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INTRODUCTION

The torsion constant "J" and the shear stresses due to torsion,
as covered herein for certain structural sections, relate to what is
often referred to as "St. Venant Torsion,”(l) which involves certain
conditions, as follows. The structural shape is uniform in cross-section
and the torsional moment is applied by means of opposed couples at each
end in such a way that there is no restraint against longitudinal dis-
placement at any point on the end sections, The angle of twist per unit
length "¢" is thus uniform. If (z is taken as the coordinate axis
parallel with the bar, with x and y coordinates in the plane of any
section, during twist there will be generated "warping" displacements
"w" in the 2z direction, which are a function of x and y only.

If one or more of the following violations of the foregoing
conditions exist, the torsion problem is a superposition of St. Venant
Torsion and "warping" or "non-uniform" torsion.

(1) Cross-section is variable,

(2) Torsional moment varies.

(3) Longitudinal restraints are imposed at any location.

In structural design applications, apart from torque-driven
shafts, torsion is almost always non-uniform and is usually further
complicated by beam bending due to transverse loads. Non-uniform tor-
sion combined with bending is also a problem in lateral-torsional
buckling problems. Non-uniform aspects of the torsion problem are
covered in many books and references and this report is concerned only
with providing basic data for St. Venant torsion as applied to struc-

tural shapes.
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The torsion constant for St. Venant torsion has the same re-
lation to unit twist of a shaft as the moment of inertia has to the unit
curvature of a beam bent under uniform moment. Thus, for uniform tor-
sion,

M, =J G6 (1)

The derivation of the general St. Venant torsion theory is
available in standard texts on the mathematical theory of elasticity
and will not be presented in this report. The general solution is ob=-

tained from the following equation,

Py Py
axa + ayz = =-2GO (2)

¥ 1s the "torsion stress-function" and the torsion constant is given
by

J =2 [[ yax dy (3)

£
GO
at any location x, y, in the plane of the cross-section, the shear-

stress components are

ZX

T =§¥t, T =~al (l")
oy

and the magnitude of the resultant stress is therefore

T \/2 w2 - J(%E (@ (5)

zy — \] Ox
Prandtl(e) in 1903 noted that if a thin membrane (devoid of
shear strength, such as a soap film) is stretched across a hole having

the shape of a cross section, with a slight differential in pressure on

the two sides of the membrane, the equation of the surface displacement
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is identical in form with Equation (2), as follows:

oL, -p (6)

3x2 oy T

where
{ = displacement of film in 2z direction.
p = pressure differential causing film to deflect.
T = tension force in the film per unit width (constant).

The analogy between Equations (2) and (6) illustrates the
fact that the magnitude of the torsion stress function ¢ may be
thought of as a displacement, tracing out a continuous ""stress-function"
surface, and that the integral in Equation (3) is the volume under the
surface. The slope of the stress-function surface représents the magni-
tude of the shear stress component in the x-y plane in a direction 90°
to the direction for which the slope is evaluated. Contour lines,
therefore, give the direction of maximum or resultant shear stress.

The boundary of an open cross=-section is equivalent to a contour line
and on the boundary the value of | may be taken as zero. (It should
be noted that the magnitude of maximum shear stress in general will vary
along a contour line and will be inversely proportional to the. spacing
of the contour lines.)

In the case of circular sections, plane right cross-sections
prior to twist remain plane after twist, and the shear stress is propor-
tional to the distance from the central axis of the shaft. 1In this
case the toréion constant "J" (Equations 1 and 3) is equal to the polar
moment of inertia. The maximum shear stress at the boundary of the cir-

cular section is given by the simple expression

.o Mpr \
- (1)
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The polar moment of inertia would be the torsion constant for
non-circular sections, also, if the resultant shear stress were every-
YEEEE proportional in magnitude to the distance from the center of twist
and directed at 90° to radial lines. - The torsion constant of a non-
circular section is always less than the polar moment of inertia -
increasingly so as a section becomes less and less compact.

The present investigation is in part a sequel to earlier work
whereby the membrane analogy was used to.evaluate the torsion constant
for the wide flange and I-beam séction.(3’u) On the basis of this earlier
work, the torsion constants of all rolled wide flange and I-beam shapes
had been evalua‘.ted.(5>

The advent of the electronic digital computer has provided a
means whereby én accurate re-evaluation of the torsion constant could
be made, avoiding the experimental errors involved in soap film tests.
Thus, for the wide flange and I-beam sections the present study provides
results that approximately confirm but provide greater precision than
was possible in the earlier experimental work. For the channel and angle
sections this report provides information that has not been fully availa-
ble heretofore.

The procedure for building up the formulas for the torsion con-
stant of structural shapes follows the pattern suggested by Trayer and
March(6) in their investigation of aircraft strut sections whereby the
added torsional rigidity due to the juncture of two rectangular compo-
nent parts was denoted as "o D*'. D is the diameter of the largest

circle that can be inscribed at the juncture of the two component parts
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and o 1s either determined experimentally by means of soap film tests
or numerically as in the present studies by means of the difference

equations.



THE RECTANGLE AND TRAPEZOIDAL SECTIONS

The rigorous solution of Equation (2) for the boundary condi-
tions of rolled shapes such as the channel, WF beam, etc., 1s not prac=-
ticable, The relatively few "exact" solutions that are available include
some shapes of only academic interest, such as the ellipse and equilat-
eral triangle. The solution for the rectangular shape, however, as de-
veloped by St. Venant(l) is of considerable engineering importance, not
only of itself, but by virtue of the fact that the usual structural
shape is made up of component parts that are either rectangular or
trapezoidal. The width-thickness ratio of any one of these parts is
usually four or more, for which proportions the torsion constant can be
accurately expressed by a simple formula. The "torsion constant" of a
structural shape can then be approximated by summing the values of J
for the component rectangular parts and adding the juncturé effect con-
nection as herein evaluated.

The evaluation of St. Venant's solution for the rectangular

cross=section may be expressed as follows:

J = %ﬁ - oyt (8)

in which t = the thickness and b = the breadth of a rectangular

section, and

szt
Ty = P

(9)
where V and 7y are factors depending upon the ratio % and are

given by the following table.
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TABLE 1

&
ct
e
o
o'

- 2v
T 7

0.1928 0.6753
0.1973 0.7198
0.2006 0.7578
0.2031 0.7935
0.2050 0.8202
0.2064 0.8476
0.207h 0.8695
0.2086 0.90L4L
0.2093 0.9300
0,2099 0.9681
0.2101 0.9855
0.2101 0.9970
0.2101 1.0000
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The formula for the trapezoidal section, (Figure 1) as de-

veloped in Reference 4, can be written:

T = (b/12) (t5445) (tq41,) - VLtg - vstﬁ (10)

Vi, and Vg are the end constants V, for the thick end and the thin end,
respectively, of the trapezoid.
VI, = 0.1050% = 0.10000 S + 0.08480 82 - 0.06746 83
+ 0.05153 sk (11)
and ,
Vg = 0.10504 + 0.10000 § + 0.08480 S° + 0.06746 83
+ 0.05153 sk (12)
in which S = the total slope of the section or tangent of the slope
angle. For certain particular values Vi and Vg are calculated

in Table 2.



TABLE 2

STANDARD SLOPES

v, Vg

1/6 d.o9oh5 0.124k41

1/20 0.10026 0.11026

1/50 0.10307 0.10707

1 /e 0.10504 0.10504
t;

T

1

Figure 1



SOLUTION OF THE TORSION PROBLEM BY
USE OF DIFFERENCE EQUATIONS

To provide solutions for complex boundary conditions not
readily evaluated by analytical procedures, Equation (2) may be re-
placed by a "difference equation" and the solution obtained for any
cross-section to any desired degree of approximation dictated by need
and available computation time. For manual or desk calculator use,
"relaxation" procedures of solution were initiated by Christopherson
and Southwell.(7) Shaw(B) has applied these procedures with special
emphasis to the torsion problem and has extended the application to
include non-linear stress-strain relationships and closed sections.

The foregoing references should be consulted for a more complete dis-
cussion of difference equations for the torsion probleﬁ and for a re=-
view of relaxation methods.

In one form of the difference equation procedure the value of
the torsion stress-function, ¥, is determined approximately at the points
of intersection (nodal points) of a network of squares formed by equally
spaced lines (Figure 2), parallel to the x and y axis in the plane
of the cross-section. For any point "0" (Figure 2), Equation (2) may be

written in terms of neighboring nodal points as follows:

(b +¥p + V3 + ¥y - byy) =-2HGo (13)

in which H 1is the mesh size. | may be replaced by ¢, where ¢ is

a dimensionless quantity, taken so that

2
.- o
(6}
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R, = any convenient constant introduced for the purpose of making the
¢‘s large numbers for ease of numerical manipulation. Equation (13)
with this substitution becomes
(B + 8o + B3 + 8 4- b dp) = - R, (15)
Points on the boundary will not usually coincide with the points
of the square net. For this case, a special finite difference equation
(1)

may be derived. Referring to Figure 34, the nondimensional finite

difference equation at point "0" for Equation (2) will be:

(L+ds % + %) = - Ro (Miﬂ%ﬁi&) (16)

AR L
N M N

M R K 0

when M=K =1, and f§, = ¢3 = 0 (Figure 3b), Equation (16) reduces to
fr+ 0y - o (2+ 5+ 3) = - Ry (BXILE) (17)

when M =K =N = R = 1, Equation (16) reduces to Equation (15) as de-
rived for a square net.

Special '"block" relaxation techniques developed to aid converg-
ence in manual solution are not particularly helpful in computer analysis.
The computer is programmed to make a simple repetitive scanning of the
node points with @ at each point "0" calculated by Equation (15), re-
written as follows:

Bo = (B + B + 05 + @), + Ry) (18)
It is helpful if a guess can be made for initial values of ¢. In the
present investigation there was a sequential variation of dimensional
parameters in the analysis of structural shape intersection regions. 1In

the first analysis of a given set of parameters, initial ¢'s were set
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at zero, but for succeeding analyses, for which minor variations were
made in a particular dimensional parameter, the initially assumed values
were those of the previous computer run. Thus convergence subsequent

to the first run of a sequence was rapid.

In order to calculate the volume under the stress function
surface, as approximated by nodal values of ¢, the computer met condi=-
tions illustrated in Figure L.

Whenever the volume could conveniently be calculated under a
2H by 2H square, as in regions A of Figure La, the double application
of Simpson's Rule gave a good approximation. Referring to Figure Ub,

J1 oy = L {(g + g + 7 + g
! |

+ 4(¢1 + ¢g + ¢3 + ¢A) + 16 ¢O} (19)
When a single whole square was involved, as in regions B of
Figure la, the volume was computed by the following equation, as used
in the same situation by Shaw,(S) which incorporates a correction for
the usual convexity of the stress=-function surface. (The numbers are for

one quadrant of the 2H by 2H surface in Figure Ib),

[ daxdy (¢5 + 0 Z bo + b0 | g—‘i) 12 (20)
B

For the various triangular areas along the curved boundary of

Figure 4, as represented by Figure 4c, the volume was calculated by

2 ;
V = Hgﬁ_ (¢O + ¢2 + ¢%) (21)
The results of a typical computer calculation are shown in

Figure 5 for the intersection region of a web and sloping flange such
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Figure 3 (b)

Figure 4 (b)
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Figure b4 (a)
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as occurs at a corner of a standard channel. At each extremity, the
boundary value of ¢ has been assumed parabolic, as for the interior
of a narrow rectangular or trapezoidal section. The figure written in
each square represents the computer calculation for ¢ at the upper
right hand corner rounded off without digits tec the right of the deci-
mal point. The values actually used by the computer to calculate J

were accurate to several additional significant figures.



THE TORSION CONSTANT OF STRUCTURAL SECTIONS

The essential or missing element required for the accurate
calculation of the torsion constant of a structural shape is illus-
trated by Figure 6 for the four cases herein considered. On the left
side, labeled (é), are the arbitrary assignments of rectangular or
trapezoidal areas and end conditions which account for the bulk of the
torsion constant contributed by these regions. When a rectangular or
trapezoidal element is bounded at either end by a dashed line (Figure 6),
the variation in stress-function along the dashed line has been assumed
parabolic and equivalent to the variation across thé thickness in the
interior of a rectangle of indefinite extent, rather than zero as it
would be at the end of a rectangular cross section. The length of the
extremities were several times the thickness of the part beyond the
fillet tangent point, as illustrated in Figure 5, thus aésuring com=
plete evaluation of the juncture effect to any reasonable degree of
needed accuracy;

At the jﬁncture, various choices could be made as to end con=-
ditions or arrangement of trapezoidal and rectangular components =- it
is important only that the same conditions be reflected in the way the
torsion constant is synthesized in the formulas to be presented later
for the various structural shapes.

The total correction represents the difference between the
computer calculated constant for the tee or angle in Figure 6b and the
summation of constants for the rectangles or trapezoids in Figure 6a

by Equations (8) or (10), with appropriate deletion of the negative

_15 -
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CORRECTION

Case 1. Parallel Flange Tee
o101

Case 2. I-Section Tee
Do

Case 3. Angle Section
osDs

Case 4. Angle Section of
Standard Channel
auDhu

Figure 6. Basis for Tee or Angle Juncture Corrections for Torsion
Constant of WF, I, Tee, Channel, Zee, and Angle Shapes.
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terms for ends of cross-sections which have dashed lines. The correction
coefficients o are made dimensionless by the introduction of D4
where D 1is the diameter of the largest circle that can be inscribed

at the juncture point. Thus,

(Computed J of . (J of arbitrarily chosen
o =1 tee or angle) segments shown in (22)
Dk Figure 6)

Corresponding to the four cases of Figure 6, formulas for "D"
are given in Table 3.
TABLE 3
EQUATIONS FOR D 1IN FIGURE 7

(8 is the flange slope, i.e., tangent of the slope angle)

Case 1 2 W
Parallel Flange D- = (t+r)” + w(r * I) (23)
Tee LT e v s
Segment '
Case 2 2 L
P+t + wir +
I-Section D, B 3) +r+y) (24)
Tee F+r+t3
Segment
where
F=I‘S(-é—2+l 'l"z‘—r)
Case 3
Angle D3 =2 {(3r +w + t)
Segment -
-\f2a(er + w)(er + t)} (25)
Case 4
Angle Segment = + H
of Standard D” 2 {(Sr Y )
Channel -J2ler + w)(er + H)} (26)
where .

J1 o2
H =t2-r(s+l- 1 + 89)
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Computer analyses were made for approximately thirty differ-
ent proportions for each of the four cases shown in Figure 6. For
each case there was a systematic variation between zero and one of the
fillet radius)/(flange thickness) ratio (r/t) or (r/tp) and the (web)/
(flange) thickness ratio, (w/t) or (w/t,). The resulting values of «
for the four cases are plotted in Figures 7, 8, 9, and 10, respectively,
by solid lines. For structural sections having flanges with slopes
other than 1 in 6, a good approximation for o may be made by inter=-
polating linearly between S =0 and S = 0.1667.

Also shown on Figures 7, 8, 9, and 10 are dashed lines plotted
from the following empirical formulas and applicable in the range for

which they are shown as a reasonable approximation for «.

Q; = -.0420 + .220k % + .1355 % - .0865 Z-g- - 00725(35-“)2 (27)
o, = -.0836 + .2536 1’——2— + 1268 {—5 - 080 %- .0858(1’—5)2 (28)
oy = -.0908 + ,2621 fci + .1231 % - 0752 1—% - @945(%’3)2 (29)
Q) = -.1325 + .3015 YD’—-Q- + .1400 % - .1070 % - ,0956(1—’-2—)2 (30)

In each of the foregoing cases (Equations 27 - 30) the empiri-
cal formula gives a good approximation for « in the range
0.2 < (r/t) < 1.0
0.5 < (w/t) < 1.0
Generally, the corrective term o DlL is positive, but for
Case 2 (the sloping flange tee interséction) it may become negative

when w/t2 is less than 0.4 for varying amounts of r/t2 ranging from
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0 up to about O.4. This can be explained by means of Figure 11, which
is Case 2 for both W'/t2 and r/t2 equal to zero. In this case J
of the trapezoidal segments of Case 2(a) (Figure 6) would be calculated
by Equation (10) without any end loss (Vg or Vi) terms. Obviously, the
stress-function surface must have a zero slope in the long direction at
the central discontinuity, as shown for actual computed gé values in
Figure 11. The assumption of parabolic variation across the thickness
at the gﬁ (adjoining large ends of the two trapezoidal segments) gives
a greater stress function value and an incorrect discontinuity of sur-
face. In Figure 1l the maximum ordinates of a parabolic variation of
the stress-function, on which Equation (10) is based, is plotted (with-
out end loss) along the longitudinal sloping centerline of adjoining
trapezoidal sections of dimensions to = 8H $S-= 1/6, and b = 24 H.
In the same figure the computed centerline stress function (@) is also
plotted. The value of J obtained from the computer is 1871.6 Hl+ as
compared with 1920 gk by Equation (10) (without end loss). Twice the
area of the hatched area in Figure 11 times two thirds of the width of
the trapezoid at its center of gravity is found to be 45.0 th which
very nearly accounts for the foregoing difference.

For the angle section with legs of equal thickness, the value
of o can be interpolated at the extreme right boundary of Figure 9.
Figure 12 gives a more accurate evaluation of «a for angles with legs
of equal thickness, particularly when the fillet radius is large. In
this particular case, the values of Q were computed for fillet radii
up to six times the flange thickness. This is far greater than the

range of rolled structural angles but was computed to afford a comparison
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with the work of other investigators in these ranges. Figure 12 also
plots the empirical formulas suggested by Trayer and March,(6> which
were based on their tests. In addition, the results of both experimental
tests and numerical analyses by the relaxation technigque, as carried out
by Cullimore and Pugsley,(9) are plotted together with the two straight
line formulas that they propose. The present computer analyses plot
midway within the scatterband of results of Cullimore and Pugsley for
small fillet radii and agree very well with their results as the radius
becomes large, Also shown on Figure 12 is the plot of a proposed empiri-
cal formula that agrees well with the computer analyses made for this
report.

2

@ = 0.0728 + 0.057L (%) ~ 0.0049 (%) (31)
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MAXTMUM SHEAR STRESS DUE TO TORSION

A number of approximate formulas have been developed to give
an indication of the stress concentration factor in a fillet for a
structural member in uniform torsion. For the rectangular cross-section
of large b/t ratio, the maximum shear stress at the center of the wide

face is

t
wt =

When the breadth-thickness ratio of a rectangle is less than 4 the maxi-
mum torsional stress is less than as given by Equation (32), dropping
down to 0.6753 times this value for the square section. St. Venant(l)
gives a complete tabulation. (See Table 1.)

For an angle section with equal legs,lit is obvious because
of symmetry about a line from the corner at 45 degrees to the angle
face that, for angles having large width-thickness ratios, the maximum
stress due to torsion is at the intersection of the 45 degrees. line from
the corner and the inside angle fillet. As the fillet radius becomes
large, the stress concentration effect must decrease but the actuél stress
due to torsion increases because of the greater thickness of material in
this juncture region. If the total stress increase is given as a per-
centage increase above that in the body of the angle away from the fillet,
as given by Equation (32), results of various investigators are plotted
in Figure 13.

The curves in Figure 13 that rise at the right side of the

figure reflect the increasing effect of thickness that overbalances the

-27-
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diminishing effect of stress concentration as the fillet radius increases.
This is true, of course, for the curve labeled "computer solution" which
is based on the results of the bresent investigation. These results
agree very well with those of Huth(lo) who wrote a rather complete dis-
cussion of the earlier results shown on Figure 13. Huth suggests that
"the stress concentration in angle sections with generous fillets may be
lowered considerably by rounding off the outside corner in such a way as
to keep the thickness of the section everywhere approximately constant."”
Such a suggestion overlooks the fact that more is gained due to increased
torsion constant as this juncture increases in thickness than is lost by
the so-called "stress concentration factor for generous fillets'" which is
not a stress concentration but merely an indication of the effect of in-

creased thickness on shear stress. Thus, for very "generous fillets,"

the actual stress for a given torsional moment will always continue to
decrease as the fillet radius increases, all other dimensions remaining
the same. It may also be noted that the curve resulting from Timoshenko's
approximation solution<ll) does diminish as the fillet radius increases
and thus is probably a very good apprbximation of the actual stress in-
crease since it agrees very well in the lower ranges with that obtained
in the present investigation as well as the similar results obtained by
Huth. It is believed that the results of the present investigation may
be considered to be quite accurate since the mesh size used was relatively
much smaller than would be feagsible for desk calculator operation using
relaxation techniques.,

For the T juncture section there is a maximum stress on the

outer face of the flange at the intersection with the midplane of the web.
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This is an important stress locgtion since at this point shear stress

is combined with maximum shear stress due to flange bending that occurs
in problems of nonuniform torsion. Here, also, the stress reflects only
the increased thickness of the juncture since there can be no stress con-
centration effect on the flat surface. Figures 14 and 15 give values of
5 to be used in the following Equation (33) as a measure of maximum shear

stress as a function both of fillet radius and webbed flange thickness.

Mt

Tmax = o (33)

For the I beam with flange slope of 1/6, "to" (see Figure 6) is to be
used in Equation (33) in the place of "t'.

Stresses will be greater than as given by Equation (33) in the
fillets on the inner side of the flange but the location can no longer be
predetermined as in the case of the angle with equal thickness legs. A
similar observation could be made regarding the stresses on either face
of the angle channel type segment or the angle with different thickness
legs. The results of the present program are available to permit a more
complete study of these stresses but these will be reported upon in a

later paper,
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TORSION CONSTANTS FOR STRUCTURAL SHAPES

The value of "o applicable to a particular structural shape
is determined from Figures 7, 8, 9, or 10, or, less approximately from
Equations (27), (28), (29), or (30). The correction for the juncture
effect then can be computed and added to the known contributions of the
various component parts to the torsion constant. For the sﬁecial case
of the angle with legs of equal thickness, & may be obtained from
Figure 12 or by Equation (31).

After o is determined, the torsion constant J for any one of
the nine different structural shapes shown in Figure 16 is readily cal-

culated by the appropriate equation (Equations 34 through L41).

-33-
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Summary of Formulas for Torsion Constants for Structural Shapes.

Figure 16.
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ACCURACY AND COMPARISON WITH PRIOR TEST RESULTS

The accuracy of the computer program results were tested by
comparison with the known torsion constant for the rectangular section.
Using a section of thickness 8 H and breadth 48 H, the computer analysis
gave a value of J = 7320,58 Hu while the St. Venant solution gave a
value of J = 7331.42 Hh, a difference of about 0.15 per cent.

The effect of mesh size "H" was also studied. For the channel
segment, as shown in Figure 5, with r/t2 =1 and w/t2 = 0.5, as shown,
o for the juncture correction factor was found to be 0.080927. For a
mesh size 2/3 of that shown on Figure 5, an «a of 0.081334 was obtained
and an H° extrapolation of the two results yields a value of 0.08166,
thus indicating a probable error in the values of o of less than 1 per
cent for this particular case. Since the juncture correction factor for the
channel is usually less than 10 per cent, this means that the overall
error in the torsion constant would usually be less than 0.10 per cent
and the final values of the torsion constant can be considered correct
to three significant figures.

Although no current experimental tests were made, a comparison
with earlier tests made by one of the authors is given in the first seven
lines of Table L4, The present investigation did not disclose any great
amount of error in the evaluation of « by the earlier soap film tests.(h)
The average of the absolute values of the per cent variation tabulated
in Column 5 of Table L4 for the seven earlier tests was 1.76 per cent for
the currently proposed formulas for o as compared with 2.26 per éent

for o values calculated by the results of the soap film tests. Thus

-36-
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TABLE 4

COMPARISON BETWEEN COMPUTED TORSION CONSTANT J
AND PREVIOUS TEST RESULTS

(1) (20 (3) (k) (5) (6) (7)

Torsion Constant J
By Test

Nominal From from Percentage 2 q ]}LL
Test No. Size Dimensions Reference? Variation 2 Du J
T-140 6WF20 .2408 243 .9 .0277  .115
T-22° 8WF31 4582 451 - 1.6 L0645 L 1ho7
T-250 X 10x12 1.989 1.960 - 1.5 .0839  .oko1
(62)

T-26° 12131.8 817 .80k - 1.6 L0920  .1126
T-300 12155 3.290 3.380 2.7 . 48lh L1h71
T-31° 12WF190 47,290 48,870 3.3 4,293 .0908
T-33° 12WF65 2.206 2.222 0.7 246 L1115
Ship
chan~ 6 In.,
nel$* 15.3 1b. .211 . 206 - 2.k .012k  .0588
Heavy
chan- 6 In.,
nel* 15.5 1b. JLokg koo - 5.9 .0k68 1101
Stand -
ard
chan- 10 In.,

. nel¥ 15.3 1b. .216 .256 18.5 .01151 .0533
Stand -
ard
chan- 15 In.,
nel# 33.9 1b. 1.0229 1.08 5.6 .0606  .0592

OTest numbers used in Reference 3, which gives complete information on
measured dimensions.

*Nominal dimensions are used, tests from Reference 12.

$Flange slope S =.0348.
XSection no longer manufactured.
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there is improvement, most of which accrues from Test T-25, which was
6.7 per cent in error by the old formula.

(12> reported

In a discussion of Reference 3, Seeley an&.?ytnam
on tests that they made of four channel sections and these are”compared
with the proposed channel shape formula in the last four lines of Table
4, The agreement is not particularly good, especially in the case of
the 10 in., 15.3 1b. channel and the fact that the investigators used
a shear modulus of 12,000 ksi in calculating their torsion‘constants in-
dicates that the reported test values are lower than they should be.
Seeley and Putnam point out that there was considerable deviation between
the measured dimensions of the channel and the nominal or handbook dimen-
sions but they used the nominal values and do not report the measured
values. It is possible that the high value reported for the 10 inch
channel is due to the fact that this channel might not have maintained
its shape of cross-section during tests, The imvestigators measured
only the angle of twist of the flange. Since this section has the thin-
nest web of any channels tested the actual twist of the web may have been
greater than that of the individual flanges.

Seeley and Putnam correctly point out that the variation in

their test results is greater than the variation between a more accurate

evaluation of the torsion constant and the simple approximation

They also correctly suggest that in using this equation neither the end
loss correction nor juncture correction should be included since these
two corrections tend to compensate. - Including either correction without

the other gives a poorer approximation than neglecting both.
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The justification for the present evaluation of accurate formu-
las for channel and angles together with improvement in the earlier
formulas for I beams and wide flange shapes is for the purpose of per-
mitting more accurate evaluation for handbook listings. It is to be
hoped that torsion constants will be listed in future steel handbooks
as they provide a basis for the simplest and most accurate solution of
problems involving combined torsion and bending as well as problems
involving the lateral buckling of beams and columns made of I beam or
WF shapes.

As indicated previously, the agreement between the formulas
for angles with legs of equal thickness and experimental results ob-

tained by Cullimore and Pugsley(9) is good, (Figure 12).
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NOTATION

diameter of circle inscribed at juncture
a constant (a length)

shear modulus of elasticity

a constant (a length), network space
torsion constant

torsional moment

ratio of triangle base to mesh space
ratio of triangle altitude to mesh space
an arbitrary number

slope of flange

tension force per unit width in a membrane
volume under stress function surface
coefficient of end loss

overall breadth of flange

overall depth of section

pressure under a membrane

fillet radius

thickness of flange (See Figure 6)
coordinates

angle of twist per unit length

shear stress

coefficients of juncture correction to torsion constant

coefficient for maximum shear stress in a rectangular
cross=-section
coefficient of stress increase at tee juncture

~Lo-
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3o

z displacement of membrane
dimensionless form of stress-function, V
torsion stress function

web thickness
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