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I. PATTERNS OF AN EXTENDED SILICON LENS FED BY
AN ELEMENTARY ANTENNA

Consider the extended hemispherical lens of figure (1) which is fed by an
elementary antenna located at (z,,y,,—L), with respect to the center of
the hemisphere (origin). The hemispherical surface is assumed to lie in the
far-field of the elementary antenna, so that ray-optics can be used in order
to determine the surface fields. Once the fields transmitted just outside the
hemispherical surface have been determined, equivalent electric and mag-
netic surface currents can also be specified. The far-field patterns of the lens
system can then be constructed using simple diffraction theory, namely:

_ Jkexp(—jkr)

E, ypom (Ly + nNs) (1)
_ Jkexp(—jkr)
E, = B — (L — nNy) (2)

where 7 is the intrinsic impedance of free-space.

The radiation vectors N and L appearing above are defined in terms of the
equivalent electric J, and magnetic currents M, as follows:

N

/ /‘, J, exp(jkR cos())ds’ (3)
/ [, M, exp(jkR cos(¢))ds’ (4)

t~
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where s denotes the hemispherical surface, k is the free-space wavenumber,
and r is the distance from the origin to the observation point. Furthermore,
v is the angle between 7 and 7 given by:

cos(v) = sin @sin(8') cos(¢ — ¢ ) + cos(8) cos(8') (5)

As usually, the equivalent electric J, and magnetic M, currents are deter-
mined by:

Electric Current: J, = # X H,, (6)

Magnetic Current : M, -7 x E,, (7)



I.1 Definitions

Figure 1: An extended hemispherical lens fed by an elementary antenna.

Hemispherical radius : R

Extension length : L

Location of elementary antenna: 7, = (z,,Y,, —L)

Normal to the hemispherical surface: #

Obsrvation point at far-field: (r, 6, ¢)

Integration point on hemispherical surface: (r',0',¢')

Integration point with respect to the elementary antenna: (r,,¥6,, ¢,)
Direction of propagation of incident field: 7,

Direction of propagation of transmitted field: 7,

Plane of incidence: defined by (7, 7,)

Normal to plane of incidence: N = (£, x # )/ sin(t;)

Tangential to hemispherical surface included in plane of incidence: £
Angle of incidence: ;

Angle of transmission: v,

Polarization of parallel transmitted field: tr

Polarization of perpendicular transmitted field: N

Polarization of parallel incident field: 2

(+',%, N): Right-handed basis in plane of incidence.

(g, tr, N): Right-handed basis in plane of incidence.



With these definitions the right-handed basis (7,7, N) is explicitly deter-
mined by:

# = Rsin(8')cos(¢)z + Rsin(8')sin(¢ )§ + cos(8')z (8)

i = t,2+t,§+1,72 (9)
t. = {cos(¢)cos(8,)sin(6') cos(8') — cos(4,)sin(d, ) cos’(6)
~ sin(¢)(sin(6,) sin(¢ — ¢,) sin*(6)) } / sin(w)
t, = {cos(¢')sin’(6')sin(8,)sin(¢ — ¢,) — cos*(¢') sin ¢, sin(6,)
+ sin(4')sin(8") cos(8) cos(8,) } / sin(t;)

t. = {-sin’(6)cos(8,)+ sin(6') cos(8') sin(6, ) cos(, — ¢')} / sin(:)
N = N4 N+ N,z (10)
N, = {cos(0') sin(8, ) sin(¢,) — sin(8') sin(¢ ) cos(0,)} / sin(%;)
N, = {sin(o') cos(¢ ) cos(8, ) — cos(8') sin(8,) cos(¢,)} / sin(%;)

N, = {sin(d)l - @,) sin(0,)sin(0')} / sin(¥;)

Furthermore, the orthonormal basis system (i, tr, N ) can be expressed in
terms of (7,1, N) by :

Ay = cos(Py)F — sin(dy, ) (11)
fr = sin(v)F + cos(iy )i (12)

Finally, the angle of incidence 1;, which is the angle between 7 and 7,, is
determined by:

cos(¢;) = sin(0' ) sin(8, ) cos(¢ — #,) + cos(8') cos(8,) (13)

1.2 Equivalent Surface Currents

The equivalent currents flowing on the hemispherical surface have been de-
fined in terms of the transmitted surface currents in equations (6) and (7).
The transmitted surface fields can now be decomposed in terms of their
parrallel and perpendicular components to the plane of incidence:

E" = E"-’"tnr + Et,-’_(_N (14)
77.’_{" = flt X Egr (15)



Since we have available the expressions (8) to (10) for the unit vectors in-
volved in the definitions of the equivalent surface currents we can explicitly
write for the equivalent currents:

nJ-n _({Elr," + N COS(wlr)Etr,.L) (16)
M, = Egr"Li - E‘r'" COS('(I)"-)NA (17)

and cos(;,) 1 — ¢ sin(;)?

In order to explicitly determine the transmitted to the hemispherical surface
fields we use ray-optics as was mentioned before. For this purpose, the
elementary antenna fields should also be decomposed in their parallel and
perpendicular components to the plane of incidence:

E, = E,i+E, N
where 1 = cos(1/);)f+sin(1/);)i‘l. (18)

Given the elementary antenna fields, ray-optics determines the transmitted
surface fields by:

Ewy = E, T (19)
E, ., = E:,.LT.L (20)

where the parallel and perpendicular transmission coefficients T} and T, are
given by:

cos(¥;)
1+ r")——cos(,‘p")
(147T,) (22)
/& cos(tr) — cos(t)

V& cos(y,) + cos(9;)

V& cos(%;) — cos(ir)

Ve cos(%;) + cos(¢y,)”

In general, the far-fields of the elementary antenna, with respect to its local

coordinate system which is assumed to be parallel to the global one (see fig.
1), are of the form:

Ty
T,
Ly

I

(21)

T,

e_j kar,

‘m|
]

Anr [993(03’ ¢8 )éﬂ + g¢a(0n ¢a )d;s] (23)
Na Ha = T, X E, (24)



where the subscript d indicates dielectric quantities, i.e. k; and 74 are the
dielectric wavenumber and intrinsinc dielectric impedance respectively. Us-
ing (18) and (23) the parallel and perpendicular electric field components of
the elementary antenna are thus determined by:

—jkar, .. R ,
v = S {90 [cos(w)(0, - 1) + sin(v)(6, - 7]
+ ges [cos(¥)(@, - ) + sin(%)(&, - )] } (25)
—jkar, JUR . -
E:,.L = 641rr [g..(oc * N) + g¢1(¢l : N)] (26)

The dot products between the unit vectors appearing in (25) and (26) are
computed by utilizing Cartesian coordinates:

f,-1 = t,cos(8,)cos(¢,)+t, cos(8,)sin(¢,) —t. sin(8,) (27)

6,-7 = cos(8,)sin(d')cos(¢ — @,) — sin(,)cos(8') (28)

é, -1 = —t,sin(¢,)+ 1, cos(¢,) (29)
é,-# = sin(8)sin(¢ - ¢,) (30)
6,-N = N,cos(8,)cos(¢,)+ N, cos(8,)sin(#,) — N, sin(8,) (31)
é,-N = —N,sin(¢,)+ N, cos(e,). (32)

Furthermore, since the equivalent surface currents in (3) and (4) are inte-
grated with respect to the primed coordinates, the local to the elementary
antenna coordinates should be converted to the primed coordinates using:

’

Fo=F, 47, (33)

1.3 Scattering Integrals

Once the equivalent surface currents have been determined as shown in the
previous section, the far-field patterns can be obtained from equations (1)
to (4). The resulting expression are as shown below:

—jke=Ikr ~ ,
Bo= L [ [(-Buphi+ Busfy) v as (34)
jke—jkr jkRcosy !
B = T [ [(Buafi+ Bunt)) d*me=v s (35)

where
f = (6-9)+(9-N)cos()
fr = (¢-1)=(0-N)cos(¢y)

The dot products between the unit vectors appearing in (34) and (35) are
given by expression similar to those of (27) to (32).
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In the special case in which the lens is fed by a pair of parallel to the z-axis
slots (see fig 2), the radiated elementary fields of (23) and (24) are defined

by:

Gos
9¢s

and ¢(6,,¢,)

Array-factor : AF

also ky

9(6,,¢,)(AF) (36)
9(6,,¢,) cos(8,) cos(¢, )(AF) (37)

cos(kml) — cos(kql sin(6,) cos(¢,))
k2sin(6,)? cos(¢,)? — k2,
8 . .
cos (kd-z- sin(6,) sm(¢a)>
ke, km = (k+ ke)/2

+«———— §—————

<ir

Figure 2: A pair of slot antennas feeding the lens.



II. COUPLING TO AN INCIDENT-BEAM

Assume that a beam with fields (Eg, Hg) is incident on the lens, then the
coupling efficiency 7¢ is defined as the ratio of the power incident to the
power received by the elementary antenna, under matched conditions. The
coupling efficiency can be computed by applying the reciprocity theorem in
the form:

}{ (Ev x Hyy — Eg x Hg)-dA = 0. (38)
A

For our purposes we choose the surface A to consist of two parts, a spherical
surface that just touches the lens and a smaller spherical surface that just
touches the elementary antenna. By neglecting the power radiated at the
back of the lens, one can proceed in a fashion similar to {1] and prove that
7 is given by:

_ _ _ _ .2
|J Jy (B x Hg — Eg x Hyy) - 7'ds|

1
" A T e x B Fa) [ L (B X Bi) 7)Y

It should be noted here, that if the first part of the surface A in (38) is
chosen to be a spherical surface in the far-field zone, as originally assumed
in [1], then the integrand in the numerator of (39) can be simplified to just
the dot product: (2 * E - Eg). However in such a case, the far-fields E
need to be computed using equations (1) to (4), thus leading to quadruple
integrals. Therefore, we prefer to employ the coupling form of (39) in which
all the integrations are performed on the hemispherical surface s’ and avoid
quadruple integrals.

II.1 Coupling to a Gaussian beam

With reference to the geometry of fig. (3), an incident fundamental Gaussian
beam in the y — z plane, making an angle 6, with the z-axis, will be of the
form:

EG = éo g(l’, Y, Z) (40)
_ ~ w, . n . k 9 2 ] [.’L‘Z + yg]
- 00 ('UI(Z")) exp(]kz ) exp [] 2R(Z") (x + yr) exp w(zu)2
n
where,



)

Polarization: 8, = gcos(8,)— 2sin(6,) (42)

’

2 = z+ 2 (43)
Distance from origin: z, = 2 cos(,)+ y sin(6,) (44)
Axial distance: y, = y cos(6,) — z sin(6,) (45)
" 1/2

Waist radius: w(z') = w, [1 + (-2—)2] (46)
Radius of curvuture: = 2z [1 + (%)2] (47)

zll Az"
= = T (48)

24 is the location of the beam waist behind the origin and w, is the corre-
sponding waist radius.

Figure 3: An incident Gaussian beam in the y — z-plane.

For the Gaussian beam described by (40) and (41) we can use the transmitted



field expressions of (14) and (15) in the coupling efficiency expression of (39)
to obtain:

_ 1Py
" T R 1)
where
2% px/2 ,
P, = /0 /0 g(r ){E:r[cos(8,)t, — sin(8,)t, — N cos(ty,)]
+ E, .[(cos(8,)N, — sin(8,)N,) cos(¥s,) + t.]} ds (50)
x px/ 2 ! 2 , , , ,
P; = /2 / ’ (%) exp (—23: zu_; y,) (sin(@,) sin(6 ) cos(® ) + cos(8,) cos(6)) ds
0 0
2x px/2 _ ,
Po = [ [ (Buwal? + 1B cos(ts) ds

(51)

It should be noted that the above same expression (49), can also be employed
for computing the coupling efficiency to a plane-wave. For this purpose, one
just have to let the beam-waist w, tend to infinity thus effectively trans-
forming the Gaussian-beam into a plane-wave.
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IIT COMPUTATIONAL RESULTS

In this section we show the computed radiation patterns and efficiencies for
the slot feed of fig. 2. The slot length and slot separation are chosen to
be 2! = 0.28) and s = 0.16) respectively, leading to symmetric patterns
with a —10dB beamwidth of around 48° [2]. The lens is assumed to be
a half inch silicon lens (¢, = 11.7) at 500 GHz, corresponding to a radius
of about R = 10.6A. The hypehemispherical extension length corresponds
therefore to L = R/,/¢; = 3.1A. On the other hand, when equation (49)
is utilized to examine the directivity of the antenna system, maximum gain
is found to be achieved at an extension length of L = 4.0\ which thus
corresponds to the elliptical point [2]. Figures (4) to (11) correspond to
the E-plane patterns of the lens antenna system as the slot-feed is sliding
off-axis along the y — azis, for both the hyperhemisherical and the elliptical
extension lengths (see fig. 1). The corresponding H-plane patterns as the
slot-feed is sliding along the z — azis are depicted in figure (12) to (19). All
patterns are normalized so that 0dB corresponds to the angle at which the
Gaussian coupling efficiency becomes maximum. The on-axis patterns which
are presented in figures (4) and (12) show the typical pattern behavior which
consists of a sharper (higher gain) pattern at the elliptical position with a
corresponding diffraction-limited phase pattern, in contrast to the quadratic
phase pattern at the hyperhemispherical position. As the slot feed moves
off-axis, the patterns shift from broadside and in general they deteriorate
developing higher sidelobes and becoming asymmetric. For a quantitative
examination of the pattern characteristics, the corresponding Gaussian and
plane wave efficiencies are shown in figure (20).

The procedure for computing the Gaussian coupling efficiency starts by op-
timizing the on-axis parameters w, and z, of equation (49), for obtaining
maximum coupling efficiency (see fig. 3); Let these on-axis optimum param-
eters denoted by w,,; and z,,,. As the elementary feed is moving off-axis, the
corresponding Gaussian coupling efficiency is computed assuming an icident
beam of waist w,,, which focuses on a plane parallel to the bottom surface
of the lens at a distance z,,, from the origin. The direction of incidence
denoted by 6, in figure 3 is optimized for achieving maximum coupling effi-
ciency. The on-axis optimum parameters are computed to be w,,, = 1.17),
Zg0p = 36.5) for the hyperhemispherical point corresponding to a Gaussian
coupling efficiency of ng = 98.7%, and wep: = 9.0 24, = 96 for the ellipti-
cal point corresponding to 17 = 89.8%. The corresponding on-axis coupling
efficiencies to a plane-wave are 7p = 4.49% (23 dB) for the hyphemispherical
position and np = 78.70% (35.4 dB) for the elliptical position. In summary,
the on-axis characteristics for the coupling efficiencies are as follows:

1. For maximum Gaussian coupling efficiency at the hypehemispherical
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position, the incident Gaussian beam should focus on the conjugate
point z4,, ~ R\/€;, as dictated by ray-optics [3].

2. The hyperhemispherical position couples better to a Gaussian beam
than the elliptical position as a consequence of the absence of aberra-
tions when imaging between the two conjugate points [3]. This however
comes with a a hefty 13.5 dB reduced gain at the hyperhemispherical
position as compared to the elliptical one. Therefore, for the hyper-
hemispherical position, a second focusing lens should be placed in front
of the antenna system in order to increase the overall gain.

3. For the lens system under examination, the difference between the
E- and H-plane coupling efficiencies and corresponding parameters is
practically negligible.

Now let us also examine what happens when the slot-feed slides off-axis by
a distance d, along the z— or y— axis (see fig. 1). First, the radiated beam
shifts from broadside; In the case of the elliptical extension length this shift
can easily be predicted using ray-optics and is given by tan(6,) ~ d,/L.
At this angle both the Gaussian coupling efficiency and the coupling to a
plane-wave attain their maximum, i.e. the Gaussian coupling effiiency is
maximized at the peak of the power pattern. On the other hand, this is no
longer true for thr hyperhemispherical point; In this case the peak of the
power pattern (maximum coupling to a plane-wave) in general takes place
at a smaller angle than the angle of maximum Gaussian coupling efficiency.
The maximum Gaussian coupling efficiency is found to be located approxi-
mately at the geometrical center of the phase pattern. From coupling figure
20 and from numerical computations, one can also observe the following
characteristics:

1. Although the on-axis Gaussian coupling efficiency is higher for the
hyperhemispherical position, it rolls off much faster than the elliptical
Gaussian coupling efficiency as the slot-feed is moving off-axis.

2. If the Gaussian coupling efficiency is optimized at each off-axis position
indpendently of what happens at broadside, then up to a 10% improve-
ment in 7g can be achieved. However, this improvement applies to both
the hyperhemispherical and the elliptical positions, making statement
1. always valid.

3. As the slot feed is moving off-axis, the coupling to a plane-wave (direc-
tivity) decreases for the elliptical case whereas it increases in the case
of the hyperhemispherical position. This is reflected in graphs 4 to 19
which show that the hyperhemispherical pattern becomes sharper as
the slot-feed is moving off-axis.

12



Figure 21 shows the computed reflection loss as the slot-feed is movind
off-axis. As shown the loss increases quite significantly with the off-
axis distance. This is mainly attributable to total internal reflection
which is being quickly establised as the slot-feed moves off-axis. This is
especially noticable for the hyperhemispherical extension length where
with the feed on-axis, total internal reflection is nowhere taking place
on the lens surface.

We close the comments for the numerical results by making a hint for
future investigation. It would be very interesting to examine the effect
of a thick focusing lens (small f{/D) in front of the antenna system. This
is particularly interesting for the hyperhemispherical extension length
where the gain is low and the off-axis Gaussian coupling efficiency is
found rolling off quite significantly.

13
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Figure 20: Coupling efficiencies to a Gaussian beam and a plane-wave as a
function of the off-axis distance. The upper figure correspends to the E-plane
whereas the lower one to the H-plane
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