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NOMENCIATURE

Descrigtion

Depth of the gate, or the dimension of the cover
plate element in the y-direction.

The span of the gate, or the dimension of the
cover plate element in the x-direction.

Flexural rigidity, Etchg/z(l-ve)

Deformation vector

Young's modulus of elasticity

Flexibility matrix; the matrix whose influence
coefficients fij represent the displacement
ab 1 due to a unit Force ab )

Shear modulus, or modulus of rigidity
Distance between the cover plates

Moment of inertia of the web element, twh3/12
Stiffness matrix; the matrix whose influence
coefficlents ki represent the force at 1 due
to a unit displaéement at J.

Load vector

Length of web element

Number of webs parallel to the x-axls, or ratio
between the sides of the cover plate element, b/a

Moment about the x-axis
Moment about the y-axis
Twisting moment

Number of webs parallel to the y-axis, or shear
deformation factor in the web element; 3EI/GhtWL

Number of joints

ix



Symbol

Rx,Ry

X, ry

€X,€Y

ox, 0y

Description
Specific weight of water, 62.4 1b/ft3
Force in the z-direction

Uniformly distributed reactions along the supported
edges x = +b/2, and y = &, “ '

Displacements in the cover plates in the x- and the
y-directions, respectively.

Thickness of cover plates
Thickness of webs

Shearing forces in the webs parallel to the x- and
the y-axes, respectively.

Deflection in the z-direction
Ratio between the gate depth and span, a/b

Strains in the cover plates in the x and the y
directions, respectively.

Rotations about the x- and the y-axes, respectively.
Shearing stresses in the cover plates

Shearing stresses in the webs parallel to the x-
and y-axes, respectively.

Poisson's ratio

Normel stresses in the cover plates in the x and
the y directions, respectively.

Transpose of a matrix

Inverse of a matrix



I. INTRODUCTION

In recent years the falling-leaf or box-flap gate has
been increasingly used for dry docks where circumstances permit.
In practically all new or reconstructed dry docks completed during

(1)

the past ten years, this type has been adopted. ’ The gate consists
of a single leaf hinged horizontally at the level of the bottom
sill. It is extremely simple and speedy in operation; it can be
raised or lowered by one man, if necessary, in a few minutes by
means of an electrically driven winch placed on one side of the
dock.,

An important advantage of the flap gate is that, in the
open or lowered position, it can usually be accommodated in the
outer basin or waterway adjoining the dry dock. In comparison
with the mitre type of gates, which require recesses in the dock
walls for the accommodation of the gates in the open position, the
box gate offers a considerable saving in cost of dock wall con-
struction. The cost of forming the apron in front of the gate is
usually much less than that of the additional length of the side
wall., Alternatively, if a given space is available, a greater
useful length of the dock can be obtained with this gate than with
the mitre type. This length-saving feature of the flap gate can
increase by 20 to 40 feet the effective length of an existing
dock, or with a new dock, can reduce the general cost of con-

(1)

struction by an amount approximating to the cost of the gate.
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Gates of this type have now been built for dock
entrances of 130 feet in width and larger sizes, up to 160
feet. The dock gate at Wallsend, England,<2) is of this type;
it is 111 feet 4 inches in width, 35 feet deep, and T feet 9 inches
thick. It weighe 240 tons. The gate for the Queen Elizabeth
graving dock at Falmouth, England,(3’u) is 133 feet 4 inches wide,
40 feet 3 inches deep, and 9 feet 6 inches thick. Five hundred
tons of steel were used for the all-welded structure of the gate.

The gate is of cellular steel construction, which in its
early forms was riveted. However, present-day practice favors
fabrication entirely by welding.

The system of framing adopted may be varied according to
the size and the width-height ratio of the gate. The usual arrange-
ment consists of a series of horizontal webs spanning between the
side jambs of the entrance, vertical webs spanning from the keel to
the top, and the skin plating on both sides.

The usual structural design for the gate 1s based essentially
on considering it as a rectangular slab supported on three sides and
carrying a hydrostatic pressure. This is based on the idea that the
contribution of the cover plates to the flexural rigidity of the
gate greatly exceed that of the webs, and that the webs are close
enough to assure that the cover plates are fully effective. Also,
shear deformations of the webs are assumed to be negligible. If
these assumptions are valid, then the gate behavior is essentially
the same as that of a hypothetical thin isotropic plate with flex-

2
ural rigidity D = Etch /2(l-v2), where:



E = Young's moduius of elasticity

v = Poisson's ratio

t, = the thickness of cover plates, and

h = the distance between the cover plates°(5u7)

Experimental work carried out by L. G. Jaeger,(S) in
which deflections only were measured, indicated that this assumption
may be accepted. However, a considerable difference may result by
comparing actual stresses with the calculated ones using this
assumption.

The assumed plate is in reality a box composed of an outer
plate and a two-directional webbing in the form of interconnecting
bulkheads or trusses. (The civil engineer will find that a con-
siderable amount éf work has been done in the analysis of similar
structures in the aircraft industry, such as delta wings. The air-
craft engineer is much more concerned about the weight of his structure
than is the civil engineer.) D. Williams(9) suggested that the plate
theory can be followed in the solution of thick-walled structures,

(10)

S. U, Benscoter and R. H. MacNeal derived an equivalent plate
theory to take the shear deformations of the webs into consideration.
This theory is based on various simplifying assumptions, such as
assuming normal stresses to be carried in equivalent flanges located
at the juncture of the webs and the cover plates, while the webs

and the cover plates carry only shear flows. They presented the

solution in first-order finite difference equations, to be solved

by analog computer.
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For a more realistic analysis we must deal with a highly
indeterminate structure. The development on high-speed digital
computing machines has permitted a solution for such a highly
indeterminate structure.

The degree of statical indeterminacy of the structure is
strictly infinite. To obtain a solution, we must first idealize
the structure by considering it to be an assembly of a large number
of members interconnected at a finite number of connections. For a
given idealized structure, the analysis of stresses and deflections due
t0 a given system of loads is purely a mathematical problem. Two
conditions must be satisfied in the analysis:

1) The forces developed in the members must be in

équilibrium.

2) The deformations of the members must be compatible,

that is to say, consistent with each other and
with the boundary conditions.
In addition, the forces and deflections in each member must be
related in accordance with the stress-strain relationship assumed
for the material.

The analysis may be approached from two different points
of view. In one case the forces acting in the members of the
structure are considered as unknowns. In a statically indeterminate
system an infinite number of such force systems exist which will
satisfy the equations of equilibrium; the correct system is then

selected by satisfying the conditions of compatible deformations



in the members. In the other'approach the displacements of the
joints in the structure are considered as unknown quantities.

Also, an infinite number of systems of compatible deformations

in the members are possible; the correct one is that for which

the equations of equilibrium are satisfied. The first method is
usually called the force method, while the second is called the
displacement method. In both methods, use of matrices is desirable,
because this allows a systematic approach to the tremendous number
of calculations, and simplifies programming of the problem for the
electronic digital computer.

The idealization of the structure depends upon the method
of approach to be used in the analysis of the structure. Levy(ll)
has considered the structure as an assemblage of shear panels with
uniformly distributed shear flows along the edges, and axially
loaded flanges at the intersections of webs and cover plates., He
made use of the stress analysis based primarily on equilibrium
considerations, together with Castigliano's energy theorem for
deriving displacements under load from the elastic energy stored
in the structure., Wehle and Lansing(lg) made use of Levy's idea
and presented a solution to the whole structure which is systematic
and in a matrix form easily adapted for high-speed digital computer
programming, Argyris<l3) presented a force-method analysis which
involves idealizations similar to those considered by Levy. Several
other idealizations have been proposed.(lh’l5) In some cases the

plate-lattice analogy(l6’l7) was considered as a means of simulating

the behavior of the cover plate element.
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The force method of analysis of such a highly redundant
structure involves severe computational difficulties and the method
is not particularly well adapted to the use of high-speed computing
machines, For this reason, the displacement method is used in the
analysis presented in this work.

The structure is considered as an assemblage of cover=-plate
elements and web elements. We define the middle plane between the
cover plates as the x-y plane, and the direction perpendicular to it
as the z-direction., Because the structure is symmetric about the
x-y plane and the loads are applied normal to this plane, we define
only three displacement components at each web intersection (joint),
these displacement components are ©x, and €y, the rotations about
the x- and y-axes’'and w the deflection in the z-direction, We displace
one joint in only one of the three displacement components and calculate
the forces that arise at the neighboring joints in terms of this com-
ponent, assuming that the stiffness of the individual elements of the
assemblage is known, If we repeat this with respect to the other two
displacement components and do the same thing for all other joints, we
will obtain the forces at the different joints in terms of the defined

displacements. From the three equilibrium conditions at each joint,

namely,
1., The sum of the forces in the z-direction = O,
2, The sum of the moments about the x-axis = 0, and
3, The sum of the moments about the y-axis = 0O,

we are able to evaluate the three displacement components. As mentioned



before, the stiffness of each individual element of the assemblage must

be known. The stiffness of the web element is based on the beam theory
which is modified to include shear deformations. The cover plate is
relatively thin so that its stiffness in the lateral direction (z-direction)
can be neglected without introducing any considerable errors. Plate stiff-
ness for the cover plate element can be derived by assuming a stress or a

strain patterno(l3’l8’l9)

The calculations involved in the analysis
demand the use of high-speed electronic digital computers.

In Chapter II the analysis ig described in detail. Two different
schemes are proposed to reduce the amount of computations involved. The
analysis is presented in a matrix notation; the reader unfamiliar with
such notations will find References 20 through 25 helpful. The results
of an example solved"by the proposed method and the accuracy obtained
are discussed in Chapter III.

Since the analysis involves some simplifying assumptions, the
validity of these assumptions was tested experimentally. A plastic
model was built and tested; the test set-up, procedure, and test
results are discussed in Chapter IV.

In Chapter V, the proposed method of analysis and the
commonly adopted method utilizing the thin isotropic plate theory are
compared. Chapter VI provides conclusions and remarks.

The stiffness derivation for the cover plate element based

on an assumed stress pattern, and the derivation of the web element

stiffness are presented in Appendix I and II.



II. ANALYTICAL SOLUTION

2.1 TIdealization of the Structure

The structure is infinitely indeterminate statically. For
finite indeterminacy, we will consider the structure as composed of
an assembly of plane, cover, and web elements (Figure 1). The lines
of intersection of these elements intersect at finite number of points
(nodal points).

Conditions of equilibrium, compatibility of deformations,

and the boundary conditions must be satisfied at the nodal points.

2.2 Simplifying Assumptions

1. The structure is symmetrical about the middle surface
and the application of loads normal to the middle surface only are
considered; consequently, only three displacement ccmponents, namely,
Ox, @y, and w, are defined at each web intersection (joint), where:

Ox and @y are the rotations about the x and y
axes, respectively, and
w is the deflection in the z-direction (Figure 1).

2, The middle plane is a neutral plane.

3. The plane section remains plane after bending.

L, Stresses and strains are uniform through the thickness
of the cover plates.

5. The stiffness of the cover plates in the z-direction is
very small compared with the stiffness of the webs in this direction,

and can be neglected.

-8-
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6. The normal stresses Oyygs O (Figure 2a) in the cover

yy
plates vary linearly between the nodal points.

T. The shear stresses Txy (Figure 2a) in the cover plates
are uniform between the nodal points.

8., The elementary beam theory, modified to take shear deforma-
tions into account, is applicable with respect to the webs.

9., Any load distributed over the area of the structure is
replaced by equivalent concentrated loads at the nodal points.

10, The deformations are sufficiently small compared with the

over-all dimensions of the structure to consider the changes in the

over-all dimensions negligible,

2,3 The Stiffness Matrix of the Individual Elements

2.3.1 Cover.Plates == The stiffness properties of a single cover
plate element are obtained by a plane stress analysis, assuming the
stress pattern shown in Figure 2a, using the stress-strain relationship
of plane linear elasticity and the principle of virtual displacements
(see Appendix I), Having these properties one can express the stiffness’
of a pair of cover plate elements as a stiffness matrix,

The stiffness matrix is arranged to agree with the equation:

MXl QXl
Mx2 @X2
Mx3 @x3
M'X)-l- @X)+
= [Kc] (2,1)
Myl @yl
My Yy
My 673
i 9y
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Figure 2a. Assumed Stress Pattern in Cover Plate
Element.

—
Myy: Oy,

4

Figure 2b. Joint Moments and Rotations in Cover
Plate Element.
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in which the M's and the ©'s are the joint moments and rotationms,

respectively (Figure 2b), where

—
a2+b2

. J

~Bo=Cy  8p=by  astby

Etch
= 5 ap=bp =8p=Cp cCp=8p aptbp

16(1~v<) (symmetric)
wlay 1=3v 1+v 3y=1 al+bl

3v=1 14y 1l=3y wlay al-bl al+bl |
14y 3y=1 =lay l=3y ~81=C] C1=81 al+bl ‘.

|
1=3¥v  =ley  3v=l ltv cy-8) =B =C; 8;-b) al+b%}

e

(2.2)
In the above matrix:

2(4=v2)/3m , ey = 2(2+v®)/3m

a1 = m(1lv) by

ap = (1v)/m , bp=en(swv?)/3 , cp=2n(20?)/3
m = b/a, where a and b are the dimensions of the rectangular
plate element in the y- and the x-directions, respectively.
vy = Poisson's ratio, and
£ = Young's modulus of elasticity

[Kels is symmetric {i.e., Kcij = chi) according to Maxwell's
reciprocal theorem.
From the symmetry of the plate element, and from Maxwell's reciprocal
theorem, the 64 stiffness coefficients reduce to only 10 different co=-

efficients; namely:
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Key = Etgh?(apthy)/16(1-v2)
Kep = Bt h(cp-a,)/16(1v%)
Keg = Et h?(ay-by)/16(1v?)
Ke, = Bt h®(-ay-c,)/16(1-v2)
Keg = Et h%(a b, )/16(1v7)

( )

(

(

Keg = Etchg(-l-v)/l6(l-v2)

Ke, = Bt _h%(1-3v)/16(1-v)

10

The above coefficients are arranged on Figure 3.
2.3.2 Webs -- From the elementary beam theory modified to account for
shear deformation, one derives a web element stiffness matrix (see Appendix

II). The stiffness matrix is arranged to agree with the equation:

My o

R W

1 1
= [Kw] (2.3)

My 9%

R2 w2

See Figure 4.
In Equation (2.3) the M's and the R's are the moments and the
reactions, respectively, while the 8's and the w's are the rotations and

deflections, respectively (see Figure 4), and

2(1+n)
2
-3/L 6/L S tric
. L 3/ / (Symmetric) (o)
L(1 + 4n) 1-2n -3/L 2(1+n)
3/L -6/L2 3/L 6/L%



~1he

Ke,«—nKg, =My AT "3" DUE TO Bx AT "4"
K
Kcl 4 3l ¢
'{03 Keq Keg ?cs
K K K K
C3 Caq Cq C3
l 2 [l [] " "
Ke Ke =M, AT “2"DUE To 8x AT "2
! KCZ.___.Kc2 I X
M, DUE To 6k
s [ 3] s
K K K K
tc., c8>< Cq tc.,
Kc_, K°e Kce Kc7
K, U 2]k,
(4
M, DUE_TO 8y
Kp «—s =K
K Ci0 10 K
€9 |4 3| o
'1“10 K°9><K°9 1°|o
Keyg | ~Keg Keg  [Keyo
| 2
K 'Kc
9 k . K 9
10 o0
M, DUE_To @,
K “Keg Keyo Ke
o 4 3 9
ICIO K°9:><K°9 '3°|o
- K K K
Kcuo g Cq 0
| 2|

Ke, s—aKe

10 10
M, DUE TO 6,

Figure 3, Stiffness Coefficients of the Cover Plates.
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5 X OR Y

Figure L, Moments, Reactions, Rotations,
and Deflections in a Web Element.
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In the above matrix,

I = t,b/12

n = 3EI/GhtWL2

G = shear modulus (modulus of rigidity)
Notice that "n" represents the contribution of the shear deformation, If
shear deformation is neglected, n = O.

[Kw] is symmetric (i.e,, Kvr; 5 =-Kyji), according to Maxwell's
reciprocal theorem.

From the symmetry in the web element, and from Maxwell's

reciprocal theorem, the 16 stiffness coefficients reduce to only 4

different coefficients, namely:

Kwy = 4EI(1+n)/L(1+kn)
Kw, = 2EI(1-2n)/L(1+kn)
Ky = 1281 /13 (1+4n)
Kw, = 6BI/1°(L+kn)

The above coefficients are arranged on Figure 5.

2.4 The Formulation of the Stiffness Matrix

To find the stiffness coefficients for the assembly, one joint
is displaced in the z~direction or rotated about the x- or the y-axis,
while all other joints are held fixed. The force in the z-direction,
the moment about the x-axis, and the moment about the y-~axis required
to do this and the reactions set up at neighboring joints are then
known from the individual element stiffness matrices. These are the
coefficients in the stiffness matrix of the complete structure., When

all three components of displacements (w, ©x, and ©y) at all joints have
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|
Kw.

Q- MOMENTS DUE TO ROTATIONS.

-K
K, I Y3 = 2lK
Y3 W3

b - VERTICAL FORCES DUE TO
VERTICAL DISPLACEMENTS.

i —

L and

X or Y
-K Ky o -K K
w4 | W4f > %__Z_.w‘

C - MOMENTS DUE TO VERTICAL
DISPLACEMENTS.

d- VERTICAL FORCES DUE TO

ROTATIONS.

Figure 5, Stiffness Coefficients of the Web.
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been considered in this manner, the complete stiffness matrix will have
been developed. In general this matrix will be of the order 3N x 3N,
where

N = number of joints
To facilitate the formulation of the stiffness matrix, let us arrange

it to agree with the equation:

R [&z]%[&x]é[my] W
B -l |l | gl (G (2.9)
W el o | )] [
where R = Forces in the z-direction, Rl°°‘RN
Mx = Moments about the x=-axis, MxloaaMxN
My = Mom?nts about the y-axis, Myl“..MyN
W

= Displacements in the z=-direction, Wy eo oWy

ox = Rotations about the x=-axis, leoponN

]

6y = Rotations about the y-axis, 0y, -8

i
Each of the individual sub-matrices, [Kzz] ... [Kyyl, is of the order

N x N, and from Maxwell's reciprocal theorem,

Kex] = [Kxz]
[Kzy] = [Kiyz]T , and
Kyx] = [Kay]® .

Iet us now formulate the individuvual sub-matrices.

2,4,1 The Displacement Stiffness in the z-Direction for Displacements

in the z-Direction Only, [Kzz] -- Since the stiffness of the cover plates

in the z-direction is assumed to be negligible, only the web plates con-

tribute to this stiffness,
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If the force vector R is partitioned to a set of vectors,
?i,oa?ﬁ, where ;i is the force vector at the nodal points of the i-th
horizontal grid line (grid line parallel to the x-axis) (see Figure 6),
and the displacement vector W is partitioned in the same manner, then

[Kzz] will be arranged to agree with the equation:

ry [kzz]ll [kzz]12 ceceaoceo [kzz]lm W)
T kzz kzz ce00coos kzz W
2 [ ]21 [ ]22 [ ]2m 2
Q0 = 0 000000 006 00000 @ 0000000 0 00 ¢ 000 9 0 (206)
r _szz}ml [kzz]m2 seeeneae [kZZ]H@L iWﬁ

Each of the individual sub-matrices [kzz]ij is of the order n x n, where

n = number of the webs parallel to the y-axis, and

Il

m = number of the webs parallel to the x-axis (see Figure 6).

Since the forces which arise due to a unit displacement in the z-direction
at any joint O will be limited to the four neighboring joints, N,E,W, and

S (see Figure 6), then [kzz]ij = [0], for i< j -1ori>j+ 1; moreover,

[kzz]ij is a tri-diagonal matrix for i = j, and a diagonal matrix for

i=3-1,andi=j+ L
Now [Kzz] can be written as

Tkzz] [kzz]

11 12

[kzz] [kzz] [kzz]

21 22 23

[Kzz]

000000

00660000

0060000

[kzz]
m,m=-

2000000

[kzz]
mm

(2.6")
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The above matrix is symmetrical from Maxwell's reciprocal theorem. If
the horizontal webs (webs parallel to the xéaxis) have equal stiffness
and are equally spaced, and if the vertical webs (webs parallel to the

y-axis) have equal stiffness and are equally spaced, then

-TAZZ] [Bzz]
[BZZ]T [Czz] [Bzz]
[Kzz] = ass a0 .

eao0 ) L]

[Bzz]®  [Azz]
where, from the stiffness matrix of the web element,
 h v h ]
(ngmeg) (—K;3) .
v
(-Kw3) (2Kw3+Kw3) (-KW3)
[AZZ] = 90900000 ’ 06000 0s 0009 aoo0
‘ h h v
( -Kw3 ) (Kw 3+Kw3 )
- v —
('ng)
v
[Bzz] = (-Kw3) , and
v
-K
(&)
[ h v h ]
(kwg+2Kwg)  (-Kwz)
( Kh ) (21{h 2K ) ( K%v'l )
«Kw W W -
[Czz] = 3 3 3 3
h . h v
(-Kw3) (Kw3+2Kw3)
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In the above matrices the superscripts h and v refer to
horizontal (parallel to the x-axis), and vertical (parallel to the
y-axis) webs, respectively.

2,4,2 The Rotational Stiffness About the x-Axis for Displacements

in the z-Direction Only, [Kxz] -- Since the stiffness of the cover

plates in the z-direction is assumed to be negligible, the cover plates
will not contribute to this stiffness,

If the moment vector Mx is partitioned to a set of vectors,
MX) .0 oMXy, Where mx; 1s the moment vector at the nodal points of the
i-th horizontal grid line, and the displacement vector W is partitioned

in the same manner, then [Kxz] will be arranged to agree with the

equation:
ﬁ§i Tkxz]li [kxz]12 cassansy [kxz]lé- ﬁl
EEé [kxz]py  [kxzly, Ceeoesno [kxz],, Wé
soa] = |osesses  evcssso sosasnos sosecas o0 (2.7)
Ezm ‘£kxz]ml [kxz]m2 FkXZ]HMJ ﬁg
Fach of the individual sub-matriqes [kxz] is of the order n x n,

iJ
where n and m are as defined before,
Since the moments due to a unit displacement at any joint O
will be limited to the two neighboring joints, N and S (see Figure 6),
then [kxz]ij = [0], for i< j -1lori>j+ 1; moreover, all non-zero

matrices are diagonal matrices,
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Now [Kxz] can be written as:

qk’“]n

[kxz],)

[kxz] =

-

[kxz]),

[kxz],, [kxz],

3

0o coscep ev o000 c000000

o e 00 60600000

(xz]

m,m=1

(2.7')

00 e 000

[kXZJmm;

i

From the symmetry of.the web element, and according to the adopted moment

and displacement sign convention, [kxz]Ji = -[kxz]iJ. If the horizontal

webs have the same stiffness and are equally spaced, and if the vertical

webs hcve the same stiffness and are equelly spaced, then

—

-[Bxz]

-[sz]T

[Kxz] =

vhere, from the

[Bxz] =

[Bxz]

[0] [Bxz)

-[sz]T

LR

[Bxz]

stiffness matrix of the web element,

[~ v

Kwh
v
Kwl+

L

Again the superscript v refers to the vertical webs as men-

tioned before.
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2.4,3 The Rotational:Stiffness About the y-Axis for Displacements

in the z-Direction Only, [Kyz] == As mentioned before, the stiffness of

the cover plates in the z-direction is assumed to be negligible, and it
will not contribute to this_stiffness.

If the moment vector My is partitioned to a set of vectors,
E?io..ﬁ§&, where E&E is the moment vector at the nodal points of the
i-th horizontal grid line, and the displacement vector W is partitioned

in the same manner, then [Kyz] will be arranged to agree with the equation:

551 [kyz]ll [kyz]12 cooo0oo [kyz]lm ﬁi
my,, [kyz]21 [kyz]22 sececes [kyz]gm vy
000 = 00000 0o0aoc o cecense 00000 0 (298)
900 00000 900 0C e 060900 00000 ooi
my EEKyZ]ml [kyZ]m2 caeenes [kyz]mm_ iwm

Each of the individual sub-matrices [kyz]ij is of the order n x n, where

n and m are as defined before.

Since the moments due to a unit displacement at any joint O
will be limited to the two neighboring joints, E and W, then [kyz]ij =

[0] for i # j, and [Kyz] can be written as

[ 1
[kyZIll

[kyZ]22

[Kyz] = cocao (2.81)

qo000¢9

(kyz]
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If the stiffnesses of the horizontal webs are the same, and the vertical
webs are equally spaced,

[Ayz]

[Ayz]

0900

[Ayz]

where, from the stiffness matrix of the web element,

— h h
-'K'w')1L Kmh
h h
~Kw), 0 Kvu
[AyZ] = 090 2009 260

ooy 000 900

h h
-Kwu KML

The superscript h refers to the horizontal webs as mentioned

before.

2,4,4 The Rotational Stiffness About the x-Axis for Rotations About

the x-Axis Only, [Kxx] -- The cover plates and the webs parallel to the

y=-axis contribute to this stiffness, while the webs parallel to the
x~axis do not.

If fhe moment vector Mx is partitioned to a set of vectors
mX),..mX , Where mx; is the moment vector at the nodal points of the
i-th horizontal grid line (see Figure 6), and the rotation vector ox
is partitioned in the same manner, then [Kxx] will be arranged to agree

with the equation:



mxy [kxx]ll
Mo [oexl )
mx, —Ekxx]ml

Each of the individual sub-matrices [kxx]i

—26-

O &= ~3 P I ==
[kxx] oo . kxx ex
22 [ ]Em 2
290090 S 0 e 0 ¢ o9 o9 990 o0 0 (209)
[kxx}m2 cereres [kXX]m@_ ox

3 is of the order n x n,

Since the moments due to a unit rotation at any joint O will

be limited to the 8 neighboring joints, N,NE,E,SE,S,SW,W, and NW (see

Figure 6), then [kxx]ij = [0], for i< j -1lori>j+ 1; moreover, all

non=zero sub=matrices are tridiagonal matrices.

as:

ol

[kxx]

[Kxx] is symmetrical from Mexwell's reciprocal theorem,

21

[kxx]12

[exex |

2o By

3

peeoo o9 a0 9900090

90009 so0900

[exex |

m,m=1 |

Now [Kxx] can be written

(2.9")

[kexx ]

If the horizontal

webs are equally spaced, and if the vertical webs have the same stiffness

and are equally spaced, and if the thickness of the cover plates is

uniform then
[Axx]

[BXX]T

[Bxx]

[Cxx]

@00

[Axx]
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where, from the stiffness matrix of the cover plate element, and from

the stiffness matrix of the web element,

- v —_
(Kw,+Kc- ) (Ke
11 2
v
(Ke,) (le+2Kcl) (ch)
[A}Q{.] = 2000090 000000 0B 0 00000 )
v
( KC2 ) (KWl'l'KCl >
L —
v
(KW2+KC3 ) ( Ke), )
(Key,) (Kw+2Ke,)  (Key )
L 2 3 L
[BX}C] = 960000 s000a0 00 ©00000 ) and
v
i (Kcu) (Kw2+Kc3) i
-
(2le+2Kcl) (2Kc2)
v
(2Kes) (2le+hKcl) (2K02)
[CXX] = ©0000 0 09000000 eo00000
v
] (2Ke 5 ) (2le+2Kc N )

2.4.5 The Rotational Stiffness About the y-Axis for Rotations About

the y-Axis Only, [Kyy] == The cover plates and the webs parallel to the

x-axis contribute to this stiffness, while the webs parallel to the
y-axis do not,

If the moment vector ﬁ§ is partitioned to a set of vectors
551009555, where ﬁ;i is the moment vector at the nodal points of the i-th
horizontal grid line (see Figure 6), and the rotation vector 5§ is parti-
tioned in the same manner, then [Kyy] will be arranged to agree with the

equation:



Each of the individual sub-matrices [kyy]ij is of the order n x n,.

o00a00

6000090

[kyy]ml

—_

090900

09090

[kyy]m2

~28-

00900000

LR

[kyy]mm

(2.10)

Since the moments due to a unit rotation at any joint O will

be limited to the 8 neighboring joints N,NE,E,SE,S,SW,W, and NW (see

Figure 6), then [kyy]ij = [0], for i< j -1 or i>j+ 1l; moreover,

all non-zero sub-matrices are tri-diagonal matrices,

written

[kyy]ll

[kyy]2l

—

£kyy]l

[kyy]

2

22

9 ov0 0

[kyy]23

00 ao0a

@000

9000900

90000

[kyy]

m,m=-1 [

[Kyy] is symmetrical from Maxwell's reciprocal theorem.

kyy]

e p0o0o

"

Now [Kyy] can be

(2.10')

If the vertical

webs are equally spaced, and the stiffnesses of the horizontal webs are

the same, and they are equally spaced, and if the thickness of the cover

plates is uniform, then

TAyy}

[Byy]®

[Byy]

[Cyy]

[Byy]

[Ayy]
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where, from the stiffness matrix of the cover plate element, and the

stiffness matrix of the web element,

(K£é+Kc6) (2K31+2Kc5) (Kw2+Kc6)

([Ayy] =
h h
(Kw2+Kc6) (le+Kc5)
r Kc7 Ke 8 ]
| Ke 2Ke Ke
[ Byy] = 8 7 8 and
; . ‘ . .o
5 e Keq
L —
_h h —
h h h
| (Kwo+2Keg) (2le+ch5) (K, +2Keg )
[Cyy] =
h

(Kw,+2Keg ) (K%l+2Kc5)

[— —

2,4.6 The Rotational Stiffness About the x-Axis for Rotations About

the y-Axis Only, [Kxy] == Only the cover plates contribute to this matrix;

webs do not.
If the moment vector ﬁ, and the rotation vector _O_y are parti-

tioned as before, then [Kxy] will be arranged to agree with the equation:



-30-

009000

Each of the individual sub-matrices [kxy]

mg| (Dol ool
s [kxyly,  [kxyl,,
mx kx kx

we || Doyl o Deey] g

[kxy]

mm

===l

iJ

is of the order n x n.

(2.11)

Since the moments which arise due to a unit rotation at any

joint O will be limited to the 8 neighboring joints N,NE,E,SE,S,SW,W,

and NW (see Figure 6), then [Kxy] is a tri-diagonal matrix, and can be

written as:

o

[kXY]ll

[kxylgl

From the symmetry of the cover plate element, and according to the

adopted moment and rotation sign convention, [kxy]

[kXYJlQ

o],

90000

[kxy] 23

00000

20000

090000

00000

[kxy]

m,m-1

00060

[kxy]mm

—

1J

= -[kxy]

(2.117)

If

the horizontal webs are equally spaced and the vertical webs are equally

spaced also, and if the thickness of the cover plates is uniform, then

[Axy]

-[Bxy]T

[Bxy]

[ 0]

[Bxy]
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where, from the stiffness matrix of the cover plate element,

-Kc9 Kclo
-KclO 0 KclO
[A-Xy] = 9 00 o 00 00 ’ aIld-
B -Kclo chd
-KclO Kc9
-Ke 0 Ke
[Bxy] = e 0 0 e 0 0 2 0 0
-Kc9 Kclo

2.5 Boundary (Support) Conditions

In the derivation of the stiffness matrix, nothing was mentioned
about the support conditions. The stiffness matrix just derived is a
singular matrix. The physical significance of this is that rigid-body
displacements can occur, In this analysis we are involved with geometrical
boundary condition, i.e., the displacements or rotations are prevented at
some joints on the boundary. This corresponds to zero displacements and/or
rotations at those points. Hence some deformations (displacements and/or
rotations) are equal to zero at some boundary joints; we may thus eliminate
the columns in the stiffness matrix corresponding to these deformations.
Furthermore, the loads (forces and/or moments ) corresponding to these

deformations are completely dependent on the other quantities, so we
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can solve for the other quentities without reference to the loads
corresponding to zero deformations, Then, to impose the desired
support conditions, we delete columns for which zero deformations
have been specified and the corresponding rows in the stiffness
matrix., This will reduce the order of the matrix and make it non-
singular, if sufficient support to prevent rigid body motion is
provided,

In the dock-gate analysis, the support conditions are
equivalent to zero deflections (in the z-direction) at the joints
on three sides of the boundary (the two sidewalls and the bottom

sill).,

2,6 The Flexibility Matrix

The stiffness matrix [K] specifies the values of the joint
load components (force or moment) which are caused by unit values of
joint deformation components (deflection or rotation), Since our
problem involves analyses of the effects of given loads rather than
given deformations, it would be desirable to have a matrix which
specifies the values of the joint deformation components caused by
unit values of joint load components. Such a matrix is the "flexi-
bility matrix," the inverse of the stiffness matrix,

The order of the stiffness matrix before imposing the
boundary conditions is (3mn) x (3mn), and after imposing the boundary
conditions, it reduces to [3mn - (2mtn-2)] x [3mn - (2m+n-2)], where

(emtn=-2) corresponds to the number of boundary joints with zero



deflections., Now if we have, for example, 20 horizontal webs and 20
vertical webs, then the order of the stiffness matrix is 11k2 x 11k2,
Inverting such a high-order matrix is a major problem, necessitating
the use of digital computing equipment. However, difficulties arise
with respect to time and memory requirements. Two possible approaches

to avoid these difficulties will be outlined here,

2.7 The First Approach

The analysis can be made without inverting the whole matrix,
since the applied moments at the joints are zero. If we partition the
load vector to force and moment vectors, and the deformation vector
to deflection and rotation vectors, then the relation between joint
loads and deformations may be written in the form:

R [k11] [k12] W
| = = (2.12)

M [k21] [k22] e
We want the flexibility matrix [F], such that

W (F11] [F12] R

0 [F21] [Fo2] M
However, since M = 0, we need only to e&aluate [F11] and [F21]. Of
course [F12] = [FEI]T, from Maxwell's reciprocal theorem. We have no
need to evaluate [F22].

From Equation (2,12)

R [k11] w + [kl2] © (2.122a)

o©l

= [ke1] w o+ [ke2] (2.12b)

=1

From equilibrium considerations,
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Applied lateral loads

=]
]

=1

= 0 (No applied moments)

From Equation (2.12b) and using M = O, we can express @ in terms of W, i.e.,
- =1 - .
0 = =[ke2]  [k2l] w (2.13)

Now we can express R in terms of w, by substituting for © from Equation
(2,13) into Equation (2,12a), then

R = [k11] ¥ - [k12] [kze]'l[kel] v

|

([k11] - [k12] [k22]7% [ke1) W

or

R = [kO] w (2,1h4)

[kO] expresses the forces caused by unit displacements, so we can invert
[kO] to obtain a matrix [F11] which expresses the displacements caused by
unit forces, i,e.,

W [k0] ~ R

(2.15)
[F11] R

I

Now we can substitute W from Equation (2,15) into Equation (2.13) to

determine ©, Then

as

5] -[k22] ~ [k21][F11]R

I

or

) [F21] R

where [F21] expresses the rotations caused by unit forces. The procedure
Just discussed avoids the inversion of a matrix of the order (3mn~2m-n+2) x
(3mn=2m=-n+2), it includes two inversions of matrices of the order

2mn x 2mn and (mn-2m-nt+2) x (mn-2m-n+2),



Although the above méthod was derived for the case where the
moment part of the load vector is specified to be zero, it could be spplied for
the general case (no part of the load vector is specified to be zero)
as follows:

1. Divide the joints into two groups.

2, Load the first group of joints only, and determine

the deformations at all the Joints due to these loads
from the above procedure.

3. Load the second group of joints only, and determine

the deformations at all the joints due to these loeads
from the sbove procedure,

L, Add the deformations from Steps 2 and 3.

Of course this procédure will be very efficient if we divide the
Joints to two groups which are symmetrical about an exis of symmetry
in the structure (if there is one). In such a case Step 3 is not

needed, since it can be deduced from Step 2 from the symmetry.

2.8 The Second Approach

If the load (forces and moments) vector T is partitioned to
a set of vectors %) ... Iy, where 71 1is the loed vector at the nodal
points of the i-th horizontal grid-line, and the deformation vector D
is partitioned in the same manner, and since the load vector Z; afising
at the nodal points of the i-th horizontal grid-line is caused by the
deformation vectors 5(1_1), d;, end 5(1+1) only, the stiffness matrix

is arranged to agree with:
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[k]

mym=1

99

[k]

mm

o
'1—4'

Iy

2
0ol (2.16)

oo

il
m

If the stiffnesses ofthe horizontal webs are the same, and they are equally

spaced, and if the stiffnessesof the vertical webs are the same and they

are equally spaced, and if also the cover plates have uniform thickness,

Equation (2.16) can be written as:

where

[B]

[c] [B]

[B]
[Azz] =[Bxz]
[ Bxz ] [Axx]
[yl Dyl
—}Bzz] =[Bxz]
[Bxz] [Bxx]
[ 0] -[Bxy]
[Czz] [ 0]
[ 0] [Cx3c]
[Ayz]

[0]

S

=

i

o
no

apd

(2.16")

and



qkzz] [sz]'Il
[D] = |[Bxz] [Axx]
ayz]  -[axy]T

[Ayz ]—T-
-[Axy]

[Ayl]

Imposing the boundary conditions by deleting the columns corresponding to

zero deflections and the corresponding rows in the stiffness matrix as

mentioned before, Equation (2.16') will be:

T, ([a1]  [B1]
7, (s)7  [c1]  [m]
M

_ .
s

oo (2.16")
(s2]°  [D1] T

where [Al], [Bl], [Cl] are of the order (3n-2) x (3n-2), [B2] is of the

order (3n-2) x (2n), and [D1] is of the order 2n x 2n.

Equation (2.16")

is equivalent to a set of linear algebraic equations in which only the

diagonal coefficients immediately adjacent to the diasgonal are non=-zero,

From Equation (2.16"),

7, = [m]dy +[m] 4l (1)
- T — —
2, = [B1] ar, + [c1] a, + [B1] dlq (2)
Ty, = [BTE, g+ o] ay o+ [(Bld,, (1) (2.17)
. ““i‘:..‘..'....';...'..."...:o
Ppq = [BIdL o+ [C1] &, + [B2] & (m-1)
- LI -
By, = [Bl'd@ .+ [p1] & (m)
The above set of equations is m equations in m unknowns, at ...ETQ. Let

1

us rewrite the above set of equations in the following form:
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— -1

a1, = -[ALl] [B1] dL, +[A1] 7 (1)

d, = -l d - entmtE s el ()

ar; = =[c1] "[B1] a1, - [C1 Y1) dl, , + [c1™ o, (1) (2.a77)
dl _i= -[c1] " B2] a, - rc1)~te1)? al, o + [c1]™ I, (m-1)

ar - (o1 eel” L+ [p1]~* L, (m)

Now let us use Equation (1) in the above set to eliminate Eii from
Equation (2), and then use Equation (2) to eliminate dl, from Equation (3).
If we proceed down the set, eliminating one equation from the next, we
shall end with one equation in one unknown, namely, aiﬁ, Now if we work
backward, we get aih_l from Eiﬁ, and 51&_2 from d1 _;, and so on until

we get dl ., To express this mathematically, let us define
1

- -1

U = [A1] 171'1

(W] = -[A1]" [B1]

[vy] = [c1] +[BL] w,]

T, = [V ll&le- [B1)" T, |
[Wp] = -[vy] " [B1]

[v,] = [c1] +[BLI W]

U, = [Vi_l]-llﬁi - [Bl]']‘ﬁi_ll
Wyl = -[v, 17 [B1)

(vl = [c1) + [BLI°W,]

Upy = [Vpapl” |“m 1= [B1]7 Uyz |

[w l == [Vm 2] [Bz]o



The above vectors and metrices can be determined successively, Now

Equation (2,17') can be rewritten as:

T, = (W] T, +7)
T, = [ Ty +0

L P 0000000000000 00000

ay; = (W) g, + Ty (2.17")
d%n—l = [Wm-l] dlm * Um-l

Substitute dL , in the last equation of (2,17'), and notice that Ly =0

(no applied moments). Then

(2.18)

—_— T | -1 T —
ar = -[[32] [wm_l] + [Dl]} [B2] Um_l

Equation (2.18) gives 315. Knowing the deformations at the bottom grid
line (rotations about the x- and the y-axes), we can go backward in
Equation (2,17") to determine Eii_l,..aii, respectively.

It has to be noticed that this approach does not produce the

flexibility matrix, it only solves the equations.

2,9 Stress Calculations

2,9.1 The Covers == From 55, 5§ known from the previous calculations,

rx = 6y h/2
Ty = 6x h/2
where ;E; Ty are the displacements in the x- and the y-directions,

respectively. From the derivation of the stiffness matrix of the plane

stress plate element (see Appendix I),



and V = [a]r.
Then

[B]

aj
]

=40=

(a1 [a]F

If we invert [A], and do the multiplications, we get

o = [T]

where

r

zm(tl+t5) by (tyrtg) By (89-%5)

[T] = E| -ty (to=tg)

t8 ~t7 t
where
t = 1/20(1v7) ,  t3
to = l/2a(l—v2) sty
ty = 1/2bx )y tg
A= 2(1+y)
or
o = 2 M1 Ti o
8
oy = izi T21 Ty
8
T = Z T ., I °
j=1 31 1

2,9.2 Shear Stresses in

y o (Bortg) by

8 tr -ty

v/ea(lwva) ,

v/2b(1-v2)

1/2a)

1}

and

-t3

o1
tg = y/va
tg = x/ba

the Webs == The average shear stress

T

= R/th

vhere R = -6EI(91+92)/L2(1+4n) + lQEI(Wl-wa)/L3(l+Mn) .

1, Eq. (A-’-#))
B
-(tl~t5) ~ty |
-ty ~(to-tg)
|
tg <t



III. ANALYSIS OF A SPECIFIC CASE

The finite-element analysis which has been explained in the
previous chapter was applied to a dock gate with dimensions as shown
in Figure 7, 160 feet wide, 50 feet deep, and 10 feet thick. Between
the two cover plates, 11 horizontal webs spaced at 5 feet and 17 vertical
webs spaced 10 feet apart are provided. The thickness of the cover
plaies as well as the webs is 0.5 inch.

To avoid buckling of the cover plates and the webs, stiffeners
may have to be provi@ed between the joints. The additional stiffness of
these stiffeners is generally very small compared to the stiffness of the
cover plates and the webs, so thatvit can be neglected. However, if it
is not sufficiently small, they can be included.

The gate is made of steel; the modulus of elasticity is 29,000,000
psi, and Poisson's ratio is 0,3,

It is assumed that the side-walls and the bottom sill provide a
simple support for‘three sides of the gate, i.e., the displacements in the
z-direction are equal to zero on these three sides, and the fourth side is
free.

Deformations at the joints, and stresses in the cover plates
and the webs, due to water pressure on the full height of the gate, were
calculated. The computations were done on the IBM 7090 electronic
computer. The solution would involve the inversion of a matrix of the

order 524 x 524; however, the second approach proposed in the previous

Iy .
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chapter was applied, and the highest order of a matrix inverted was
49 x 49, The bordering method(26) was used in the inversion, The
results of the analysis are shown in Figures 8 through 14, The
results shown represent two cases, In the first case, shear deforma-
tions of the webs were considered by substituting the appropriate

value for "n"; however, in the second case, shear deformations of the

webs were neglected by substituting zero for "n".

Since our structure is symmetrical and symmetrically loaded,
only the results on half the structure are shown. The deflection
curves considering shear deformations and neglecting it are shown by
the solid and the dashed curves, respectively, in Figure 8, The error
in the deflections because of neglecting shear deformations of the webs
is more appreciable.toward the support, as it should be.

The normal stresses oy (in the x-direction) in the cover
plates are shown in Figure 9. Since o, are assumed not to vary in
the x=direction within the element of the cover plate, it is assumed
that these calculated values are representative of conditions along
mid-sections of the elements as shown.

The stress discontinuities between eleﬁents is a natural
result, since each element is stressed independently of its neighbors,
and the gross continuity requirements which are satisfied only insure
a general similarity of stresses in adjacent elements, However, the

straight-line segments give very reasonable approximation of a smooth

stress curve.



*gqsM 9U3 JO SUOTFBUWIOISJ JBSYS IJUTFOooTI9N ~---
‘Sg9M 9U3 JO SUOTFBWIOIDC JBIYS SUTJISPTSUOY ——

‘(suot3eWIOFe( JIBIYS BulFOSTBON pue Sutaesprsuo))

*(ssyoul) suor3osTISd ‘g SamBTd
WPl 9.0
i 901"
|||||| =t
_ e == | inininhnininl sinlinielininisl Sl T =
=
=
L S s T S s S —
lllllllllllllllllllllllllllll T =
lllllllllll ————t— |
E————— F—————— ————=——f—-———=——F+
'''''' gfd”
ook s P — 929
Jzofe




-b5-

* (suotyeULIOFS( I83YS SurqooT8aN pus SUTISPTSUOD)

‘IS UOT308XT(-X SU3 UT 93BTJ-JI2A0D SY3 UT S3SS3I%5 TBUION
"S83M 3IHL 40 SNOLWYAYO043a ¥V3HS ONILO393N
*S83M 3HL1 40 SNOILVWNO0430d 3YV3HS 9NIN3AISNOD

6 2an3Td

tHT
THHHE

iflilidiiisa

e
(T
i

ilil

10T

ErneyndNpgpy o

T
T
e e o

ISX 0002l
ISX¥ 000-¢l

.::‘ﬂ i
illiliisiidak:

ISM Ol =D |



=46~

The normel stresses oy (in the y-direction) in the cover plates
are shown in Figure 10. Again, since oy are assumed not to vary in the
y=-direction within the element of the cover plate, it is assumed that
these calculated values are representative of conditions along mid-
sections of the elements as shown. Stress discontinuities between
elements are again not serious; the reason for these discontinuities
as mentioned before, and the straight-line segments give a very reasonable
approximation of a smooth stress curve,

Shear stresses T1... in the cover plates are shown in Figure 11.

X
The shear stress was assumed to be constant within the element, so the
calculated values are representative of conditions along mid-sections
of the elements as mentioned before. Shear stresses Txy are equal to

Tyx and could be drawn as horizontal line segments through mid-sections
of the elements.

Shear stresses in the web elements T1,, and Tyz which are
constant within each web element are shown in Figures 12 and 13
respectively. The reactions at the boundary joints calculated bothﬁ
ways (considering and neglecting shear deformations of the webs) are
shown in Figure 1k,

The steps in the actual machine computation will not be
detailed here. However, for the previous example the amount of time
required by the IBM 7090 to carry out such computations was about 2h
minutes.

To check the accuracy of the computations, the sum of the

reactions was compared with the sum of the applied loads; the two

sums are identical.
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In general, the results which we obtain are exact as long as
our assumptions are valid,

All the assumptions except 6 and 7 in Chapter iI are widely
accepted in theory of structures, Assumptions 6 and 7 stated that the

normal stresses Oux and o, in the cover plates are varied linearly

Jy
between the nodal points and that the shear stresses are uniform between
the nodal points, So the results obtained will be accurate as long as
the stress patterns assumed in the cover plates is reasonably represent-
ative of the actual stress patterns. However, in this method we calculate
deflections from an approximated stress pattern. This in general gives
better results than the ones from a method in which we calculate stresses
from an approximated deflection pattern, since the first is in general an
intergration proéess while the second is a differentiation process,

The size of the mesh provided by the actual spacing of the
webs seems to be adequate for accurate answers in the previous example.

However, if the webs are too widely spaced and too few, we can introduce

further grid lines intermediate between the actual webs,



IV. EXPERIMENTAL ANALYSIS

As several simplifying assumptions were necessarily involved
in the analytical solution, it seemed aesirable to check the validity
of these simplifying assumptions by experimental work on a small=-scale
celluloid model, The model, test procedure, and results will now be

discussed.,

4,1 Material Used

The use of plastic models is an attractive approach for the
determination of deflections and stresses, Not only are such models
inexpensive, but they can also be constructed quickly and tested with
relatively simple experimental equipment. Although this saving in
time and cost is probably obtained with some sacrifice of accuracy
of results, it is believed that these disadvahtages can be minimized by
proper and careful testing,

Transparent cellulose acetate sheets of uniform thickness

were used, They are available in sizes 20" x 50" in various gages.

4L.,2 Properties of the Material

The mechanical properties of the cellulose acetate sheets
have been described by Celanese Corporation of America -~ Plastics
Division in their bulletin B-19 (September 15, 1959), Some useful
information about fabricating the sheets was given in their bulletin
B-11 (March 30, 1959). However, a simple tension test is necessary
to determine the required information which is not available in the

bulletin and to check the available information, A 24 inch long and

~53=
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2 inch wide rectangular specimen was cut out of one of the four

50" x 20" x .06" sheets used to build the model. The specimen was
reinforced with four 2" x 2" x .06" plates from the same material,
which were cemented to it one on each side at both ends. A 1/k-inch
hole was drilled with its center on the centerline of the specimen
and at one inch from the end, for a 1/h-inch pin at one end; 1/8-inch
hole was drilled at the similar location on the other end, for a
l/8~inch steel cable. The cable was passed over a pulley, and a
hanger with a loading platform screwed to its end was suspended from
the other end of the cable, The specimen was horizontal during the
test, The test set-up was held by a 3/hminch plywood platform which-
was attached to a rigid steel frame.

Two SRL-A? strain gages were attached to one side of the
specimen at the middle, one to measure the longitudinal strain and
the other to measure the transverse strain, Figure 15 shows the test
set-up.

The specimen Qas loaded gradually in tension by hanging about
140 1b,., in seven nearly equal increments, from the cable. The specimen
was loaded and unloaded three times., The longitudinal and transverse
strains were recorded each time (see Figure 16). The specimen was
tested also in an inverted position. The results did not show any
appreciable change. The stress=-strain curve shows a linear relation
over the test range of loading, which corresponds to a maximum stress
in the specimen of approximately 1350 psi. Care was taken not to

exceed 1000 psi as a maximum normal stress when testing the model.
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The ratio between the transverse strain and the longitudinal strain
(Poisson's ratio) was found to be 0.35, The ratio between the stress
calculated by dividing the applied load by the cross-sectional area
of the specimen (2" x .06"), and the strain recorded for that load
(Young's modulus of elasticity), was found to be 380,000 psi. The
room temperature was YOQF, and the relative humidity was 15%, The
material is isotropic, and it was assumed that the modulus of elasticity
is the same for tension and compression,

It should be noticed that the properties of the celluloid
vary with temperature and humidity, although it remains linearly
elastic for a wide range. The modulus of elasticity in flexure and
the tensible strength at 739F and at various degrees of relative humidity,
are tabulated below as teken from the Celanese Plastics Company's Techni-

cal Bulletin B-19, to show the effect of humidity:

TABLE I

EFFECT OF HUMIDITY ON CELLULOID PROPERTIES

R. Humidity Tensile Strength, Mod. of Elasticity,
Psi Psi
0% 9000 380,000
50% 7500 300,000
90% 5500 250,000

Care was taken during the test course to record the temperature as well
as the relative humidity in the test room, and to correct for these

effects.
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Similar to all other plastic meterials, if a constant loed
is applied, the model will continue to deform under this load. This
is a time effect manifesting itself as "creap". The effect of creep
must be taken into consideration when comparing the experimental

results with analytical solutions.

4.3 The Model

The model was proportioned similar to the actual gates. As
shown in Figure 17, the length of the model is 49 inches, the depth
is 15 inches, and the thickness is 3.5 inches. Six horizontal webs
spaced 3 inches apart and seven vertical webs spaced 7 inches apart
are provided befween the two cover plates., The thickness of the webs
as well as the cover plates is .06 inch, The parts of the model were
first sawed a little oversize from the original 50" x 20" x ,06"
sheets, and then the exact dimensions were obtained by using a fine
sander, The parts were attached together with "Duco Cement", which

was tested and proved its adequateness.

L.4 The Supporting Frame

A rigid wooden U-frame supported directly on the floor, on
which 2" x 3" bearing plates were fastened at spacing corresponding
to the web spacing (see Plates 1 and 2), was made, Ball bearings of
5/l6~inch diameter were seated in circular holes which had been
drilled in the bearing plates. Circular steel posts 4 inches in
height and of l/2~inch diameter were fixed upright perpendicular to

the bearing plates, which are used as a guide for another plate with
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Plate 1. The Tesgt Set-Up.

Plate 2. The Loaded Model.



& circular hole drilled exactly concentric with the hole in the bearing
plate (drilled while the two plates are clamped together), holding
another 5/l6~inch ball bearing. The model is supported between the
two ball bearings, whose centers are on the same vertical axis through
the web intersection (see Plate 3).

The smooth ball bearings are free to move in their seats and
the top and bottom surfaces of the model are very smooth, so it is
felt that this kind of support will prevent only lateral (perpendicular
to the middle plane between the cover plates) displacements at the
boundary nodal points. This agrees with the boundary condtions assumed

"o

in the analytical solution, where the lateral displacements "w' were

assumed to be zero at the boundary nodal points,

4.5 The Test Load

The test load applied to the model was limited to about 510 lbs
which corresponds to about 100 lbs/ftg, This limit was set to be sure that
the maximum stress will be within the linearly elastic region, to avoid
buckling of the top surface of the model, and to keep deformations in
the model within the scope of reading of the measuring instruments.

The test load consisted of steel blocks of about 2,3 1lbs each, resting
directly on the top surface of the model, and uniformly distributed.

The load was applied in five increments of about 100 lbs each.

4.6 The Measuring Instruments

Calibrated Ames dial deflectometers, reading .00l inch per

division, were used to measure deflections. SRL-AT strain gages were
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Plate 3. Support Details.
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attached to the model to measure the strain. The accuracy in reading
the strain is one micro inch/inch. Duco Cement was used to attach the
strain gages to the model, taking care to follow the instructions for

attaching such gages available in the technical bulletins.

4,7 Preliminary Tests

To measure €y (strain in the longitudinal direction), and €y
(strain in the transverse direction), top and bottom, four SRL-AT
strain gages were attached to the model at point A (see Figure 17),
twoon each side.

The strains measured top and bottom were almost equal and opposite.
So it was decided that for convenience and to have room for the loads on
the top surface of the model, strain gages had to be attached only to the
bottom surface of the model, and it was assumed that the strains in the
top surface are of the same magnitude and in the opposite direction,

The strain resulting from the iﬁcrease in temperature (due to
the heat from the electric current in the gage) was apprecisble, because
the coefficient of thermal expansion of the cellulose sheets is rela-
tively high (coefficient of linear thermal expansion = ,00014 per degree
Fahrenheit). It was therefore decided to use a compensating dummy gage,
attached to a similarly restrained structure constructed from the same
material mainly for this purpose. This was placed just under the model
(see Plates 1 and 2). Preliminary tests showed that more than one
compensating dummy gage was needed, so that they can be comnected with
the active gages in a pattern allowing the active and the dummy to be at

the same temperature whenever an active gage is read, provided that the
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active gages are read in the appropriate order. Deflectometers were
placed at various bearing plates to measure the settlements of the
supports (Plate 3). Very small settlements were measured at the

supports, which were about 1% of the meximum deflection in the model.,
Since it was practically impossible to eliminate such settlements, it

was decided to correct for them., Symmetry about the S-5 axis in the
model (see Figure 17) was checked by measuring deflections at symmetrical
points; the model was found to be perfectly symmetrical, so it was decided
to meagsure deflections and strains only on one side of the axis of

symmetry S-S,

4.8 The Test

Forty-eight SR4-AT7 strain gages were attached to the bottom
nodal points on one side of the model, as shown in Figure 18, Also,
six gages were attached to the boundary webs on the neutral axis to
measure the strain in the direction parallel to the covers which is
assumed to be zero (the middle surface is a neutral surface), Six
compensating gages were connected with the 54 active ones to balance
for the temperature strain from the heat due to the electric current
in the gage, mentioned before.

The gages were connected in series to three switch boxes, and
then to the indicator, to switch, balance, and read one gage at a time.
The time to balance and read each gage was about 90 seconds. Also, two
deflectometers were inserted upright under two nodal points on the
other side of the model as shown in Plates 1 and 2, and as indicated

in Figure 18,
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The 510-1b load‘was applied in five nearly equal increments,
as mentioned before. Deflections and strains were read before and
after applying each increment of load. The difference between the
two readings is the deflection or strain due to the applied increment.

The temperature and the relative humidity in the test room
were measured before and after the test; the average temperature was
SIOF, and the average relative humidity was 29% so the corresponding

value for Young's modulus of elasticity is 300,000 psi.

L.9 Test Resulte and Comparison with Analytical Answers

The average strains (ex‘s and ey?s) in the cover from the

test are plotted on Figures 19 and 20.
From the stresses calculated analytically and using the
stress=strain relationships,
e, = (o, - voy)/E , and
€

'y = (cy - vox)/E ,

the analytical strains were computed and plotted on the same figures
for comparison.

The deflections at points A and B are shown on Figure 19. The
numbers between parentheses are the average measured experimentally, and
the other numbers are calculated analytically.

The strain measured on the webs was very small, especially
the strain at sl and s2, whereas the strain at s3, sk, s5, and s6 was
more appreciable, |

Ag shown in Figures 19 and 20 the experimental results agree

reasonably with the analytical answers, and the scatter of the results
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seen 1s within the range that has to be expected. Values measured are
in general bigger than the calculated values, as predicted. This is
due to the effect of creep. Better results might be obtained from an
aluminum model; however, it is felt that using the plastic model is
adequate for our purpose.

If all the possible influences on test results are considered,
the correspondence between theoretical and experimental results is quite

satisfactory,



V. THIN ISOTROPIC PIATE SOLUTION VS, FINITE ELEMENT SOLUTION

If we assume that the two parallel cover plates supply all
of the bending resistance and if we neglect web shear deformation,
then the structure consisting of two cover plates each of thickness
t, and éeparated by a distance h, where h >> t., will behave like an
isotropic plate which has a flexural rigidity D = Ehgtc/Q(lwvg)g
provided that the webs are close enough to ensure that the plating
is fully effective,

Such idealization has been checked by Jaeger(B) experimentally.

His observations were made for deflections only. The idealized plate

solution and the finite element solution are compared in this chapter.

5,1 Thin Isotropic Plate Solution

Consider a plate with three edges simply supported and the
fourth edge free, and subjected to a hydrostatic pressure, as shown

in Figure 21. The boundary conditions are:

2 .
w = 0, §=E =0 , atx = = E and X = 2
G ’ 2 2
> N voPw -
o2 2
;, aty =0
Sw . dw
— * (2-v) 5 - 0
dy~ dyox”~
2.
w = 0, %—g = 0 , aty=a
52

and the plate bending equation is:
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The deflection

and is given in the form:

Deflections:
b - (nwlYQ ®
kab }i 1 nx ;T
vo= J = (-1) cos — + (A, cosh
TE5D [ _i n5 b /. n
n:ly3,aa n:l;3,eo
inp 20X B g 20 DY o BT
B, sinh el Cn = sinh ===+ Dn = osh T )
COS‘IEQE’ D00QO0O0CO0O0O000O0 (501)
b
where
-
2T
D, = — . cotgh nx®
n 2 sinh nnC® n
B, = Lty - 2”;) - L ¢, cotgh naQ
. 1=y \2 sinh nn® nx 1=y
= 70l (D inh nro
Ch = af LI - o v) sinh nn }.;
" 2(1-v) (1-v) nno
Q4 3tV cosh nnd
sinh npQ 1=y
b (n-1)2

%

no7oD

surface equation can be derived using M. Levy's method,

nry

From the deflection surface equation moments, shears, and reactions

are derivable, namely,

+
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Moments
P >Pw
- D
e [Bxg Byg}

Cn <n“y sinh &Y - 2(1tv) cosh -r-lﬂ> +
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where Mx is the bending moment per unit length about the y-axis
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where My is the bending moment per unit length about the x=-axis
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where Mxy is the twisting moment per unit length,

Shears
S B
o)
[o0]
ng 3 nyy nny
Vx = D /. —%l - Ny + 2 Cy cosh,mz— + 2 D sinh =
l’l==l, 3; o0
. nux
sin ~%— P (5.5)

where Vx 1s the shearing force in the y-z plane per unit length

Vy = = §zﬂ + 3w > D
dy3 oy

3 ‘
vy = y (”“V\ [ L -2C, sinhﬂ%sz=-2Dn
' npihé,oo

!

coéh—-x} cos f%X feoe e (5.6)

where Vy is the‘shearing force in the x-z plane per unit length

Reactions
. 3 3
Rx = {Vx - QM—Q} . {O =+ (2) ﬁ_‘%} D
dy dy> dxdy“

<

o0
g b ng - . ny
R(x = E) =D Ez Q. ) sin . [=Nny + (1=v)[Bp sinh =g+ +
=1y350

¢, (2 cosh B 4 DY gynn B ) o p (220) gy D1y,
b b b 1y b

1 nr. ;

—%X cosh —gl)]} oo neeeros (5.7)

b
where Rx is the reaction per unit length at the sides (x = i‘g)



3 3
Ry = [Vy + QMXE} = - [Q;K (2-v) 62w } D
BX ay3 ax ay
o0
3 2=y b
ngy
Rly=2a) = D e l-v) |— — N_ + B, cosh ng® +
(y ) }: (b ) (1-v) [lmv g D n
I’l=l,3, ° o
C, (nn® cosh nnQ - %{% sinh nn®) + Dy (nn@ sinh nnQ -
2V cosn nﬂa)]
l-v
cos E%E e (5.8)

where Ry is the reaction per unit length at the bottom (y = a).
The moments and the shears are considered positive when they are directed

as shown in Figure 22.

5.2 Stresses

5.2,1 Stresses Due to the Bending Moments Mx and My =-=- Since the

contribution of the webs to the flexural rigidity is neglected, the
bending moments will be resisted by the two cover plates, Then:

o, t.h = Mx

x “c
oy tch = My
or
o. = + Mx
X T =
t, b
o, = + My
J t. h

¢

where Oy and o, are the normal stresses in the cover plates in the x-

y

and the y-directions, respectively.
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Vyp / Myx

M-y 7 = X
VX , lqudy
Mxy ! dy Mxy ¢ IMXY g,
Z X
Vx+ dvx dx
dx dx
P dMx
My+ tMy dy - ;i/’" Mx + i dx
J 4 Ty
/ 1 ] y+—dy— y
Y My”cLMyx dy

Figure 22, Directions of Positive Load, Moments, and
Shears.
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5.2.2 Stresses Due to the Twisting Moments Mxy and Myx -=- The twisting
moments will give rise to horizontal shear stresses Txys and Tyx in the

cover plates, where

TXy - My B and
t. h
Myx
T =
v t . h
c

Due to the variation in Mxy and Myx, we have vertically distributed
shearing forces Mxy/dy (acting along any cross section parallel to
the y-axis), and oMyx/dx (acting along any cross section parallel to
the x-axis), respectively. Also, we have concentrated shearing forces
whiéh are equal to Mxy and Myx, acting at the short side edges of the
cross sections parallel to the y- and the x-axes, respectively.

For the ceilular structure (see Figure 23), the vertical

shear stresses in the webs will be:

My
Txzp T Ty
W
(M -Mxy3)
TXZ = [ .,
1T t h
T . My
XZ ——
A t, h
i _ (Myxg-Myxs)
Y2111 t. h
T = - M:}’X7
T2y t

In the previous Tyz and. Tyz stresses, notice that Mxy and Myx are moments
per unit length, so they have the dimensions of force. The sign conven-

tion follows that in Figure 22,
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5.2.3 Stresses Due to the Vertical Shearing Forces Vx and Vy -- The

shearing forces Vx and Vy will give rise to vertical shear stresses Ty,
and Tyz respectively.
For the cellular structure (see Figure 23), the vertical

shear stresses in the webs will be:

Txzp = Vxr a/(2t, h)
Txapp VxIIa/(tW h )
TXZV = VXV a/(Etw h)
TYZIII = VyIIl_b/(tw h)
Yo, VyIV b/(2twh)

The total shearing stresses in the webs are the algebraic
sum of the shearing stresses due to the twisting moments and the ones

due to the shearing forces.

5.3 Evaluation of the Plate Solution

Deflections are calculated at the web intersections. Bending
moments Mx and shearing forces Vx are calculated at the middle of the
horizontal webs between web intersections. Bending moments My and
shearing forces Vy are calculated at the middle of the vertical webs
between web intersections, Twisting moments Mxy are calculated at the
centers of the panels (see Figure 24).

Using the stress formulae given before, normal stresses Oy
and o

and shearing stresses T , and T, are calculated at the

y? xy? Txz vz
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corresponding points, Reactions are calculated at the web intersections
on the three supported boundaries using Equations (5.7) and (5.8); these
reactions are uniformly distributed, so to calculate the concentrated
reactions we multiply by the corresponding web spacing. The twisting
moments at the corners are calculated and the corresponding concentrated
reactions are calculated from theﬁ (Mxy ).

A computer program evaluates deflections, moments, shears,

reactions, and stresses by considering ten terms of the series. The

steps in the actual machine computation are omitted here.

5,4 Comparison Between the Finite Element Solution and the Plate Solution

The same gate example solved in Chapter III, using the finite-
element method, is solved again using the plate idealization. For com-
parison, the results from the two different solutions are given in
Figures 25-31. Deflections at the web intersections calculated by the
finite-element method considering and neglecting web shear deformation
are listed in the two top lines, respectively, and the deflections
calculated by the plate method are listed in the third line. As one
can see, the deflections calculated by the finite-element method,
neglecting web shear deformations, are identical with the deflections
calculated using the plate idealization., Normal stresses in the

cover plates Oy and 0. are shown in Figures 26 and 27, The difference

¥
between the results of the two methods is small, and it is tolerable
for practical design. Shear stresses in the cover plates are shown

in Figure 28. The difference between the results of the two methods

is more appreciable in the plate elements of the cover near the boundary;
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however, the difference elsewhere is not much and can be considered
tolerable for practical design. There is disagreement between the
shear stresses in the webs calculated by the finite element method
and those calculated from the idealized plate, as one can see in
Flgures 29 and 30.

The reactions listed in Figure 31 indicate considerable
deviation between the two methods near the corners of the structure.
However, this difference is less away from the corners, One should
notice that, in the finite~element solution, we lumped the water=-
pressure distribution as concentrated loads acting at the web inter-
sections; however, this was not done in the plate solution and we
consider the actual water-pressure distribution all over the area of
the gate, Reacfions shown in italics are obtained by adding to the
reactions from the finite~element method the corresponding concentrated
loads at the corresponding web intersections on the boundary.

To be able to arrive at general conclusions, the following
examples have been solved using the finite-element solution and the
plate solution, (Table II),

In Figure 32 deflections in gates "1", "2", and "3" are
compared, In gate "3" we have thin cover plates (.375") and thick
web plates (,75"), while gate "2" has thick cover plates (,75") and
thin web plates (.375"), and gate "1" has cover plates as thick as
the web plates (.5").

According to the idealized plate solution, since the width,

the depth, and the distance between the cover plates are the same for



87~

IS

_m-- simseee A T

X

*(93®BTd PSZTTESPI °SA JUSWSTH 93TUTL)
1l Sg9M TBJUOZTJIOH SY3 UL S9SSaJ3S JI83a3yYgs 62

NOIlNT0S 31vd
NOILNT0S 1IN3IW3T3

2an8T

3J1INIS

IR

TTTITIITIT

T

TIITTITITITIITIT
e ——

IO T OIUIT

IENINENENNEREN]

TR

1

AP RN FrEI=CIS-CramArpIEgN=EyEm]

JTHIHIHIFEH

EESISEET

=EBISIIASSCEXIAE

[ISERICEISEICEYE

= Ea3-cxairrrIacCEasssanl

HHIFE AT

TATATATATE FH FFHHIEH

ddnaEinEddn k&

PRI P AT FAT AT

AT OTAT

LTI

(T

[ SO,




KSI.

=10

I CM.

-88-

).

Tdealized Plate).

smamsnsiNRINEN | nannnuan-cocoam:
S e s
smpmanniREINENIRENRNAN)
__________________ =TT
mp INNINE LIILIT
i L S an LI
e s s il T
myqansandRRRERRARRRNRNunnunnn; -
e T
A aTETEl ] I
-------------------- s TR T
--------------- i 111
magswpesAREENE) | _l_l_l_l_l_l_l__lllil_'_'_u'“ TTITITT

Shear Stresses in the Vertical Webs T

(Finite Element vs.

ELEMENT SOLUTION

PLATE SOLUTION
Figure 30.

FINITE



_89-

(21eTd POZTTROPI °SA JUSWSTH 93TUT.I)

°sdTy UT SUOCTAOBay °TE 2an3Td

€Co°lyl  Lgo6nl GOT'6EL  6£6°QIL  9QL 669 LLE°GH9 88l TLG  HTI6°OfH

NNy 4 bt HS/ @mN;mWN 117010/ \©®AV¢© H/€ /3G MNN%@ﬁ&
9L7°29G @n0°649 OERLHS  TH9°G2S  TOW G8S HIOTTTS €LE°TLE QIn° 20T

51841

°d

sq°

9IS 898~
ST2 906~

3e8-f2

1SC16
S8 g2

\ o
78

B

c09'0cc
209 T8t

Toe s

{95

e

CSL 978

266 ° QL

s

TH A

GGz walt-
oTeg-set
G611 £QT
860 * 802
g6 °TTC
Ggl 10T
€€l °TgT
£€2E°64T
L0G 62T
265°66
LET GEET
!



=90~

°sossauUNO Ty, 248Td I9A0) JUSISIITA YITH

s91BH S92JUT, UT SUOTLOSTISJ U3 U2aMm3ag uosT.aeduiod

2¢ 2an3Td
°¢ 298Y pur g 2783 UT S9SSOUYOTYUIL 99eTd USSMIS] OTLBHwx
°¢ 2983 pue T 2188 UT s95saUNMoTUl 218Td USSMISG OT1BNx

TO6YP ™10 79910 LLEYO s1eTd
Orh T HSEFT 260§T 0G9ro 2z x
LETTT Lo0o{T £46810 L6HT0 C/v ¥ T#
LE6%0 2,310 $69§0 00%FO £

SGL9T LeSqT IR R w2lLfO s1eTd
189 e QTS ie #TOL2 QOTFT g x z#
0ST e 02092 €09fT L1670 /0 % T#
208 4T 2891T STAS AN 0%.LFO c#
TGS e SIRS I 098 T LEOrT °1eTd
2gL9E oloeh 19 0Tgfe QOSIT 2 x z#
$go 1€ 08812 T.2fe £gerT /1 X T#
00992 cewie Q681 T 290FT cH#
LOoE1E LLOjE 00 { & OLErT 21BTd
008t 78T onsfE gTof T 2 % 2f
966 4¢ L891¢e S6gre 2ol T /0 ¥ T#
eSS 19 £2Tit LExqEe HGEPT cH#
TS0 14 GLLiE 6£6fe £29FT 238Td
9281s gEN S 62 geHfe ‘xx C X S
829 1 L6ETH 1514 39 TGQ6FT #5 /0 ¥ T#
HTT 7281¢ aL6re 24T : e




=91-

TABLE II

DIMENSIONS OF SOLVED EXAMPLES

Gate * 2 3 b 5 607
Width (feet) 160 160 160 160 160 160 160
Depth (feet) 50 50 50 50 50 50 50
Distance between cover 10 10 10 10 10 5 15

plates (feet)
Spacing of hl, webs (feet) 5 5 5 2.5 10 5 5
Spacing of vl. webs (feet) 10 10 10 20 20/3 10 10

Thickness of cover plates ) o5 375 ) D oD )
(inches)

Thickness of hl. webs .5 375 . 1> ) ) ) ¢
(inches)
Thickness of vl. webs 5 375 .15 o5 o5 ) 5
(inches)

#¥Two finite-element solutions, considering and neglecting web
shear deformations, respectively.

all three gates, the ratio of the deflections will be proportional to
the corresponding ratio of the thickness of the cover plates. For
comparison, let us multiply the finite-element solution deflections
for gate "1" by the ratio of the thickness of cover plate "1" (of
gate 1) to the thickness of cover plates "3" (of gate 3), namely
.5/.375, and similarly for gate "2" multiply by the ratio of the
thickness of cover plate "2" to the thickness of cover plate "3",
namely 975/03750 The modification of the deflections for gates "1"

and "2" will not affect the comparison between the finite element

solution and the plate solution, since we multiply both solutions
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by the same factor, and it will enable us to compare the deflections
from the finite element solution for the three gates with only one

set of deflections from the plate solution, namely, that of gate "3".
The deflections in gate "3" and the modified deflections in gates "1"
and "2" are shown in Figure 32 as well asg the deflections calculated
using the plate idealization, The deflections from the finite-element
solution in gate "3" can be considered nearly identical with those from
the plate solution., Meanwhile there is a considerable difference between
the results of the two solutions in gate "1", and this difference is
still greater in gate "2", Gates "1", "4, and "S" have the same width,
depth, and distance between cover plates, cover plate thickness, and
web thickness, However, they have different web spacings as indicated
in Table IT, The deflections calculated in the three gates using the
plate method should naturally be the same. The deflections for the
three gates using the finite-element method and the plate method are
listed in Figure 33. As one can see, the difference between the
deflections in the three gates calculated using the finite-element
method is not appreciable.

Finally, gates "6", "1", and "7" have the same width, depth,
spacing of webs, thickness of cover plates; and thickness of webs,
However, the distance between the cover plates are 5 feet, 10 feet,
and 15 feet, respectively., In the idealized plate solution, since
the contribution of the webs to the flexural rigidity of the structure
is neglected and no regard is given to web shear deformations, the

deflections of the gates will be proportional to the square of the
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corresponding distance between the cover plates, For comparison, the
deflections of the three gates calculated using the finite-element
method are listed in Figure 3% in which the deflections of gate "1"
and "7" are modified by multiplying by the square of the corresponding
ratio between the spacings of the cover plates. Again, as mentioned
before, this modification will not affect the comparison. The results
shown in Figure 34 indicate that the difference between the modified
deflections of gates "1" and "7" and the deflections of gate "&", all
calculated using the finite~element method, is very small,

Conclusions from the comparison between the stressesvin the
various elements of the above examples calculated using the finite-
element method and the plate method are included in the next section.
However, the values of these stresses are not shown, One more example
in which the width-to=-depth ratio is 2:1 is solved using both methods.

The dimensions of this example are given below

Width (feet) 100
Depth (feet) 50
Distance between skin {feet) 8
Spacing of hl., webs (feet) 5
Spacing of vl, webs (feet) 25/3
Thickness of skin (inches) o5
Thickness of hl. webs (inches) 5
Thickness of vl, webs (inches) )

The results for this example are omitted; however, the conclusions

from the comparison between the two solutions are included below,
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5.5 Concluding Remarks

The conclusions from the previous studies of the comparison
between the finite element solutions and the plate solutions are ag
follows:

1. The contribution of the cover plates to the flexural
rigidity of the structure greatly exceeds the contribution of the webs.

2, The anisotropy due to unequal web spacings in both
directions has a small effect on the deflections, and on the stresses
in the cover plates.

3. Shear deformations of the webs are appreciable, especially
for relatively thin webs, and they are more appreciable toward the
supports.

L, Thé plate method furnishes sufficiently good information
regarding the distribution of the normal stresses in the cover plates,
and the error in the maximum stress is within + 10% as an average in
the ahove examples.,

5, Except for a zone around the edges, the plate method
furnishes sufficiently good information regarding the distribution of
the shear stresses in the cover plates.

6. The plate method fails to furnish sufficiently good
information regarding the distribution of the shear stresses in the
webs or the reactions at the supports.

7. In both methods, the cover plates were assumed to be
completely effective between the webs. However, as the web spacing

gets larger, the distribution of normal stresses in the cover plates



will be remarkably higher at the cover-web Juncture than at the middle
between webs, and the cover plates cannot be assumed to be fully
effective between the webs., This is referred to as "Shear Lag," since,
due to the localized manner in which the shear stresses are transmitted
to the cover plates, the strips of the cover plates more remote from
the cover=-web juncture will lag farther back than those near the wébsn
8. If buckling of the cover plates in compression occur its
width between the webs would not be fully effective, It 1s assumed

that no buckling will take place.



VI, SUMMARY AND CONCLUSIONS

The advantageous statical properties of cellular structures as
well as the economy which can be achieved by their use make them useful
for many kinds of civil engineering structures, one of which is the dock
flap gate,

The work done on structural analysis of dock flap gates and simi-
lar structures was studied., Although dock gates are large and expensive
structures, very little attention appears to have been devoted to the
investigation of the stress distribution in them. The conventional method
of design used in practice nowadays is based on the thin isotropic plate
theory. Plate theory may give us a very good approximation for the stresses
in the cover plates, but it cannot furnish a reasonable approximation for
shear stresses in the web elements. The absence of an accurate analysis
may lead to a wasteful disposition of material in the gate.

Fortunately, much attention has been given to similar aircraft
structures., A structural idealization which has been used before in similar
aircraft structures has been adopted to the problem of the dock gate., This
idealization is based on treating the structure as an assembly of plane
elements, whose lines of intersection intersect at a finite number of
points, at which the conditions of equilibrium and the compatibility of
deformations must be satisfied, The analysis involves the derivation of
the stiffness matrix of the individual elements and using it to formulate

the stiffness matrix of the total structure.
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In Chapter II, a method was presented to formulate the stiffness
matrix of the sgtructure and arrange it in a pattern that simplifies its
formulation and facilitates the computations. Also, two different schemes
have been presented to minimize the amount of computation and to cut down
the time and the storage required by the machine. They render the appli-
cation of the idealization possible with respect to the gate structure
which has relatively large number of elements.

Several examples for dock gates have been solved using the
~newly adopted method. In Chapter III, the results obtained for one of
these examples have been presented and their accuracy has been discussed,

Although the assumptions involved in the method presented in
this study are widely adopted in the structural theory, an experimental
check was carried out, The test results {deflections and strains) veri-
fied the applicability of these assumptions and proved that they do not
impose any considerable errors,

A complete comparison between the proposed method of analysis
and the conventional method adopted in practice (hypothetical thin iso-
tropic plate) was presented in Chapter V., It showed the errors involved
in the conventional method.

Although the mehtod presented here was directly applied to
gates with solid webs, it can as well be easily applied when the webs are
in the form of trusses. The truss element stiffness matrix can be easily

derived using the basic concepts of the theory of structures.,
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Although the web spacing has shown to have little effect on the

horizontal stress distribution g, , Iy and Txy?

, and Tyz . The writer recommends,

it obviously affects
the vertical stress distribution Tz
as implied from the results of the investigation conducted in the course
of this study the use of webs which are spaced closer near the supported
edges to take care of the high shears there, This does not invalidate
the analysis presented in this dissertation, nor does it introduce any
serious complications,

As a step toward an optimum design, the writer suggests the use
of elements (cover elements and web elements) with different thicknesses
according to the stress distribution in the structure. This can be
achieved using the method outlined here,

When the dock cross section has some shape other than that of
a rectangle, the method presented here, together with a stiffness matrix
for a triangular plate element which can be derived similarly to deriving
the rectangular element stiffness matrix,(19> can take care of any irregular
shape of the boundary.,

It is thus hoped that this study contributes to a better under-
standing of the structural behavior of cellular structures in general and

of dock flap gates in particular,



in Figure Al.

APPENDIX I

STIFFNESS MATRIX OF THE PLANE STRESS PIATE ELEMENT

The general form of the rectangular plate element is shown

The deformations of the element can be described only

with respect to some specific system, which is provided arbitrarily

by the three reactions shown in Figure Al.

The five degrees of free-

dom due to the remaining five nodal displacement components will be

expressed by five independent stress patterns shown in Figure Al, which

are associated with a characteristic nodal deformation patterns shown

in Figure Al.

The linear relationship between nodal displacements and the

deformation patterns can be expressed in matrix form as follows:

or

Then:

Ql
i

B

-vb 0
a2
0 b
-8 a
D
b -2
b
-&a =8,

dh m
-a) n
0 p
-a) q
Q| r

(A-1)

(A-2)
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Figure Al. Assumed Stress and Corresponding

Deformation Patterns.
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The stress at any point in the plate may be expressed in terms of the

stress patterns as follows:

o 1 & 0 0 "
X a
g =10 0 1 2 0 n
y b
T 0 0 0 0 +1 D
a
T

or

o =[Bla. (A-3)
Introduce (A-2) into (A-3); then

- R

o= [B] [A] TV, (A-L)
The stress~-strain relationship of plane elasticity

€y 1 -V Oy

1

: = = -V 1

“y - l"y

I4 | __Q 0 'T
or

€= [Cl T, (A-5)

Introduce (A-4) into (A-5); then

T = [C][BIA]Y T (A-6)
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If the plate is subjected to a set of external nodal forces S,

where

€21}

I

(@8]
=<

L

then S is in equilibrium with a system of internal stresses 0o .
Tet the element be subjected successively to arbitrary virtual nodal

A
displacements V, which is compatible with the internal virtual
A

strains € ; then the external work

A
(We) = VL §

and the internal work

A
(Wi) ‘ tff'gf T dxdy .

i

From (A-6)

A AT
ET =

Then:
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or

A
VS =t/ 7 AT s c1R AT T axay .

>

And since V is arbitrary, then
—_ -1 ) ) ) -1 =
5 = t//IaT I (BITICI[BIAT™ V axay .

And since V are not functions of x or y , then

(2]
I

, { o fra L1 BT o) (3] (A1 axdy } 7
or
S =[K]V

vhere (K] = t/f[A711T[BIT[C)BI[A] ™Y axdy .
If the matrix inversion and multiplications are performed, and the
resulting matrix is integrated term by term between the limits
-2 ana +2; and - 2and + & in the x and directions
2 2 z 2 v ’

respectively, the final result is:

[(a40,)  (-cq-87) (-1-v)  (cp-ay)  (1-3v)
(-cp-aq)  (ap+by)  (14v) (—bl+al) (3v-1)

| Ete

(K] = m (-1-v) (1+v) (a2+b2) (1-3v) (C2’32>
(c1-87)  (-bpvay) (1-3v ) (aptby)  (-1-v)
(1-3v)  (3v-1)  (cpap)  (-1-v)  (ay )
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n
[t}
il

E(Q-VE)/3m , Gy 2(24v2) /3m

om(b-v2) /3, ¢

vhere a =m(l-v) , Dy

2n(24v2) /3

&

and m = E .
a

(1-v)/m, ©

1]
u

2 2

From the kinematics of the element (Figure A2), one can relate the

8 nodal displacement vector r to the displacement vector v such

that
v=_[alr,
where
1 o 1 o o o o 0
S I -% o 0o 1 o0
[a] = o -1 0 o o o 0 1
-1 L o -L 1 0 0 0
m m
0 0o o -1 o 1 o0 0

where 1r 1s arranged to agree with

a]

=

Fg FX W9 WX DY OX Y HX

=

=
I
= = =

=

=
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Figure A2, Plate Distortions for Support
Displacements,
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Using the principal of virtual work,*

R=[al'§

where R is an 8 nodal force vector, and is arranged to agree with

]
]
g =W =™ =9 = =
Wed W < oK Hg =X

=
=

Rl

*

or

If we impose two compatible sets of displacements 5v , and

5v = [a] or

Since ®r is arbitrary, then

(1)

(i1)

dr , then



But

Then

or

0|

=]

R
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1
s
H
—
=~
)
=

=[K]T.

Doing the multiplication,

(K]

Et
c

812

al+bl
-1-v
81-bq
1-3v

| -a-cq
14y
€178
3v-1

-1-v al-bl
a2+b2 3v-1
3V-l al+bl

Co=-8an 1+v

1+v cy-a1

1-3v
Ch=8p
1+v
a2+b2
3v-1
22
-1-v

"857Co

-81-C1

1+v

€1-81

3v-1
al+b
-1-v
a-, ~-b

1-3v

1

1

14y
“85=Co
1-3v
ap-bp

-1-v

3v-1

al+bl

1+v

v-1

ag"be
-1-v

“857Co
1-3v

1+v




APPENDIX II

WEB ELEMENT STTIFFNESS MATRIX

Let us define,

I = moment of inertia of web section about the neutral axis
(x or y).
tw = thickness of web.
E = modulus of elasticity.,
E
G = modulus of rigidit hear modul = .
modulus rigidity (she ulus) 2(147)

1

il

Poisson's ratio.
Let us first give end (1) a unit positive rotation without displacement
while end (2) is fixed, The deflected element and necessary forces are

showing in (Figure A3-a), From energy principles,

My 12 R 13

Wl = BT + 3ET (l+n)
ML R{L°

9, = —— + —

1 EI 2RI

where n = 3EI/Cht 1°

and W.

1 @l are the vertical displacement and the rotation respectively

at end 1. But from the boundary conditions

W"‘O, @l=lu

1=
Then
ORI 3ET
T2
MlL RlL
— ¢ = =1
ET 2ET

=110~



-111-

kllz

h THICKNESS = fw XorVY
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Figure A3. Web Displacements Required in
Developing the Web Stiffness
Matrix.
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Solving for M;, Ry, then

M < LET(1+n)
L= el
L(1+kn)
R _:6EI

| o=
L(L+kn)
From equilibrium considerations,

6ET

R. = -Ry = ——
2 = L 12(140n)

and by taking moments about 2

1)

M2 "RlL - Ml

2EI(1-2n)

L(1+kn)

(11)

(ii1)

(1v)

(1), (ii), (iii), and (iv) are the first column in the web element stiff-

ness matrix, Let us give end (1) a unit positive displacement without

rotation while end (2) is fixed., The deflected element and necessary

forces are shown in (Figure A3-b).

From energy principles,

1, L R, L3(1+n)
LTt OED
2
1T EI * o oET

where W, , 61 are as defined before,
From the boundary conditions

wl=l)@l:0(
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Then
) 3
M, L R, L3(1+n)
_!‘___ + _g'___.-— = l
oET 3ET
2
EI OB B ’

Solving for M; , Ry , then

6ET
M o= - 595 (v)
L 12(14kn)
Rl - 1Bl . (vi)
L3(1+Ln)

From equilibrium considerations,

R, = B = EL_ (vit)
L3 (1+km)
and by taking moments about 2
M2 = —RlL - Mi
=SB (viii)
12(1+kn)

(v), (vi), (vii), and (viii) are the second column in the web element
stiffness matrix. From symmetry one can write the third and the fourth
columns directly, In the above analysis n represent the contribution

of the shear deformation; for rigid shear webs n = 0,
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