  
comple te  desc r ip t ions  of  the  models .  O t h e r  features,  
such as selected t ransfer  funct ion  gains, phase  lags, a n d  
var iance  can be der ived,  so tha t  c o m p a r i s o n  of  these 
p a r a m e t r i c  t ransfer  funct ions  can be m a d e  with  those  
der ived  n o n p a r a m e t r i c a l l y  by  o the r  au thors .  The  
var iance  of  the noise  p o r t i o n  can  also be easi ly 
ob ta ined .  

2 Methods 

2.1 Posture Measurement System 

The posture measurement system consists of a stimulus delivery 
component, a response measurement component, and an LSI-11 
microcomputer with 32 K of memory and necessary interfaces for 
data acquisition and analysis. Mass storage for data is provided 
by floppy discs. The characteristics of the posture measurement 
system have been described in detail elsewhere (Andres and 
Anderson, 1980), so that only a brief description is provided here. 

The stimulus delivery system is a moving platform which 
translates the support base 0.457 m peak-to-peak in the plane of 
the floor. The support base is 0.61 m on a side, mounted on two 
parallel stainless steel rails with ball bushings. The drive mechan- 
ism is a 0.64 m per revolution lead screw with a preloaded ball 
bearing nut, driven by a dc torque motor which is controlled by a 
servo amplifier receiving velocity commands from the LSI-11 
microcomputer through a D - A  converter. Measurements of the 
platform position are resolvable to the nearest 0.03 cm. Andres 
(1979) demonstrated that the frequency response of the platform 
was flat to over 3 Hz even when loaded with 77.3 kg subject and 
that minimal cues from factors as vibration or noise from the 
platform reached the subject. 

The response measurement component is composed of two 
digital line scan cameras which sense the average position of the 
sagittal plane body silhouette of the subject standing on the 
moving platform in the configuration for induced anterior 
posterior sway (Anderson et al., 1977). One camera scans 
horizontally at the shoulder level while the other scans at the 
waist level. The cameras are situated on a specially constructed 
tripod so that they can easily be aligned at the proper levels for 
different subjects. The line scan camera measurements of waist 
and shoulder position are resolvable to the nearest 0.175 cm. 

2.2 Stimulus Characteristics 

The stimulus consisted of pseudorandom displacement stimuli 
which had been generated by signalling the velocity controlled 
platform with uniformly distributed pseudorandom noise that 
had been passed through a 0.2-2 Hz digital filter. These stimulus 
sequences were uniquely generated for each trial. Four peak 
velocities of motion stimuli were used: 12, 9, 6, and 3 cm/s. 

2.3 Measured Variables 

Through actively filtered A/D channels, twenty seconds of 
measurements for the shoulder, waist, and platform positions 
were sampled and stored on floppy discs at a rate of 
25 Hz/channel. In the models derived, the measured platform 
position is the deterministic input time series while the measured 
shoulder and waist positions comprised the 2 output time series. 
Figure 1 illustrates the data of a typical pseudorandom trial of a 
subject with his eyes closed. In both eyes open and eyes closed 
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EYES CLOSED TRIAL FROM A NORMAL MALE 

HOULDERS 

IST 

PLATFORM 

2O B 
AIVIPLtTUDE =12 0.2 TO 2Hz INPUT 

Fig. 1. A normal male subject's response tp a 12cm/s peak 
amplitude 0.2-2 Hz pseudorandom input. The subject's eyes were 
closed during this trial 

trials, the subjects' postural responses usually demonstrate a 
transient period of a few seconds in which the response character- 
istics were significantly changing, followed by a less variable 
steady state phase. These transient periods appeared to be longer 
in eyes closed trials. Only the steady state phase, the last 10 s (eyes 
closed) or the last 14 s (eyes open), was used in the data analysis. 

2.4 Experimental Protocol 

Prior to the experimental session, each subject was informed 
about the posture measurement system. Rest periods were 
provided at the beginning of a session as well as every 20 rain 
throughout. The subject was instructed to stand with his/her 
stockinged feet at a 45 ~ angle, heels together, head upright, arms 
comfortably folded across the chest and knees locked. Ear 
protectors were worn to minimize the effects of any background 
noise. The subject's eyes were either open and fixed upon a target 
at eye level or closed, depending on the requirements of the 
specific trial. Each session consisted of 21-20 s trials. These trials, 
randomly mixed by a computer program, were either static (no 
platform motion) or pseudorandom in nature. 

2.5 Subjects 

Six normal subjects in the age range of 19-25 years, who were 
determined by otoneurological examination to be free from 
abnormalities, were used in this study. Three of these subjects 
were male and three were female. Each subject was tested on five 
consecutive days under both eyes open and eyes closed con- 
ditions with the 4 peak velocity stimuli mentioned above. The 12, 
9, and 6 cm/s trials were modeled so that a total of 180 trials from 
the six subjects comprised the data pool of the study. Since each 
trial consisted of both a waist and shoulder response, 360 
parametric postural response models were derived. 

3 P a r a m e t r i c  Mode l  

In  choos ing  a m o d e l  type,  even for a b lack  box  process ,  
several  ques t ions  mus t  be answered.  A choice mus t  be 
m a d e  be tween  l inear  and  nonl inear ,  discrete  t ime and  
con t inuous  t ime, t ime vary ing  and  t ime invar iant ,  and  
de te rminis t ic  a n d / o r  s tochast ic .  Because of i t s  com-  
plexi ty  a n d  adap tab i l i ty ,  the pos tu re  con t ro l  system 
was no t  expected  to be a l inear  system. Prev ious  w o r k  
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BLOCK DIAGRAM REPRESENTATIONS 

OF DYNAMIC POSTURAL RESPONSES 

e(k) white noise 

x(k) 
input 

,/ 
t, y ( k )  

~_ ~ outpu, 

e(k) white noise 

2) x(k) 
input 

A(z) 

TRANSFER 
FUNCTION 

,T )~Z) NOISE LEVEL 

output 

Fig. 2. Two interpretations for the transfer function pulse noise 
model combination. In the top of the figure, the noise is added at 
the input of the transfer function, whereas it is added to the 
output in the bottom diagram 

suggests that it is not (Andres, 1979; Talbott, 1973). 
However, since individual responses to filtered pseudo- 
random noise demonstrated no obvious nonlinear 
behavior, a linear transfer function was assumed for 
the responses. The validity of this assumption is 
examined later. A discrete or difference equation model 
was convenient due to the sampled form of the data. 
For the steady state portions of the responses (Fig. 1), 
the parameters are assumed to be time invariant. 
Finally, in order to take into account the dynamic 
postural noise, a posture response is assumed to 
consist of a correlated noise portion as well as of a 
transfer function. 

3.1 Model  Type 

The linear time invariant difference equation model 
below was postulated to be appropriate for the steady 
state portion of the pseudorandom responses. In this 
model, the output (measured waist or shoulder po- 
sition) is expressed as a weighted sum of past outputs 
and past and present deterministic inputs (measured 
platform position): 

L 

y(k)= 5~ azy ( k - l )  
/ = 1  

M 

+ ~_, b , , x ( k - d - m ) + e ( k )  k = l , 2  . . . . .  N ,  (3.1) 
m = O  

where y(k), k = 1, 2,. . . ,  N is the output time series, x(k), 
k = 1, 2 . . . .  , N is the input time series, N is the number 
of data points, d is the delay factor or deadtime, e(k), 
k = 1,2, ..., N is a correlated noise series, and L and M 
are the model orders. 

Since the noise term, e(k), represents the postural 
sway noise and thus is correlated, it is modeled 
similarly to the postural responses: 

P 

e(k)= Z L e ( k - P )  
p = l  .- 

Q 

+ Z cqe (k -  q) + e(k) k = 1 ,2 , . . . ,  N ,  
q = l  

(3.2) 

where P, Q are the model orders and e(k), 
k = 1, 2 . . . .  , N is a stationary white noise series with 
zero mean and a covariance: 

E[e(k)e(l) T] = A6kt. (3.3) 

The white noise series, e(k), has an interpretation as the 
input to the physiological noise generation process, 
while the correlated noise, e(k), can be interpreted as 
the output of this process. However, from a practical 
point of view, any modeling or measurement errors are 
also included in the white noise series. 

Since the data sequences of the above models are 
absolutely summable, these difference equations can 
equivalently be expressed with complex variables in 
the Z-plane where time delays are represented by the 
z -1 operator (Oppenheim and Sch/ifer, 1975; 
Papoulis, 1977). The Z-plane representation of the 
above postural model is: 

z~z C(z) 
Y(z) = ) X(z )  + F(z~A(z) E(z) ,  (3.4) 

where 

A(z)= 1 + a l z  -1 + ... +alz - l  

B ( z ) = b o + b l  z l + . . . + b M z  M 

C(z) = 1 + q z -  t + . . .  + cQz-O~ 

F(z)= 1 + f l z  -1 + ... + fpz - e  �9 

In this form it is easily seen to have a transfer function 
component and a noise model component. Two inter- 
pretations for the model are provided in Fig. 2. If 
expressed in the form shown in the top of Fig. 2, with 
the noise as an input, the model is in convenient form 
for the parameter estimator. The bottom representa- 
tion of Fig. 2 is more suitable for physiological 
interpretations. 

The frequency response of a transfer function or 
noise model can be determined directly by evaluating 
the transform at z = e j~,, co = 0 . . . . .  rc (Oppenheim and 



Sch~ifer, 1975; Papoulis, 1977): 

pf(e_jO~) = bo +b le -#~  +. . .  +brae j,o~t 
1 + ale -J'~ +. . .  + a,e -j'~N " (3.5) 

Alternatively, one can examine the locations in the Z- 
plane of the singular points of the numerator poly- 
nomials, B(z) and C(z) (zeros), and of the denominator 
polynomials, A(z) and F(z) (poles) (Oppenheim and 
Sch~ifer, 1975). With the exception of a gain factor, such 
a pole-zero plot completely represents a system. 

The frequency responses of the parametric postural 
models were determined with both methods above in 
order to select features of the models for statistical 
analysis. These selected features are listed below. 

a) Model orders. The model orders consist of the 
number of poles and zeros in both the noise model and 
transfer function as well as the deadtime factor. 

b) Pole, zero locations. The pole and zero loca- 
tions for both the noise model and transfer function 
provide information about spectral shape and fre- 
quency and damping characteristics, respectively. 

c) Gain, phase, and transfer function variance. 
From the parametric transfer function's frequency 
response, a low frequency (0.2 Hz) gain and a relatively 
high frequency (1.4 Hz) phase lag were examined. The 
parametric transfer function was integrated to provide 
an estimate of the transfer function variance. 

Sig = [_pf(e- J'~)] 2 I X ( e -  j,o)] 2, (3.6) 

where p f ( e  -j~') is calculated as in (3.5) and [X(e-J~ 2 
is the input spectrum calculated nonparametrically. 

d) Noise variance. The noise spectrum was in- 
tegrated to provide an estimate of the noise variance or 
the amount of the postural noise 

Noise = [C(e-  J'~ - J~')A(e - j,o))] 2 Vare, (3.7) 

where Vare is the residual variance. 
e) Residual variance. The residual variance pro- 

vided an estimate of the amount of white noise which 
was input to the physiological noise generation process 
(see Fig. 2). 

Where possible, the postural response model fea- 
tures were subjected to a repeated measures ANOVA 
analysis (Winer, 1971) in order to determine statisti- 
cally significant effects due to the day of testing, the size 
of the input signal, or the presence or absence of vision. 

3.2 Parameter Estimation 

Before being subjected to the parameter estimation 
procedure, the platform position, waist, and shoulder 
data were detrended in order to meet the stationarity 
requirement. In practice, the input series was already 
quite stationary. Detrending instead of differencing 
(Box and Jenkins, 1976) was chosen in order to avoid 
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Fig. 3. Block diagram of parametric identification methodology 

the high pass filtering effect and subsequent increase of 
the noise to signal ratio caused by the differencing 
operation. 

The parameter estimation scheme chosen is a 
version of the extended Kalman Filter (Werness and 
Anderson, 1984). This estimator provides for the 
estimation of an arbitrary noise model as well as a 
transfer function. It can be shown that the parameter 
estimates converge asymptotically to a stationary 
point of the same loss function used in maximum 
likelihood (Panuska, 1980; Ljung, 1977) and thus are 
asymptotically unbiased and efficient. 

3.3 Model Selection 

As Fig. 3 indicates, the empirical selection of model 
orders is an iterative procedure. In this approach, a 
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model structure is assumed, and the parameters are 
estimated. The resulting model is evaluated and if 
found to be unsatisfactory, a new model structure must 
be postulated and fitted. The main objective of the 
model selection procedure was to select a parametric 
postural response model that was as parsimonious as 
possible but adequately represented the data. Evalu- 
ation criteria used are detailed in Werness and Ander- 
son (1984). They are briefly noted below: 

1. The residuals [also estimates of the white noise 
series, e(k)] should contain no remaining information 
about the model and hence should be "white" or an 
uncorrelated series. The residuals should also be 
uncorrelated with a "whitened" version of the input 
series. Lastly, the residuals of the chosen model should 
be smaller than other satisfactory models. 

2. Near cancellations or small magnitude of poles 
and zeros indicated overparametrization. 

3. The frequency response of the parametric model 
evaluated from (3.5) should ressemble those calculated 
nonparametrically (Werness and Anderson, 1984). 

4 Transfer Functions 

4.1 Structure 

A major result of this study is that low order models are 
sufficient to describe the postural responses (Fig. 4). 
Only a few transfer functions require more than two 

poles or more than one zero. Most of the transfer 
function poles fall near the 0 Hz unit radius position on 
the unit circle in the Z-plane (Fig. 5), although a few 
occurred at about 1 and 12.5 Hz and are not shown in 
the figure. Poles near this 0 Hz position on the unit 
circle indicate an integration. It can be seen in this 
figure as well as in the model structure histogram, that 
more eyes closed transfer functions than eyes open 
ones exhibit complex poles, although it was difficult to 
test this phenomenon statistically. These complex 
poles are closer to the unit circle corresponding to the 
fact that the responses are more oscillatory and less 
damped in the eyes closed case. 

Most of the transfer function zeros are real, occur- 
ring near the unit radius, 0 Hz position, the differencing 
(for zeros) position, on the unit circle (Fig. 6). Transfer 
functions which have these zeros indicate a response 
more to platform velocity than to platform position. 
Since this figure as well as the model structure 
histogram indicate that these zeros are present more 
frequently in the eyes closed condition, it appears that 
subjects without vision respond more frequently to the 
velocity of the platform. 

Figure 6 suggests another basic difference between 
responses with and without vision: the zeros from the 
eyes closed transfer functions tend to cluster just inside 
the unit circle whereas those from the eyes open ones 
tend to cluster just outside the unit circle for both the 
waist and shoulders, although this difference was 
significant (< 0.01 level) for only the shoulders. Trans- 
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Output phase, lag versus input amplitude 
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fer functions containing zeros outside the unit circle are 
nonminimum phase systems, which have been shown 
to have larger phase lags and lower energy responses to 
the same input than minimum phase systems 
(Papoulis, 1977). Thus, the transfer function zero 
locations suggest that the responses are slower and 
more energy minimizing in the eyes open case. 

There are some noteworthy things about the 1.4 Hz 
phase lags and 0.2 Hz gains derived from the para- 
metric transfer functions. It is evident from Fig. 7, and 
not surprising in light of the previous discussion of 
nonminimum phase systems, that the eyes open phase 
lags are greater than the eyes closed ones. Again, this 
dichotomy is highly significant only for the shoulders 
(p = 0.0003). Also, the shoulder phase lags are greater 
than those of the waist, thus indicating that significant 
pastural response motion is occurring at the waist as 
well as the ankles. These phase lags include the effect of 
any deadtime. The deadtimes were shown in the 
ANOVA analysis to be independent of the day of 
testing, the input amplitude, as well as the eyes 
open/closed factor. For the waist, the mean deadtime is 
0.17+_0.10s, whereas for the shoulders, it was 
0.25+0.10s. There are highly significant gaps 
(p =0.0002) between the eyes closed gains and. eyes 
open gains, the eyes closed gains being much greater 

(Fig. 8). Interestingly, there are almost no differences 
between the eyes open waist and shoulder gains, again 
evincing evidence of much pastural response motion 
occurring at the waist. In contrast, the shoulder gains 
greatly exceed the waist gains in the responses without 
vision. Also observable in the figure is a tendency for 
the eyes closed gains to exhibit the nonlinear effect of 
decreasing with an increase in input amplitude. This 
tendency was significant for the waist (prob -- 0.0076) 
but not for the shoulders (prob = 0.2362). 

This suggested nonlinearity may be a slew rate 
phenomenon: at the faster input amplitudes, the 
biomechanical characteristics of the subjects prevent 
them from fully keeping up with the platform excur- 
sions. The limitation that arises when a linear systems 
approach such as this parametric technique is used to 
model a nonlinear system is that derived models are 
only for the specific input used in their derivation and 
thus can't be used to predict responses to other inputs. 
However, the linear system approach with its interpre- 
tational and computational advantages can be used to 
describe responses for a given specific input. 

4.2 Transfer Function Summary 
The features of the parametric transfer functions 
provide for easy classification of the responses. That 



speed of response is more evident in the eyes closed 
condition is indicated by the reduced phase lags, the 
more frequent occurence of minimum phase zeros, and 
of complex poles with radii close to 1 indicating 
underdamped second order responses in the eyes 
closed condition. The more frequent occurrence of 
zeros near the 0 Hz unit radius position in eyes closed 
responses suggests that the anticipatory nature of 
knowledge of the platform's velocity is more valuable 
in responses without vision. 

On the other hand, several of these parametric 
model features indicate that minimization of energy 
expenditure, particularly with respect to motion of the 
head and shoulders, is a significant aspect of the 
responses with vision. The smaller low frequency gains, 
particularly for the shoulders, and the presence of real 
poles and complex poles with smaller radii indicate 
more damped and less oscillatory responses in the eyes 
open case. Furthermore, the nonminimum phase 
zeros, which are associated with eyes open responses, 
may have an energy minimization interpretation. 

The observed effects of vision on the parametric 
model results described here could be interpreted in 
several ways. One such interpretation is that the 
postural goal in the eyes closed situation is to maintain 
center of gravity stability by quick responses to the 
platform's motion, whereas the postural goal with 
vision seems to be minimization of energy expenditure, 
especially of shoulder and head movement at the cost 
of a slower response. Another interpretation offered by 
Talbott and Brookhart (1980) is that, with eyes closed, 
a subject minimizes the error between the platform's 
and his own motion, whereas with eyes open, he 
minimizes the error with respect to a stationary 
surround. Yet another possible interpretation is that 
vision supplies feedback stabilization to a relatively 
unstable open loop system (Dichgans et al., 1976; 
Diener et al., 1982). 

4.3 Comparison to Other Studies 

The parametric transfer function features described 
here can be used to facilitate a comparison of these 
concise representations of dynamic postural responses 
with transfer functions derived with other methods. 
The damping effect of vision on postural motion has 
been previously demonstrated by many in both static 
situations (Taguchi et al., 1978; Hufschmidt et al., 
1980) and dynamic ones, including responses of dogs to 
both predictable (Talbott, 1974) and unpredictable 
(Talbott and Brookhart, 1980) stimuli, and responses 
of humans to predictable (Andres, 1979) and unpre- 
dictable stimuli (Ishida and Imai, 1980; Diener 
et al., 1982). 
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Closer comparisons between these parametric 
transfer functions derived with 0.2-2 Hz pseudoran- 
dora noise velocity inputs must be made with other 
postural transfer functions with care. Different control 
strategies are expected with a predictable stimulus 
such as a sinusoid than with an unpredictable one 
(Stark, 1968). Few other dynamic posture studies have 
employed random inputs. Meyer and Blum (1977) 
utilized a rotating platform and derived nonpara- 
metric transfer functions between platform position 
and position of the center of gravity of human subjects. 
Their platform inputs were small amplitude pseudo- 
random noise between 0 and 1 Hz. Their illustrated 
low pass type transfer function is characterized by a 
low frequency gain of about 0.6 and a phase lag at 1 Hz 
of about ~z radians. These results appear very close to 
the average waist gain of 0.57 and the average 1.4 Hz 
phase lag of 2.98 radians found here in the eyes open 
case. In studies on dogs, Talbott and Brookhart (1980) 
used an unpredictable stimulus consisting of a 
weighted sum of 7 sinusoids, up to 2 Hz with the 
highest frequency sinusoid having the smallest ampli- 
tude. Their transfer functions of the dog position with 
respect to the platform position were derived nonpara- 
metrically and then fitted with models containing 1 or 
2 poles and some deadtime, and thus are in good 
agreement with these parametric transfer functions for 
humans. 

The parametric transfer function results here are at 
variance with those presented by Ishida and Imai 
(1980). They calculated transfer functions with plat- 
form acceleration as input and ankle joint moment and 
the angles of the waist and shoulders with respect to the 
vertical as output. Their waist and shoulder angle 
transfer functions show 180 ~ or less phase lag with 
respect to platform acceleration (waist angle = - 9 0  ~ 
and shoulder a n g l e = -  180 ~ at 1.4 Hz. These phase 
lags imply that their subjects were keeping up with or 
leading the motion of the platform. These are very 
small phase lags, even for predictable stimuli (Diener et 
al., 1982; Gantchev and Popov, 1973). 

5 Noise Models 

5.1 Structure 

The noise models, assumed to be output noise models 
(part b of Fig. 2), consist usually of 2 poles and 2 zeros 
(Fig. 4). Since the transfer function poles are shared 
with the noise model, the distribution of noise model 
pole locations in the Z-plane differed from that of the 
transfer function poles by the addition of a few poles on 
the real axis. Noise model zeros are usually complex 
with radii in the range of 0.64).8 and with frequencies 
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Table 1. ANOVA p values 

Dependent variable Independent factors 

Waist Shoulders 

Eyes Amplitude Eyes Amplitude 

Noise variance 0.002 0,0009 0.0093 0.0034 

Residual variance 0,0006 0,0001 0.0072 0.0002 

Noise zero 0.0614 0,0018 0.0169 0.0293 
frequencies 

Noise variance 0.0036 0.0022 0.0127 0.0107 
(recalculated with 
a constant residual 
variance) 

around 1-2 Hz (Fig. 9). There is an interesting corre- 
lation between their frequencies and input amplitude. 
As input amplitude increases from 6 to 12 cm/s, these 
frequencies increase from near 1 Hz to near 2 Hz. Also, 
these frequencies are larger for the eyes closed re- 
sponses (see Table 1), 

The noise model, repeatedly characterized by the 
presence of two poles relatively close to the unit circle 
at or near 0 Hz and two zeros with relatively small radii 
between 1 and 2 Hz, has a lowpass filtering effect in the 
frequency domain. Specifically, most  of the noise 
model 's  energy concentrates near 0 Hz and tapers off as 
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frequency increases. The presence of the zeros serves to 
increase the cutoff rate of the energy at higher fre- 
quencies. From the time domain point of view, Box and 
Jenkins (1976) point out that a time series model with 
two poles very close to the unit circle is capable of 
generating linear trends. Thus, the noise model may 
consist of very low frequency oscillations and much 
drifting. This characterization of postural noise in a 
dynamic situation is consistent with previous charac- 
terizations from this laboratory of static postural sway 
noise as very lowpass (Andres, 1979) as well as the low 
frequency characterizations of static sway from other 
laboratories (Aggashyan, 1972; Brauer and Seidel, 
1978). 

5.2 Noise Variance 

The noise variance (3.7) is found to be positively 
correlated in a nearly linear manner with input ampli- 
tude as well as greater in the no vision condition 
responses (Fig. 10). Further ANOVA analyses showed 
these amplitude and visual condition effects to be 
partially caused by the tendency of the noise model 
zero frequencies, and thus the frequency range of the 
noise spectrum, to increase with input amplitude and 
eye closure. The input noise series or residuals, whose 
variance demonstrates both amplitude and visual 
condition effects (Fig. 11), are also obvious contri- 

butors to these same observations in the noise variance 
(Table 1). 

Since the residuals contain any modeling errors 
and measurement noise as well as the input noise 
series, the possibility that these other residual compo- 
nents contribute to the observed effects on the residual 
variance was examined. Examination of the autocor- 
relation statistics of the parametric postural response 
models indicated that residual whiteness and thus 
model adequacy (including any nonlinearity problems) 
was not related to either input amplitude or eye 
condition. In addition, a set of calibration experiments 
with a rigid pole as the "subject" ruled out the 
possibility that the digital line scan camera quanti- 
zation noise might increase with either increasing 
platform velocity or increasing motion of the target 
from the center position of the cameras. Thus, it is 
probable that the amplitude and visual condition 
effects of both the noise variance and the component 
input noise series variance have physiological origins. 

5.3 Noise Model Discussion 

Noise is frequently present in biological systems. 
Dependency of noise power on input amplitude is also 
a frequent observation in physiological systems. For 
example, Stark (1968) demonstrated that the amplitu- 
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de of pupil noise was linearly related to input light 
intensity and incorporated this characteristic into his 
model of pupillary response by treating it as a multi- 
plicative noise factor. In addition, physiological tre- 
mor amplitude is widely known to be a function of the 
amount of muscle force (Joyce and Rack, 1974; 
Marsden, 1978; Matthews and Muir, 1980). Similarly, 
the noise which exists in the posture system exhibits a 
dependence upon input amplitude. Since over a steady 
state period of a response, the quantity of posture 
noise (noise variance) is a constant, it is not suitable to 
model it as a multiplicative factor. 

Postural noise, since it is an immediate conse- 
quence of muscle activity, could be considered to be a 
special case of physiological tremor. Although many 
theories of its cause have been put forward, no single 
explanation covers all the features of physiological 
tremor (Marsden, 1978). A major reason for this 
difficulty is that the oscillation of any mechanical 
system, such as the human body or limb, is a function 
of both the inherent mechanical properties of the 
system combined with the drive on the system. Con- 
sider the following differential equation of a mass- 
spring system: 

mx"  + cx" + k x = O  , (5.1) 

and the corresponding quadratic formula for the roots 
of such a system: 

x = - c /2m + / -  (4mk  - c2) 1/2/2m, (5.2) 

where m is mass, c is the damping constant, and k is the 
spring stiffness. For example, natural mechanical re- 
sonance has been identified for elbows and fingers since 
its frequency decreases with added mass and increases 
with added stiffness (Marsden, 1978). In addition to 
their natural frequencies, these limbs exhibit another 
tremor component at 10-12Hz, whose frequency is 
unaffected by added mass or load, but whose ampli- 
tude is affected by muscle force and is thus probably 
not due to passive mechanical factors. 

Similarly to demonstrated physiological tremors, 
the noise characteris t ics  here may be a reflection of the 
mechanical properties of the human plant, which may 
be viewed as a complex array of mass-spring systems. 
The very low frequency character of both static 
postural sway noise and the dynamic postural noise 
(and transfer function) examined in this study is a 
reflection of the relatively large mass of the human 
body. The observation that the low frequency dynamic 
postural sway noise extends its bandwidth when the 
input amplitude increases by virtue of the result that 
the frequencies at which the noise model zeros in- 
creased, may indicate that muscle stiffness intensifies 
with input amplitude. Investigators have previously 

emphasized the role of muscle stiffness in postural 
regulation (Grillner, 1972). Gurfinkel et al. (1974) 
calculated stiffness of the ankles during human stance 
and concluded that the observed levels of stiffness were 
sufficient to stabilize the human body modeled as an 
inverted pendulum during small sway deviations. 
Furthermore, evidence has been presented that muscle 
stiffness is a regulated parameter of the central nervous 
system in motor control mechanisms (Kelso and Holt, 
1980). An increase in stretch reflex activity could be 
responsible for an intensification of muscle stiffness 
(Houk, 1979). Possibly muscle stiffness is being aug- 
mented in order to meet the higher demands of the 
larger input amplitudes. Another possible mechanical 
factor causing a higher frequency vibration of a passive 
mechanical system is a reduced damping factor. Active 
control strategies could also be involved. 

6 Conclusion 

Parametric black box models with a transfer function 
and a noise component of the human postural system 
have been empirically derived from output shoulder 
and waist position responses to an input position of a 
platform moved in a linear anterior-posterior direction 
via bandlimited pseudorandom velocity commands. 
The resulting model orders are quite small so that 
statistical comparisons are easily made with the loca- 
tions of the models' poles and zeros as well as with 
other derived features. Also, the ANOVA analyses of 
all the model features revealed that postural responses 
did not reveal a day by day learning effect. This 
facility for classification of large numbers of pos- 
tural responses to dynamic inputs with both trans- 
fer function and noise information will be useful for 
developing clinical diagnostic criteria and in augment- 
ing understanding of postural control. 

The parametric transfer functions are similar to 
others derived nonparametrically from responses to 
random inputs. The transfer function features also 
confirm the damping effects of vision on postural 
stability that have been described at least since 
Romberg. 

For the first time, dynamic postural sway noise has 
been quantified along with deterministic responses to 
random inputs. Dynamic noise spectra are low pass in 
character, similarly to those of static postural noise. 
The quantity of noise variance was positively related to 
the deterministic input amplitude and was greater for 
the eyes closed responses. These variations were seen 
to be contributions of both similar behavior of the 
input white noise to the noise model (see Fig. 2), and of 
the amplitude dependent locations of the noise model 
zeros. This input amplitude dependency of the quant- 
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ity of noise is analogous to other physiological 
situations. 
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