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ABSTRACT

Certain formal arithmetics may be employed as design languages for
finite automata. In these arithmetics (design) conditions, the notion
of automaton, and the notion of an automaton satisfying a conditlon are
all expressible. An automaton satisfies a conditlon 1f a certain formula
of the arithmetic is valid.

For certain arithmetics algorithms are produced which enable one to
decide

(1) whether a given automaton satisfies a given condition,

(2) whether there exists an automaton satisfying a given

condition (and if there is one, producing one),
(3) whether there exists at most one automaton satisfying a given
condition,

(4) whether a given sentence is true.
These results make use of a theorem (5.3) which characterizes finite auto-
mata behavior by means of formulas of an arithmetic. The following corol=-
lary 1is typical of the side results obtained. If a natural number is iden-
tified with the set of natural numbers less than it, then the first order
theory of quasi-finite (finite or finite complement) sets of natural num-
bers based upon the Boolean set operations and the property of being a
natural number is decidable.

For certain other arithmetics, it is shown that algorithms of the

type indicated above fail to exist.

-yvi-



CHAPTER I
BACKGROUND

1. Motivation. Many variants of the notion of autcmaton have
appearsd in the literature, We find it convenient here to adopt the
notion of E, F, Moore [7]. Inasmuch as Rabin-Scott [9] adopt this
notion, too, it is convenient to refer to [9] for various results
presumed here, In particular, Kleene's theorem [5, theorems3,5] is
used in the form in which it appears in [9]. It is often perspicacious
to view regular expressions, and this notion is used in the sense of
(3l.

In general, we are concerned with the problems of automatically
designing an automaton from a specification of a relation which is to
hold between the automaton's input sequences and determined output
sequences, These "design requirements" are given via a formula of same
kind, The problems with which we are concerned have been described in
(1). With respect to particular formalisms for expressing "design
requirements" as well as the notion of automaton itself, the problems
are briefly and informally these: (1) to produce an algoritim which
when it operates on an automaton and a design requirement produces the
correct answer to the question "Does this automaton satiafy this design
requirement(", or else show no such algorithm exists; (2) to produce
an algorithm which operates on a design requirement and produces the
correct answer to the question "Does there exist an automaton which

satisfies this design requirementi", or else show no such algorithm
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exists; * (3) to produce an algorithm which operates on a duiﬂgn
requirement and terminates with an automaton which satisfies the
requirement when one exists and otherwise fails to terminate, or else
show no such algorithm exists,

Interrelationships among problems (1), (2), (3) will appear in
the paper [1]. This paper will also indicate the close connection
‘between problem (1) and decision problems for truth of sentences of
certain aritimetics. The paper (1] will also make use of certain
results concerning weak arithmetics already obtained in the literature
to obtain answers to problems (1) and (3). Thus [1], in part, concerns
applications of logic to autcmata theory. In the following pages, we
shall give some applications of automata theory to logic. More
particularly, we shall use automata theory to produce decision proce~
dures for the truth of sentences of certain weak aritimetics,

Theorem 5.3 provides a uniform and surprisingly powerful
technique for proving that various operations on sets of finite

sequences preserve regularity,

2, Some basic notions, Definition: (a) An I-autcmaton is a
quadruple L = {3, £, d, D) where I is a finite non-empty set (the
input states or the alphabet), S is a finite non-empty set (the internal
states), f is a function, £f: I x 8 = S (the transition function),
d ¢ S (the initial internal state), and D C 8 (D may be called the

gutput of 1),
(b) T(L) is the set of all sequences (10, 11, vee, in_l),
n > 0, such that there is a sequence (s o 812 °°°» 'n) satisfying:
(1) f(ik, -k) - 8.0 0<ksn-l, s, &5, 4 eI,
(2) s, s D,

(3) s, = d.



-3 -

T(j1) is the set of tapes [9] accepted by il or the behavior of ?Z’ The
null sequence A& T(i1) if and only if d ¢ D,

(¢) T(M) may also be described as the set of all functions
1: {0, 1, 2, *++, -1} —> I, n > O (the empty function is included)
satisfying the formula: \'/ [0(0) «=dAas(n) eDa &s [((1(x), s(x)) =

e, D 8(x+l) = £(c;))] A [(i(x), 8(x)) = ¢, > 8(x#1) = £(c )1 A o0 A
[(1(x), 8(x)) = LI s(x+l) = t(c.)]] where ¢,, S5y *°°y € is an
enumeration of all the elements of I x S (the complete states of the

autcmaton).

3, Two characterizations of automata behavior. Let VI be the
sot of all finite sequences of elements of I (including the null
sequence Ne If a,p c VI, then a*f is the subset of VI obtained by
concatenating a sequence from o with a sequence from f; a* =
{1\}\)«. U aea Vacaca U *** , A subset of VI is I-regular if and only if
it is obtainable from @ and the unit sets, {a}, a ¢ I, by a finite
number of applications of U, ¢, ¥, Otherwise stated: The class of
I-regular sets is the smallest class containing @, {a}, a ¢ I, and
closed under U, ¢, #, An I-regular expression is constructed out of
symbols denoting each {a}, a & I, § (the empty set) ; and U, ¢, #,
[Note that g% = {A}.] A set is regular if it is I-regular for some I,
(cf. (3, page 182]Jand [9, page 17].)

3.1, Kleene's theorem, If W is an I-automaton, then T(R) is

I-regular and an I-regular expression denoting T(1) may effectively be
obtained, Conversely, if a is I-regular, then there exists an I-autom-
aton such that T(1l) = ¢ and, furthermore, Vl may be effectively obtained

from an I-regular expression denoting a,
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The following statement is immediate from the definition of
I-regular,

3.2, If a is I~-regular and if I < J, then a is also J-regular,

3.3+ The class of I-regular sets is closed with respect to
union, intersection, complementation (with respect to VI). (cr. [9,
page 17].)

3e4e The class of regular sets is closed with respect to
symuetric difference, intersection, This follows from 3.2 and 3.3,

Let p be a mapping of I onto J, There is a unique homomorphisa
from the free semi-group FI on I onto the free semi-group l"J on J which
extends p, This homomorphism in turn induces a mapping P on subsets of

F; onto subsets of F,, If a is a set of I-sequences, then f(a) is a

I
set of J-sequences, f is a projsction, and f(a) is a projection of a.

3.5, If a is regular and P is a projection, then P(a) is
regular, Proof, Suppose a is I-regular and p: I —>J, If a ¢ I,
then ${a} = {p(a)} 1s Jeregular. Since P(a+p) = P(a)-p(8) and
P(a*) = (p(a))*, the result follows.

(Medvedev [6, page 13] gives a construction which, given an
I-automaton L and a p: I =—> J, yields a J-automaton ﬂp such that
T(@,) = B(I).)

From the point of view of regular expressions: the projection
of a regular set is obtained by replacing each symbol a (denoting f{a})
by p(a) (denoting {p(a)}).

The following theorem strengthens a result of Medvedsv [6,
page 11, theorem 2],

3.6, Theorem, (1) Every regular set is obtainable from a

finite number of sets of the types:
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(a) V,: the set of all finite A-sequences (including the null
sequence) where A is any finite set (non-empty),

(b) EB(a,b): the set of all ssquences uabv where a,b ¢ B and
u,v ¢ Vy and where B is any finite (non-empty) set,
by a finite number of applications of symmetric difference, inter-
section, and projection,

(2) Each Vo EB(l,b) is regular,

Otherwise stated: Given a regular set a there is a Boolean
ring polynomial (in ¢, Nn), an assignment of sets chosen from (a),(b),
and a projection P such that if +,N are interpreted as symmetric
difference and intersection respectively and if g is the set denoted by
this polynomial under this assignment, then P(B) = a.

Purthermore, if a regular expression is given which denotes a,
then the polynomial, the assignment, and the projection may all
effectively bs determined,

Proof, (1) i, IfAABs=g, then VNV = {n)e

i, Vv, ¢ (a,b)\&JAxA E,(a,b) = N, 85 8y 000y c,] where
{‘1’ 8 **% "r} = A and (a,b)\ejm. EA(A,b) is equivalent to a poly-
nomial in ¢,N and the basic sets V,, Eh(a,b).

114, If AN B = {a}, then there is a polynomial in the basic
sets equal to {a},

iv. If R is a binary relation over a finite set A, then a
sequence a,3,°°°8, is an R-sequence if and only if for each i <n,
(‘1’ ‘1+1) ¢ R. (Thus the sequences of length less than or equal to

one are R-sequences.,) The set of all R-sequences is equal to
v, - [nA(‘l’bl) v IA(az,bz) U see U EA(tr,br)]

where {(a;,5,), (a,,,), +++, (a,b )} =R = (AxA) =R,
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V. Let SA(a)-{du |acsAnuse VA}‘ Let R be a binary
relation on AU {b}, b £ A, viz., (x,y) e R <==> (x=bAycA)v
(xe ANyeA) <==> yg AA(x=bvxeA), Then the set of

R-sequences intersected with

{v} v U Epurpy (2s0)

agA
~is the set M of R-sequences (of length > 0) beginning with the letter
"p", Now if p: Au{b} —> A takes b into a and is the identity on A,
then

M) = 8,(a).

vi, Let TA(a) »w{ua |acgAnuce VA}' Then TA(A) is express-
ible as the projection of a polynomial in the basic sets, The argument
is analogous to v,

Now let V1 = (S, £, d, D) be an I-automaton, Let R hold betwsen

complete states (11, al) R (12, 32) if and only if t(iz, '1) =3 Then

20
the set of R-sequences beginning with (i,s) where 1 ¢ I and s = £({,d)
and terminating with an (i,s) such that s & D when projected by P,
where p(i,8) = 1 for all (i,s) ¢ I x S, yields T(N) - {Al, (Cf. the
definition of T(I).)

Result (1) now follows from i through vi,

(2) V, = A" By(a,b) = B ()« {b}+B" which shows V, and
EB(a,b) are regular. (Alternatively one may directly construct
automata which accept tapes V,, EB("’b)‘)

Corollary. If R is a binary relation over a set A, then the
set of all R-sequences is regular,

Proof, Follows from iv, (2),

3¢7+ Theorem, The class of all T(f1), M an automaton is the
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smallest class of sets containing Vo EB(a,b) (for every A, B, a,b & B)
and closed under symmetric difference, intersection, and projection,
Proof, Immediate from 3.4, 3.5, 3.6.
3.8, Theorem. Every set obtainable from the sets

vAl’ EAz(a)b)) SAB(l)’ TA“(‘)

by a finite number of applications of Boolean ring operations and
projections is obtainable from the same sets by Boolean ring operations
followed by a single projection (and these sets are exactly the
regular sets),

Proof, Same as proof of 3.6.



CHAPTER II
TRUTH ALGORITHMS FOR CERTAIN ARITHMETICS

4o Truncation lemma, Definition. If u is a finite sequencs,
b is a letter, and, for some n, u = vm n 2 0, and v does not
terminate with b, then ub = v, This is called r_i_vght truncation of u
by be If a is a set of finite sequences, then a® = {ub | ue a}
(right truncation of a by b)., The meaning of left truncation is
analogous,

Notice that A ¢ a® if and only if {(Y*n o ¥ .

4ol Lemma, (a) (a+p)®=a « (8% - {AD Ua® « (8" -
(8° - {AD).

(6) ()" =a* + (a® - {AD v (A}

Proof, (a) Let L(u) be the length of the finite sequence u,

Let pb(n) mean u terminates with the letter b,

ue (a-a)b Sumnd> \n/[quo--b'e asBAn>0AN phlujl

> V [uluz-\ﬁb'"bl\nZO/\ulea/\uzeB/\

n,ul,uz
prl
Cmup \V/ [(uluz-u'gbn-b'/\n>01\u ¢ea ANu,ep
n’ul,“z - l 2

A Pyu) A L(u,) > n)
v (u1u2 = ubbe++b'An > OAul € aAu, & B
A pbzus AR(u) < n))

-8-
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b b.
o> u}{uz[(ul-uz =uAu, {AAul canu,e B8)

V(u-u;r\ug-l\l\uledl\\lzlﬂ)]

S “1\’/“2[(“ - “1’“2 Au) & a A, e B /\u: s Bb - {ND
v(us= u: /\ug ¢ (8° - (8° - {AD) Ay, s anu, ¢ 8)l.
(b) ugNnAue (a.*-)b S \;{[u’ﬁb‘-%’?e a* An>0 A
pruSAn/I\] Comm> V [ugOAr>Ol\u1u2--°ur-
n,r,u),Us,***,u,

fbb-++b A 15/1\5:' uy sa /\pbzus AU FA] >

b b
I.,“l".‘\z/’.".“'[m >0 AU = wu ooy o0 AYy TN Alsli\Sr u & a)
€=—> ugat (a.b-U\}).

Le2. Lemma, The class of regular sets is closed under right
truncation, Moreover, from a regular expression denoting a one can
obtain effectively a regular expression denoting ab. Analogous state~
ments hold for left truncation,

Proof. If x is a letter, then {x}b = {x}1f b § x and {x}b - A}
if b = x, The result for right truncation now follows by 4L.l. The
result for left truncation follows from this and the fact that the class
of regular sets is closed under conversion (reversing the order of the

sequences), (Cf. [9, page 17].)

5. Characterization of automata behavior via a formal arithmetic,

Let I’l be the class of formulas constructed out of
(a) x; 8 Fy, xj&Fy, oo, xi") € Fy, ccp 4,3 m1,2,3,000,

(b) x=y, x<Y,

by means of propositional connectives and quantifiers \x{’ \F/. The Xy
J

are individual variables, the FJ set variables, and xi is interpreted as
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the successor of X o

5.1, Let the individual variables of Ll range over the natural
nunbers and the set variables range over finite sets of natural numbers.
Call the system consisting of the class of formulas Ll and this inter-
pretation Ly, If A[Fy, Fp, +++, FJ, r 20, is a fornula in which at

most the variables F coey F_ (the first r set variables in the

1 Far
- alphabet of Ll) occur free, then associated with A is the class of
r-tuples (Fl, Fyy *2s Fr) of finite sets for which A[Fl, F2, TN Fr]
is true., Alternatively we may associate with such a formula a function
f on the natural numbers with values which are (column) r-tuples of
zeros and ones (i.e,, an r x oo matrix) as follows:
a1
f(n) = if and only if ne F

8 g =],

i i

a
r
Iftx= max(Flu Foueeev Fr) and y > x, then f(y) is the r-tuple of

all zeros, Let o be the restriction of f to the damain {0,1,2,"-,:(}3

th column is £(1).

o, may be identified with the r x (x+1) matrix whose i
Moreover o, is a 1-1 correspondence between all r x o matrices of zeros
and ones whose columns are ultimately zero and remain zero and all those
r x s matrices of zeros and ones, s > 0O, whose last (rightmost) column
is not the all zero r-tuple., Call these r x s matrices admissible. (The
matrix with zero columns is admissible,) Thus with each farmula A of I.i'
is associated a set T r(A) of admissible r x s matrices, s > 0, where A
is a formula without free individual variables and the number of free
set variables is less than or equal tor, [Ifr = 0, let Tr(A) - {A‘J
if A is true and ‘I‘r(A) = @ i A is false.,] Let Ur be the set of all
r-tuples of zeros and ones, r > 0; let U: - Ur - {O r} where Or is the

all zero r-tuple, (If r =0, let U = {0}, u: = #. Recall that Vy =

g" = {0}
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5.2, Notice that in Li:

X =y Cump /F\(xeFIyeF)
X= 0 CEup /y\-vy'-x
X<y G Y[/'\(z'cl":;scl?)/\xci'/\yﬁl"].

5.3, Theorem, (a) If A[Fl, F,, °°°, Fr] is a formula of L:]L',

2’
.then T r(” is Ur-regular and one can effectively find a regular expres-
sion which denotes Tr“)'

(b) For every régular set a C Vy, of admissible sequences there
is a formula E(A) of L}. such that TP(E(A)) = a, where E is a string of
existential set quantifiers, A is free of set quantifiers, and the only
terms in A are of the form x, x',

Corollary., Let a be an arbitrary I-regular set, Let p be a 1-1
mapping of I into U:. Then p(a) is a U:-regular set ("isomorphic" t.'o a,
i,e., the set is a in codpd form) and so there is a formula A of Li such
that T (A) = p(a).

. Remark, It will be convenient to abbreviate formulas of‘Li by
replacing an r-tuple of finite set variables by a function variable
interpreted as having as its domain the natural numbers and range an
element of U, and satisfying (f£(x)) y=le>=xse F:l as well as the
property yf(x) =0, A /y\(y >xDf(y) = Or) » where O_ is the r-tuple
of all zeros, so that any such function is associated with a finite

sequence of elements of Ur.

If £ abbroviates (F,, F,, **+, F ), then \f/ abbreviates

Selse Lemma.l Every formula A[Fl, Fz, e, Fr] of Li‘ is equiva-
lent to a formula B[Fl, oo, Fr] of LJI. in prenex form and such that every

individual quantifier occurs to the right of every set quantifier.



Proof, Observe that

1) VAc s VYV ANIGK) DC) A VG(z)]
x F G F x Z

= \//\-/\cl
G F x
and
20 AVec = AV VIV&z) > 6(x) AC
x F G F x 3

= AV Ve,
G F x

where G is a set variable not occurring free in C,

Assume A[Fl, F2, coe, Fr] has the property that every set
quantifier has as its scope the entire formula to the right of it,

Notice that in applying (1) or (2) to A the number of set
quantifiers to the right of the x-quantifier is reduced by ons. Thus,
ir \;{ { /}] is the rightmost individual quantifier which has set quanti-
fiers to the right of it, by iterating (1) and (2) a finite number of
times one obtains a formula A' in which the x-quantifier appears to the
right of all set quantifiers, Moreover, the number of individual
quantifiers with set quantifiers to the right is one less in A' than in
A. Thus one ultimately obtains a formula B equivalent to A and having
the desired properties.

5.5, A formula of the form
(mo) (my) (my)
F oo T
\x/ [x 1 kol\ x n Fk]_’\ ANX n Fkr],
where each occurrence of f is independently & or §, will be called a

principal formula where 0 <m < m; < ¢¢¢ < m..

Call a formula normal if it is a disjunction of conjunctions of
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(1) principal formulas, (2) atomic formulas, (3) negations of (1) or (2).

Lemma 1. Every formula of Li’ is equivalent to a formula of Li of
the form Q[M] where Q is a string of set quantifiers and M is a disjunc-
tion of conjunctions of principal formulas and negations of principal
formulas, ([By appropriately permuting Fl’ F2 s °°°, Fr in the given form-
ula, the variables in Q may be assumed to appear in alphabetical order
terminating with Fr']

Proof. In view of 5.2, it may be assumed that the given formule
contains atomic parts 5(a) only., Suppose A is normal,

(a) Then ~A is equivalent to a normal formula (with the same
free variables),

(b) Consider ¥A. y distributes over the disjuncts of A, Let
D be a disjunct of the form Dl(x) AD2 vwhere x does not occur free in D

2

and no variable other than x occurs free in Dl' Then ¥ D= D2 AV Dl(x).
x

Starting with a formula B[Fl, Fz, soe, Fr] of lemma 5.4 one makes
use of (a) and (b) until all the individual quantifiers are "moved in",
This yields a formula of the desired form,

Lemma 2, The set of all admissible sequences in Vur is

# 0
ur'“r

U{Al and is, therefore, regular.

5.6 Proof of 5,3 (a). Consider a formula of Li‘ of the form
Q[M] of lemma 1 of 5.5 with free set variables Fl' Fz, ore, Fr. Assume
that it is known that if A is a principal formu.a that Tr(A) is regular
and that from A a regular expression denoting Tr(” may be effectively

obtained, Then since
'rr(A AB) = 'rr(A) a) Tr(B),

T.(AVB) = T.(A)uT(B),

Tr(~A) = TrZAS
(complementation is with respect to the set of all admissible sequences
in VUr (which is regular)] for A and B any formulas of L, without free
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individual variables, it follows that Tr(H) is regular and a regular
expression denoting it is effectively obtainable.
Now 1 A = ALF), Fy, +++, FJ, > 1, then T _( F\r/m) is the set

obtainable from T_(A) by deleting the rth

row followed by right trunca-
tion of the all zero (r-l)-tuple, i.e., if r>1

T, X” = (1, (00"

where pr maps an r-tuple of zeros and ones onto the (r<l)-tuple obtained
by deleting the rth component and b is the all zero (r-l)-tuple,

Hence Tr-l( }’ A) is regular and from a regular expression for Tr(A) one
r
may effectively obtain one for T 1( V a).
r-1' F,

It remains only to show that Tr(“ is regular for A a principal
formula, To simplify the 6xpoaition we point out that the principal

formulas can, without loss of generality, be taken to be of the form.

(1) V A (xarax ar),
x IILr

where each occurrence of f is independently & or £, This follows from
the fact that (assuming m > 1)
x(‘) AF =P y, =X AV, " V] N ATpy ™" Vpop NVpq 8 F
D e d {}\[ych=x' BG/\yzeGSyieG A *°° N
Tal €Ot B AT A T

and
x| F G=p (xaFAX'eF) v(xg F AXx' £F)

X' g F Gudp (xe FAX'qF) V(xXfgFAX'qF),
Let A be ¥ (f(x) = a Af(x') = b] (cf. remark 5,3).

Case I, a e Ur and b & U:. Then
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T(A) = Ule{a}+[B}+((u]-UD) v AD).
Case II. ac U andb=0. Then
T (8) = (Ul+{a}) U (U}- {a}efb}-uT-0D).
Case III, a = Or- b, Then
¥*
T.(A) = (U UD)v (A},

5.7. Proof of 5,3 (b)., Let a g VUr be a regular set of
admissible sequences., Then a -~ {A} is regular and is a projection of

& regular set f € ng“ » 8> 0, Specifically: there exists a Ur~a.utom-
atonW, = (S, £, d, D) such that a = T(N), Without loss of generality,
let S be a subset of U: for a suitable 8 > O, The complete states

U. xS of L may be identified with a subset of U:’ as follows:

8
(x,y) & Ur x S is identified with the (r+s)-tuple whose i.t'h member,

th

1<1<r, is the i member of x and whose (r+;])*'h member, 1 < J < s,

th

is the §°" member of y. Let BC UZ . be the set {<x, £(x,d)) | x ¢ U},

o 0 .
x U . as follows:

0
Let E = UD x D, Define RCUD  x U

((xl,yp, <x2”2)) ¢ R if and only if f(xz,yl) =Y,» Then B is the set
of finite R-sequences beginning with an element of B and ending with an
element of E and a = 'B(B) where p is the mapping which takes
<x,y) ¢ U, x S into x,

f is the intersection of the three following sets,

T+
Tres s r+s

beginning with an element of B),

(a) U Sy (a), BC U°.  (those elements of VU
aeB

(v) U HU (a), E= U: x D (those elements of VU
acE r+s r+s

terminating with an element of E),

o o
(c) The set of all R-sequences, R C Uieg X Upyge
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We now obtain formulas "corresponding" to (a), (b), (c).

th

a) Let B = {bl, b2, «ee, B} b:; is the k i

component of b,
For each b1 the formula Ai' l\ O F , where n, is ¢ if bi' -1

T lk<r+s kK k
and 1, is § otherwise, corresponds to Sur"(bi) , 80 that (a) corresponds

to Ll Vv Az V eee V An. Then Al V] A2 \VAX IRV A? is an abbreviation of a

formula A of Li and

Tr,'(ﬂ) = U S (a).

acB Ur+s

b) Let E = {e}, ¢2,+<+,e"}. With each e associate the

formula

At v[l N xo B a NG>xo(7 FB ATEF A cony FE))]
<k<re+s y

where 1, is g if oi' « 1 and otherwise n is g, Then Al Vv 12 V oeee v AR

is an abbreviation of a formula A of Li and

Tres(d) = ‘\;anuru(‘)'

c) Let H= R v (U_,_ x {2)) where z is the all zero (r+s)=-

r+s
tuple, Let {(o ,tl), (02 fz), ’ (on,!'n)} = H, With each ol associate

i i,
A(e™)s 1< <k4\r o % F, where n,_1is & or f depending on whether o =1

i '
or not, With each £~ associate B(fi ) 1<k</\+ xt g F_vhere g is

¢ or f depending on whether fi = ] or not, Then if A is the formula

abbreviated by Ix\ 1<§/< A(c YA B(f ), then T, (A) is the set (c),

If "fis the conjunction of the formulas a), b), ¢), then

Troo(P =B and TV V eee V F) =,

Frel Fre2 Fres

Note that {A} = T,(Ax £ F),
X

5.8, Corollary to 5,3 faz.z Ehrenfsucht's theorem (unpublished).

The set of true sentences of Li’ is effective,
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Proof. It may be assumed (5.4) that the given sentence is of

the form
(a) V A[F)
F
or
(v) ~ \/ A[F]
F

where A is a formula in which at most the set variable F occurs free,
Then (a) is true if and only if Tl(A[F]) is non-empty, and (b) is true
if and only if 7,(A[F]) is empty. T,(A[F]) is empty if and only if
T yA[F]) is empty,

Thus, one can effectively find an automaton{] = {8, £, d, D)
with one input state (sometimes called an input-free autcmaton or
autonomous automaton) which represents (a) (or (b)).

If the automaton has n internal states, then the (unique) input
sequence of lengf.h n will determine a sequence of internal states
starting with d of length n + 1, At least one internal state nmqt occur
more than once in this sequence so that TO(VL) is non-empty if and only
if an 8 ¢ D occurs in this sequence,

5.9. For each finite set F of natural numbers let t(F) =
;L}F 2%, Then T is a 1-1 correspondence between the class of all finite

subsets of the natural numbers and the natural numbers,

%0) = ©F)) + HF)) <=> VIOFCA(0eG=O0ecFa0eF)A

/x\(x'ec-(xeFl/\xer)v(xeFlr\xeC)v(chzAxcc)

*Aex'eGs (xe FfaxsF,axse C))] where A represents exclusive
or, Thus:
Coroll .3 (1) The firet order thebry of addition of
Lorollary.

natural numbers is decidable, (2) Furthermore, for any relation
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A[xl, Xys **%y xr] in the first order theory of natural numbers there

is a formula B[Fl, Fs

B[‘c'lxl. 'r'lxz, ceey Tox )

000) Fr] such that A[xl’ xz, Oco’ xr] M

Statement (1) with "natural numbers" replaced by "integers"
was established by Presburger; statement (1) itself was established by
Hilbert and Bernays. Ths proof of (1) indicated here appears to bs
simpler than either of the two proofs mentioned, both of which make use
of the theory of congruences,

2n

5,10, For each n, n > 1, consider the 2° n-place predicates

\J{[qulr\quz,\-n Axn F AX nFll\x' A F, Neee AXx! ql"n]

where each occurrence of 1 is independently replaced by & or £, Call
the class of all these predicates (P, Then every first order formula
in @ is equivalent to one in Li (without free individual variables)
and vice versa, Let ¢ be the class of predicates A[rFl, er, oo, "cFr]
defined to hold if and only if A[Fl, FZ’ soe, Fr] holds and
ALF,, F,, *++, F_] is a predicate of ®. Then:

Corollary. The first order arithmstic theory based upon x(
is decidable and this theory strictly contains the elementary theory of
addition of natural numbers in the sense that while addition is definable
in the theory of 7/, not every predicate in v/ is definable in the

first order theory of addition,

Proof, q:{V[xeFr\x' e FA /\yeFa(y-xVy-x')]}
X y

is the set 3, 6, 12, 24, *++ , i,e., the set {3 x 2n} o« This set
is not definable in the first order theory based upon + bscause the
sets definable in this latter theory are exactly those whose charac-

teristic function is ultimately periodic while the set {3 x 2"}
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does not have this property., (Cf. [4, last paragraph, section 3J.)
The rest of the argument is contained in 5.9.

5.11, Corollary 1. The first order theory of finite sets of
natural numbers based upon n, @ (symmetric difference), @, =, and the

unary operation F => F® defined by

xeF ifandonlyif Vx<yayeF
y

is decidable, Furthermore, the relations on finite sets definable in 1%

are exactly the same as those definable in this theory,
Proof, The operations n, ®, ® and the relations F = G and
F = @ are definable in L%.

The principal formula y[x € G AXx'el AX £ G, AX' ¢ 02]

has as its counterpart in this new theory the formula (i.e., the set of
ordered pairs of finite sets defined by this formula is the same as that
given by the formula below):

fp o8 g - F®
LV {(F =B AR, =R AR =FJAF cFcP,
1F20F3

A/\[(G-G’Arlcao- FZCG)/\(G-G'A F,c G - F, cG)]
G 3

AP, ®F c G AR ®F,CC, A(F, ®F) NG, = B,
Similarly for other principal formulas,
The unary operation F => P may be replaced by the property
F = F° without changing the strength of the system,
Corollary 2, The first order theory of natural number based
upon ¥(n), ©(®), =, +, and the property P(n) of being of a powsr of 2

is decidable where
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xzgn) y =2 <=> t-lx f\'t-ly'- 't.lz ’

1

xU®) y =z <> <oty - s,

ln is a unit set and the property of

being a unit set is definable in Ll.

Notice that P(n) <=>

Note, too, that we have, in particular, a proper strengthening
of Presburger's result, viz,, the first order thsory of natural numbers
based upon addition and the property of being a power of two is decidable
and the property of being a power of two is not definable in the Pres-
burger system,

5012, Let Li bs the system consisting of the formulas L1 with
individual variables interpreted as ranging over integers rather than
natural numbers and set variables ranging over finite sets of integers,

Lemma, For each formula A[Fl, Fy %) Fr] of Li and for each
integer A, A[Fl, Fyy =% Frl = A[F%} Fz} een, F:] where x & Ft Smcnd
x-L & Pi’ i.e., the class of r-tuples of finite sets defined by a
formula of Li is closed under translation. [Cf. 5.13.]

Lemma 1 of 5.5 is valid for Li. Let Rr be the relation botwsen
two r-tuples of finite sets that one is a translate of the other, Each
Rr-eqnivalenco class is included in A[Fl, Fz, see, Fr] or in
~A[Fl, Foy **%) Fr] for every formula A for this is true for principal
formulas and is preserved by the Boolean operations and projection.

Analogous to 5.1 and in view of the lemma one may associate with
MFy, By, +++, F_) of 12 & set T2(A[F), F,, +-+, F_]) of adnissible-2
matrices, an admissible-2 matrix being a finite sequence of r-tuples of
zeros and ones whichmither begins nor terminates with the all zero
r-tuple, Analogous to the proof of 5,3 one may establish the following

theoren,
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Theorem. (a) If A[Fl, F,, *e°, ‘l'r] is a formula of Li, then

23
Tﬁ(A) is Ur-regnlar and one can effectively find a regular expression
which denotes T(A).

(b) For every regular set a of admissible-2 U ~sequences there
is a formula E(A) of Li such that ’1‘12,(1(&)) = a where § is a string of
existential set quantifiers and the only terms in A are of the form x, x!,

Corollary to (a). There is a decision procedure for the truth

of sentences of Li.

5¢13 In Li:

X=y e /}(xc!-ycr),

x<Yy «-bp_/\[(scr/\n‘x-a-s' eNoyin,
8

However, x = O is not definable in Li by virtue of the lemma of 5,12,
Compare with 5,2,

5.1, Let A be an arbitrary finite set, A sequence of V‘ is
admissible-3 if and only if (1) it is of length one or (2) it is of
length greater than one and the last two elements of the sequence are
distinct,

Lemma 1, The set of all admissible-3 sequences in V, 1is
A-regular,

Proof, Identify elements of A with sequences of length one,

The set of all admissible~3 sequences is:

Ao U v« (aA={p)) + 0,
beA

Definition, Ifa gV, and b & A, then a’> (modified truncation
by b) is defined as follows: v & a'® 1f and only if

(1) ve& a and v doss not terminate with b,‘ or

(2) there exists u ¢ a which terminates with b and if



wbbe++b = u and w does not terminate with b, then v = wb,

Lemma 2. If o ¢V, is A-regular and b & A, then a’® is A-
regular,

Proof, Cf, corollary 5.3 and remark, Without loss of general-
ity assume that A = U: for appropriate r, There is a fomula'j'[ f]
such that Tr';F- a. It is sufficient to prove the theorem for /A ¢ a.
Then f(x) = 0,>x>0, Let (gl be the formula:

}/ /\{3:[1-] AE(y') =0 NE(y) A0, :D: [£(y) 1D N\ 2(x) = g(x)1 A
v X

(£(7) =b D Alf(x) =b A (V' «x>8(z) ) A (N2 2x D £(x)
X z 2
by£(z) =0) +D- A (gw) =t A /N gw) = 0i},
wex wx

Then Trb - a'b. By theorem 5.3 (a), a’® is regular,

5.15. By a quasi-finite set of natural numbers (integers) is

meant a set which is finite or whose complement is finite. Let Li be
the system consisting of the set of fomulas L]. with individual variables

interpreted over the natural numbers and set variables interpreted

over quasi~-finite sets of natural numbers, Let Fl’ E‘z, vee, Fr be
quasi-finite sets., Let 'ck(n) =] &> ng Fio Let
Cl(n)
c(n) = c2(n)
c.(n)

Thus, with each r-tuple of finite sets of natural numbers is associated

c& U‘?. (N is the set of non-negative integers). Because the F, are



-23=

quasi-finite, there exists x ¢ N such that /} y>x>2¢e(y) = e(x)e The
function ¢ restricted teo the first x such that this property holds is an
element oi (l"l, Fa' oee, Pr) of VU,.' Moreover, ¢ is l-1, Briefly:
UE-(FI.’ Fos *°%s Fr) = f where domain f -{x | x<yyand y =

(pe) /b[é\xgz:xe Fy ove ngs >x £ F] and if x <y then

(t(x))i =] <=> x¢ F, and /z\s >y> £(y) = £(s), The image of 03

i
is the set of all admissible-3 elements of Vur. It A[Fl, ?2, LTI Fr]
is a formula of Li, then Ti(A) is the set of all oi(?l, Fyy oo0s Fr)
such that A[Fl, Fz, see, Fr] holds,

Notice that 5.2 holds in L2,

Theorem, (a) If ALF), F,, o*c, F_) is a formula of L3, then
Ti(A) is Ur-rogular and one can effectively find a regular expression
which denotes it,

(b) For every regular set a C vUr of admissible-3 sequences
there is & formula E(A) of Li such that Ti(E(A)) e g where E is a
string of existential set quantifiers, A is free of set quantifiers,
and the only terms in A are of the form x, x!,

Proof. (a) The proof is analogous to 5.6, Lemma 1 of 5,5
holds with "L3% in place of “Li", If A,B are formulas of L3 with at

most, Fl’ Fg, vee, Fr free, then
(A AB) = T(A)ATAB),
B(AVE) = (M) uTAB),
Bea) = BU)
where complementation is with respect to the set of all admiseible-3

sequences of Vur (ef, 5.14, lemma 1),
16 a = 20, ten LY W) = UG
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where p maps an element of U r into the element obtained by delsting the
x-th component and a,b,¢++ is an enumeration of the elements of U r-1°
Since régularity is preserved by projection and modified right trunca-
tion (lemma 2, 5.14) it follows that '1‘3 l( \/A) is regular.

It remains only to show that if A is V [£(x) = a A £(x') = b],
then T?_(A) is regular, where f abbreviates (Fl, Fps ***s Fr) (cf. 5.3).

Let B k,zﬂ (07 - {a} + {6} < U]« {c} + {dDu c\,?b”: - {a} + {b} - {c}.
c,deU, cslp

Then B is regular, If a ¥ b, then Ti(A) -8 L)(U: « {a} « {b}) while
if a = b, then P(A) = B U (U} + U_ = {a} + {a}) U {a}, Then T(A) s
regular and the proof is completed.

(b) Let a.g;u: be a regular set of admissible-3 sequencses,
Thus a = T(J|) for some automaton Y = <S, £, d, D)., We may take S as a
subset of U8 for some 8 > 0, Identify Ur x U8 with Ur+a’ the complete
states ofﬂ. Then a is a projection of a set g C U:“ and 8 is the set
of all R-sequences [R Q’Ur’s x Ur+a] beginning with an element of
B= ﬁh, f(a,d)> | ae Ur} and terminating with an element of U  x D
where <u1,vf R <u2,v2> if and only if u;,u, & Ur’ VsV, & U' and
f(uz,vl) -V, Notice that the elements of B are admissible-3,

Define R and R’ as follows:

:ﬁg &=> aRbAC=1m=d;
:R*g . :’Rg'\/~a-b/\(c-1\/c-o)/\d-0,

for all a,b & Ur+
Observation. Every finite non-null ﬁ-sequence has a unique

extension to an infinite R*-sequence in which 8 occurs for some a & Ur +s?

and every infinite R’-—sequence in which 8 appears for some a €& Ur +8 is

an extension of some finite non-null ﬁ-aequenco. If g is an infinite

R*-sequence such that g(x) = 8, then for all y > x, g(y) = 8.
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Let f abbreviate F,, F2’ cor, Fr;a+l' Let EF' -
/x\ (a’yeﬂ’ [r(x) = a A f(x’) - b] N \y/y ¢ Fr*a*l. Then ssquences

in Ti+s+1(}3 have the property:

(1) 4if it is of length one, it is of the form 8;

(2) if it is of length two, it is of the form ; 8 3
(3) 4if it is of length greater than two, then its last three

baa -
members ars of the form ; ; o, where a,b e U __and a # b, It follows

that Ti+8( V f}é) is the set of all R-ssquences,
Frigsl
Lot blgl be |V (). LetHlel be:
r+s+l

Hel A g(0) e BA \x/g(x) cU xDA />(y> xD g(y) = &(x)).

(The second and third conjuncts are abbreviations of disjunctions,)

Then

r+l "r+2 r+s

Corollary 1. There is a decision procedure for the truth of
sentences of Li (and one such procedure is given by the proof of
theorem 5,15 (a) togethsr with the last paragraph of 5.8).

Corollary 2, The first order theory L3 of the Boolean algebra
of all quasi-finite sets of natural numbers (based, say, uponu, n, ~)
with operator F° (ef. 5.11) is decidable, More generally, the relations
on quasi-finite sets definable in L3 are exactly the same as those
dofinable in L3.

Proof., Similar to 5.11.

5.16, Let Lé be the system consisting of the formulas Ll with

individual variables ranging over all the integers and set variables

ranging over quasi-finite sets of integers,
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Theorem, There is a decision procedure for the truth of

sentences of Lh.

L

Proof, If F., F,, *+-, Fr satisfies a formula of Ll’ then any

2)
translate (cf. 5.12) of this r-tuple satisfies the formula, The func-
tion £: N => U_ such that (!c‘(x))i =) <G> x g Fi has the property

that \/ /\ f(z) = a A /\ £f(z) = a and x < because of the quasi-
x,y,&[zsx (2) o) (z) <yl q
finite character of the Fi’ If £ is not constant, let

x, = (max x) V/Alz <x> £(z) = al,
a z

¥, = (min y) VA[2>y > £(2) = al.
a s

Then the finite sequence g = ol;(Fl, Fop oo Fr) if domain g =
{x | x<7y, - xo} and Q[g(x) = f(x + xo)]. If £ is constant and equal
to b, then let domain g = {0} and g(0) = b. The mapping o takes all
members of a translation equivalence class into the same element of Ur
and distinct equivalence classes go into distinct elements, Moreover,
1f O¥(F,, F,, *++, F) = g and domain g = {x | x < ¥} and y > 0, then
y > 1 and g(0) = g(y), g(0) ¥ g(1), g(y-1) # &(y).

Via o, with each formula F(Fy, Fyy oe, F) of L¥ 15 associated
a set of finite sequences ‘I'l;(‘}; which may be shown to be regular and a
regular expreséion may effectively be obtained as in the proof of
5.15, theorem (a)., This, together with the last paragraph of 5.8,

yields a decision procedure for truth,



CHAPTER III
SOLVABILITY ALGORITHMS

6. Some operations which preserve regularity, Let oc Vm.
A sequence in A x B will sometimes be indicated thus: :, where

u e 'vlA and v ¢ VB and u and v have the same length, A sequence ‘vl e o

ua

vb & A sequence in o

is A-extendable in o if and only if /\A V
- acA beB

is strongly A-extendable in o-if and only if every initial segment of

the sequence is in o0 and is A-extendable in o; The set o is strongly

A-extendable if and only if every sequence in o-is strongly A-extendable

in o, If o is strongly A-extendable, every initial segment of an
element in o is in o,

6.1, Lemma, IfycV

AxB is regular, then there is a '(A <Y

such that

(1) Y, is regular,

(2) ¥, 1is strongly A-extendable,

(3) if B € ¥ and B is strongly A-extendable, then p € %
Furthermore, from an automaton ( such that T(G) = Y one can effectively
construct (by the method given in proof) an automaton GA such that
G,) = ).

Proof, Let (3 be the AxB-automaton <S, £, d, D>, Then ¥ is
P(6), where 6 is the union of {/\} and the set of all R-sequence begin-
ning with an element of E = {<a, £(a,b,d)) | <a,b) ¢ AxB} and terminating
with an element of (AxB)xD, and R holds between ((al,bl), sl) and

-27-
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((az,bz), s> if and only if f((az,bz), sl) = 8, and p{a,b), 8) = {a,b),
Lst Ro be the restriction of Rto AxBxD= Mo, i.s., Ro -

RN (MyxMy). Forn2>0let R, be the restriction of R to M,
where

(al, bl,c) eM’l S>>

abc)eM/\/\ \/ b,, c> R <a, b, c),
<1’ 1 acA (b,c)eBxD <‘1’ 17 T T

Inasmuch as Ho is finite, there exists m such that Rm - Rm#l = R. +2

= oo, Define RA to be Rm for this m and MA to be % for this m, Then

<a c)eM—-b/\ V ., b,, ¢ R, (a, b, &,
1? 1: ach (b,c)eBxD 815 D1y Sy Ky B Dy

[Of courss, MA may be empty.] Let o be the set of all RA-sequoncu

beginning with an element of E, i,s,, beginning with an element of

EnOR, (DR, is the domain of the binary relation R,). Let ¥, = po
1) irA is regular since it is a projection of a regular set 0.

2) We shall show ¥ A is strongly A-extendable., Let
€ rA where u,, u, ¢ V, and vy, v, ¢ VB;

then there exists Wy, W, € VS such that

bt )
v1v2 e O,
1 "2

Then

u
1 ul
vy & © and v, € )’A.

%1

Since the elements in the sequence v, are in M,, and, in particular, the

il
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last element of this sequence is in MA‘ it follows that

Yy 8
\/ 1 b ¢ o
aeA ¢b,c)eBxD c

"1

80 that

A V ula . XA.
uAberlb

3) Suppose p is strongly A-extendable and f € Y. Let : & B;
then every initial segment of : ¢ B 80 that if w is the sequence of
internal states determined by the automaton G(i.e,., if "‘ is
aa °* & ¢AxB, thenwis s s ¢ s where t(ao, d) = s, and,

u
for 0<r <n, f(ar, 'r-l) - sr) » then every initial segment of v is an
w
u
element of 6, Thus, every member of the sequence v is an element of Mo
w
u
and v is A\ or is an Ro-sequence beginning with an element of E, Con-
w

sider an arbitrary initial segment
Y % u
Yo P of v,
o w
o o
where a e A, b° ¢ B, ¢, € D, i.e., (ao, bo’ °o) 3 “0' Since
Y %

e B,
vO bO

/\ \/ Y% 3% & c BCY.
aleA bleB v o bo bl

Hence
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u a a
\v/ %o b S b h) M
v_.b e Ay, » S & o
o o 1 1° "1’ "1 0
a,eA (bl,cl) €BxD W o e

It follows that <a6, bsycy eM. Similarly

u a a
o o 1 2
/\A<b ‘yBxD /\A(b v Vo b, Py by € 5 A<a,, by, ) & N,
e ,¢> eBxD a_e ,¢.) eBxD
8,84 <b),ey 28A (byep woe e c,

N <8y, bl’ cl> e Ml .

It follows that < a8 bo’ co) € Mz. It should now be clear that

(ao, bo, co) € M, so that

A
u
visAor is a RA-sequonco beginning with an element of E,
w
u u
Thus v ¢ ocand _ € YA. We have shown that: if p< y and g is strongly
w f

A-extendable, then B C 7,.

6.2, IfacC VA’ define the interior of a (Int a) to be the set
of sequences u &€ a such that every initial segment of u is in a. A set
a is open if and only if a = Int a., We note incidentally that it is
immediate from the definition that arbitrary unions and arbitrary
intersections of open sets are open so that the class of open sets
constitute a topology in the usual sense for VA. Notice that if a is
open, thena ¥ f§ <==> A a, Medvedsv [6, page 11, theorem 2]
proves that if a is regular, then Int a is regular by direct construc-
tion of an automaton, The result is established below by means of 5.3.

Lemma, If a is regular, then Int a is regular,

Proof, Assume A C U: for an appropriate r, Suppose that

T r'}[ f] = a for an appropriate formula 7 of LY. Define Algl as follows:

10



/Nt h<g+DeFh]
h

where h < g abbreviates
N(n(x) # 0, D h(x) = g(x))
x

and Or is ths all zero r-tuple, Note that h < g means that the element

of VUO represented by h is an initial segment of the element of VUB
r

represented by g. {Each of the r set variables abbreviated by h are
distinct from each of the r set variables abbreviated by g.]

6.3, Lemma, The intersection o’ of all open sets containing
a given regular set a is regular (and open).

Proof, Let aC VU?. be regular. The intersection of all open
set containing a is simply the set of all initial segments of elements
in a. Thus if 'r;?tr] = g and if H{g] is defined as follows:

\t/:'f[f] ~n N\ gx) ¢ 0.2 glx) = £(x),

x
the desired set is Tré[g].
6ohyo Lemma, Let a C vAx{O,l} be regular, Suppose N¢ a.
Let Ki(a), i = 0,1, be the sst of sequences a a; °°° & aJ & A, such

that there exists bo, by, ***, b n satisfying

1)
ao .1 [ XN .n
(1) by {o,1}, (2 b, by +++ b & % (3) b, =41,

Then K,(a) is regular, IfA¢ a, let l(i(a) =K, (a - {A}) v {N}; then
Ki(a) is regular,

Proof, Letll=¢S, f, d, D) be an A x {0,1} automaton and
suppose T() = a, LetB =(S, f,d, DnAx {i]). Let B = T(P), Then

B is the set of all sequences
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such that b = 1. If p(a,b) = a, where a & A, b & {0,1}, then Ki(a) =

p(8).

6050 M. Let B c VAxB

graphical ordering of Vy induced by a given fixed ordering ) of B,

be regular, Let < be the lexico-

Define a = 4(B) as follows:

u

u u
yEa <> 'eB/\/\weBvaw.

w
Then a is regular (and the set of ordered pairs ¢u,v)> of sequences
such that 3 e a is a function),
Proof. Suppose (without loss of generality) that A C U:, BC U:

for appropriate r,s, Suppose that
'1‘r “?[ fl, f2] = B for an appropriate formula F of Lzll.
Define »¥[ g &,) as follows:

Flep, 8l :ﬁ,\x"ﬁ“v £,) A £,(x) £ gy(x) A /y\(y <x D1,(3) = g,(y)

Do Sz(x) ) tz(x):

where g, abbreviates F,, <<+, F , g, abbreviates F_ ., ¢¢¢, F__, and
1 1l r’ =2 r+l

r+s

!‘2 abbreviates F

ressl? °°2 Frepgr and 85(x) 4 £,(x) abbreviates a

conjunction of conditionals of the form

g)(x) = b - D £,(x) = b v I(x) = by v oeee vfn(x) - b
where {b,, *-, bn] is the set of all elements b, in B such that b < by,
Then 'l‘“s;b = a, and a is regular (cf. theorem 5,3 and remark).

7. Characterizations of A/B-automata behavior. An A/B-automaten

is a quadruplel = ¢S, f, d, g) where f: A x S ~> S and g: S = B, The
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" finite behavior J{1) of YL is defined as follows:

:s J(ﬂ)svm S>> (‘l) :?A or (2) :;‘Aand :'/[wevsl\

u=aaca AV=bbieeb Aw=sps s De 5, " f(ao, d) A

O<n<n

/\. f(am, 'm-l) =5 A O_ng g(sm) = bm]'
7.1, Theorem., A set a ¢V, o is the behavior of an A/B-

automaton if and only if

(1) a is regu]:ar,

(2) a is open,

(3) {<u,w | :c a} is a function,

(4) {u | zea}-vA.
Further, if a satisfies the conditions, the proof gives an effective
procedure for producing an¥l such that J(I)) = a.

Proof. Assume a = J(f)) for some A/B-automatonl, Let
VL- {5, £, d, g)s Define a binary relation R on A x B x S as follows:
(al, by sl) R <a,, b,, 92) if and only if f(az, al) =5, A g(al)b- b,

A g(sz) = b,.

Let u € B if and only if u = A or u is an R-sequence beginning with an
element of {a, f(a,d), gf(a,d) | a ¢ A}. Let p(a,b,s) = <a,b) for
aghA,bsB,seS., Then P8 = a. (Cf. the definition of J(I).)
Hence (1) is satisfied by a.*

Conversely, assums a C V, o and a satisfies (1), (2), 3), (4).
Without loss of generality assume B C Ur for an appropriate r, Let
a = 'ﬁi(a),, 1<1i<r, vhere pi(s, ¢, Cos *°%s Cya °°%) cr) = (a, ci>,
a & A, and, for all J, cy & {0,1}. Letfl, =<s,, £, 4, DY, 1g4gr,
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be A-automata such that T(W.i) - Kl(ai)‘ (Cf, 6.4.) Lot = (S, £, 4, g)
be an A/B-autcmaton whers B = U , S = 5) xS, x *+¢ x S,

(£(s)); = £;(s;), 1 <1 <r, where s & S and the subscript “i" indicates
the 1t'h conmponent of an r-tuple, and d = (dl, d2, coe, dr) and

i
Because of condition (3), for all1 i, 1<i <,

(g(s))i-l <=> 38, & D;.

Kl(ai) o) Kz(ai) = @ and because of (4), Kl(ai) v Kz(ai) - VA. Now,
JN) satisfies (1), (2), (3), (4) by the first part of the theorem.
Thus it is sufficient to show that for each u ¢ VA’ if vy is the unique

element of VB such that : ¢ a and v, is the unique slement of VB
1

u
such that v, e JWU), then vy = Ve

It is obvious that A ¢ an J(1). Suppose : ¢ anJ() and

ua
wb

the ith component of b and let wy be the sequence of 1t'h components of

¢ a, Bocause a is open, 3 € a, and so by (3), w= v, Let b1 be

its members, Now, : ; 8 a4 $nmd

/\ ua . @, Cm—> /1\[b1-l!uael(l(ai)].

1<i<r Y1 0
ua
Note that : : e Jf) <=> v c satisfies conditions given in 7
ws

above, for some (unique) ws & Vge In particular, g(s) = ¢, For this

s, g(s) = ¢ <> /i\[ci =l%s ¢ Di] and since (for this s)
/1\[’1 e D, = ua ¢ Ky(a;)], it follows that /1\[°1 = 1% u e K (q)],

so that b = ¢,
o~ o o
Remark, Suppose T (£, £ =acV, o ACU, BCU
for appropriate r,s, and F is a formula of L}. One can effectively

decide whether a is the behavior of an A/B-automaton as follows:

(1) ais open if and only if "N :F[(£fI A g< L + D« F "
ef
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is trus, whers f abbreviates (r+s) set variables, cf. 6.2;

(2) 7.1 (4) holds if and only if"/\\ V (¢ » £, is trus;
fl f2 1’ "2

(3) 7.1 (3) holds if and only if " /\  :H(f., £.]
1, 2, &2 FLo 12 A

ﬁftfl. 32] = fé - 8" is true,
7.2, We wish to show that none of the conditions of 7.1 can
be dropped without the statement becoming invalid.,

72,1, Let A = {1} and B = {0,1}. Consider the set a:

n
S
11111

000¢-01* P20

Since 0" + 1u{A} denctes this set if "O" denotes {¢1, OY} and "1

denotes {{1, 1)}, a is regular and 7.1 (1) is satisfied. It is obvious

that 7.1 (3), (4) are satisfied and that 7.1 (2) is not satisfied,
7.2.2. Let A, B, a be as in 7.2.1, Then a” (cf. 6.3) satisfies

(1), (2), (4) but not (3).
7¢.2.3. Let A = {0, 1}, B = {1}, and let a be the set:

n>0
('_—-A—-——\
1111
?
1111

then a satisfies (1), (2), (3), but not (4).
7¢2.4, Let A = fa, b} and let B = {0, 1}. Let p be the set:

n n
@ac-+abaace-a,
al 32 [ XN ] al( oee .,n
bl bz XK bk vee bn

It is known (cf. [9]) that B is not regular. Let e a

Sama> a,8,00ca & aL & bk = ], Since BL is open, it follows that
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\/ u_ 1%
£ q ===> vov o v. AV € V{l} AV, E V{O}' Now a gatisfies
up,vy 2
¢
uz’vz *

7.1 (2), (3), (4). We wish to show a is not regular., If a were
regular, then ¥ = a n VAX{I} is regular. Further, ¥ is isomorphic to
BL. Hence to show a is not regular, it is sufficient to show BL is
not regular,

Suppose BL were regular, then, assuning a,b ¢ Ug, for some

formula F[f] of Li‘:

(P = 8.
Let Y[ g] be the formula:
'thlA/f\:gsrA';Fm-D-g-f (cf. 6.2),

Then ’1‘2(27) = B is regular, Contradiction. Thus a is not regular,

7.3, If A is an arbitrary finite non-empty set, AY 1s the set
of all infinite sequences (functions on natural numbers) of elements of
A, IfagV,, then f e lim a <=> {f)L € a, where BL, for pC AN,
means the set of all finite initial seguents of elements in B.

Theorem, If a C (A x B)N , then there exists an A/B-autcmaton
such that lim J(Wft) = a if and only if

(1) o 1s regular,

fl f2

(2) glea/\gzsar\fl [n=f,[neDeg [n=g, [n
where f [ n is the restriction of f to the set of natural numbers < n,

(3) {r| és a} - AV,

Proof., Assume (1), (2), (3) hold. From (2), it follows that

7.1 (3) holds for aL; 7.1 (2) is obvicus from the definition of aL;
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and 7.1 (4) follows from condition (3). Hence, there exists an A/B-

automaton JU such that J() = aL. Claim: 1lim aL =q, If 2

{;}L c aL so that ; € lim aL and a € lim aL. Suppose § € lim aL.

e a, then

Because of (3), g ¢ a for some h, Consider an arbitrary n, 2[ n= g:f n
for some ;: ¢a, Since £ ['n=f' ['n, it follows that
h[ne=g'[n=g]|[ n (using condition (2)). Thus, g = h and our clain
is established (based only upon conditions (2) and (3)).

Let L be an A/B-automaton, It is obvious that lim TJ(I)
satisfies (2) and (3). Hence, the "claim" of the previous argument

establishes that (lim U(ﬂ))L = 7@ so that (1) is satisfied.,

8, Solvability-synthesis algorithms., The fundamental solva-
bility-synthesis theorem that we have obtained is given in 8,1, A

reformulation is given in 8.,3. In 8,6 we obtain a result closely
related to results obtained by A. Church [2],
8,1, Thoorem, Suppose ¥ ¢ V, n. There exists an A/B-autom-
aton VU such that J(M) C Y if and only if TA (cf. 6.1) is non-empty.
If YA is non-empty, then one may effectively obtain an automaton W such
that JN) = I é(YA) where < is an arbitrary ordering of B (cf. 6.5).
Proof. Suppose (M) c ¥ for some Y. Then, since J (1) is
strongly A-extendable, J(Il) c Y, and 'D:\ ¢ b,
if TA ¢ P, then because it is open, A ¢ )1 and because it is
A-ox‘t,endable, the set {u | 3 g XA} = V,. By lemma 6.1, ¥, is regular.
Let of4(%,) = a. From the definition of J¢, it follows that

{(u, v | :8 at is a function and, since {u | :e VA} - VA’ so, too,

{u | : e a} = VA' By lemma 6.5, a is regular., It remains only to

show that a is open and then the result follows from 7.1,
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Y % “hwY
Suppose v, v, ¢ a, For some v, vy & Since '1’ v & 7‘,

u
it follows v < V). Because vl is A-extendable in TA,

u
1% € ¥ for some w 8 VB.
vV W ~

Thus v,v, £ VW, 80 that v; £ Vv (since £ is a lexicographical ordering),
It follows that v = Vi and a is open, and ths theorem is proved,

8.2, Corollary., Given ¥ C A x B, One can effectively decide
(by the method indicated by the proof) whether: J(,) ¢ ¥ and
IdL,) ¢ ¥ implies JOL) = T(R,).

Proof, If7Y, = @, then the condition is vacuously satisfied
(cf. 8,1). Suppose ¥, # f. If’ﬂ.:L is the automaton picked out by 8,1
and :I(\}Zz) C Y and J(Wl)' # J(ﬂz) , then there exists : e 3(121) ,
: g 3(122), and v < w, Hence, if ¥l is the automaton picked out by 8.1
when the ordering of B is reversed, J(R.l) % I,

Thus, the conditional of the corollary holds if and only if
(1) ¥ =pgor (2 Y # @ and if ‘R.l is the automaton picked out via 8.1
by an ordering £ of B andwz is the automaton picked out via 8,1 by the
reverse ordering » of B, then the symmetrie difference of :](W,l) and
Je) 1s @,

8.3, An A/B-automaton, A € U2, B CUD,, may be identified,,
it will be shown, with a formula of Li‘ of a certain form, Lot N =

{s, £, d, g be such an automaton, Consider the formula 7ﬂ[a,b] of Li:

V [t #0D5(0) = £(a(0), ) A N (s(x') = £(a(x'), 8(x)) A b(x) =
s,t x<t

gs(x) A ,/p\t a(x) = 0, A b(x) = Om,],

where "a", "b" are function symbols interpretsd as taking values
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respectively in A,B and, respsctively, abbreviating finite sequences
of set variables, It is obvious that Twm,(ﬁﬁ = Jfl). Thus the formula
above may be identified with fl. Given an arbitrary formula b[ a,b] of

L}, Let T, ,(§) =¥ €V, 5 Then IOV € ¥ <> a/\b-'}[u,b] >

bla,p).

8.4, If p maps the finite set A onto B, 5 maps elements (and
sets of elements) ofFVA onto elements (and sets of elements) of VB'

We wish to extend further the meaning of P, If f & AN, then (Pf)(n) =
p(f(n)). Ifa g AN, then Pa = {pf | £ ¢ a},

Lemma, (1) IfacC V, is open, then lim (pa) = p(1im a),

(2) For arbitrary p € V,, lim B = lim (Int B).

Proof, Let f g lima., For alln>0, f [ n& aand B(f [ n) s
pas Now pf ¢ P 1im a and {pf}’ = {B(f [ n) | n > 0}, Hence Bf ¢ linm(fa).
Thus, P(lim a) € lim (Pa).

We shall now show lim (Pa) ¢ P(1lim u).5 Suppose g & lim (fa),
let a' = a n go ﬁ'l(g [ n)s Note that a' is open because a is. Then
a' contains an-infinite number of elements, For uce a!', let Pa'(“)
be the number of elements in a' of which u is an initial segment, Now
Ag a' A pa,(A) = 0, We define asg_ a' inductively, Let A e ag.
Suppose u € a g as well as every initial segment of u and suppose
pa,(u) = . Let a), a,, ***, & be an enumeration of the elements of
A, If u is an initial segment of v but u ¥ v, then, because a' is open,
v is an initial segment of either ua,, us,, *°°, ua, Since Pa'(") -
o, for some i, Pa'(“i) = 00, Let k be the first such i and place ua,
in a g Thus a g c VA is an infinite set simply ordered by the relation
"initial segment of", It is thus unambiguous to define f(n) = u(n),

where u & a_ has n in its domain. It follows, for allm, f [mea c

4
aand p(f [m) =g [m. Thus f & lima, Pf = g and g € P lim a.



The proof of (2) is immediate from the definition of lim and Int,

8,5, Lemma, Let B C AV be the set of all infinite R-sequences
£ such that f [‘n is an element of a given set E of sequences of length
n, where R is an n-ary relation over A. Then (1) 1lim (BL) = B, and
if § 1s a projection, (2) (FB)*=B(8Y), (3) lm ((BO)") = P8,
(&) aL and 'f)(BL) are regular sets and a regular expression denoting
them may effectively be obtained,

Proof. (1) Let f & p. Then {f}* < gL, Hence £ ¢ 1in (8%
and 8 < 1im (%), Suppose £ & 1im (8). Then ¢ [ne {gn | gs g}

CE and, for allm, £ ['m is an R-sequence, Hence { is an R-sequence

and £ ¢ B.
(2) ue ()Y «=> Vgepn((Fe) [n) =u =
8,n
V gepadlg [ n) = u <> u s $(eL).
g,n

(3) m ((88)Y) = 1im (5(8")) by (2) and by 8.4, in B(s¥) =
P lim (BL), since B is open and by (1) the result follows,

(4) K(w) = A" {al} . {“2 voe {an} J A*, a, ¢ A, is the set
of sequences in VA in which the sequence w = 3, 3, °** 8, occurs and
this set is regular. The set W is regular and is the set of all
R-sequences, The set B 1s regular, as is any finite set, The set al"

:La:‘%1 K(w) m EL and is, therefore, regular., Since projection preserves

regularity, ﬁ(BL) is regular,

8.6, let Li be the system consisting of the formulas of L,,
with individual variables interpreted over natural numbers and the set
variables interpreted over arbitrary sets of natural numbers. With a
formula 'J:[Fl, PYIRAAY Fr] of Li we associate a set T:°37 defined as

follows:



£ ¢ 1°F 1f and only if £ & U} and (£(x)), = £,(x), 11 g™,

where f, is the characteristic function of F, md?[?l, !‘2, vee, rr]
holds. Abbreviations introduced for Li in remark 5.3 will be used in
Li as well,

8.6.1, Let M = <8, £, d, g) be an A/B-automaton, The following

formula &, [a,b] of Li (abbreviated) below may be identified with #s

V (s(0) = £(a(0), d) A N+ (a(x') = £(a(x'), 8(x))) A b(x) = gs(x)].
s X

Ifa= (ﬂw) (assuming rangs a g. U and range b cl ,). then

m+m'
comparison with ?’n(a,b] shows that o «JW) = ‘m,'fn (of, 8,3) and
by lemma 8,5 (3), lim JN) = a,

8.6,2, Consider arbitrary formulas of 1{ of the form

V /\M[a, b, 8, x], where rangs a C A, range b C B, and where M;is free
s X

of quantifiers, contains only s, a, b, x free (a, b, s, respectively
abbreviate finite sequences of set variables), may contain numerals
but not "= por "<, Assume M to be in disjunctive normal form and let
n be the maximum of those u"._ such that x(n) or 0(.) appeara in M,

Then 15, ( Qu), rangs 8C 3 C U, 15 the set of all £ & (AxBx 8"

which are ’R-ooquencu, for same n~ary R, and such that f [‘ nsk for
some finite set E (of elements of L of length n), Both R and B
are effectively, indeed readily, obtained from M in expanded disjunctive

normal form, Ifp = /\u), then Pp = T +n'( \/ /\K), where p

mﬂn'#r
maps an (m+m'+r)-tuple into the appropriate (uﬂn')-tuplo.

8.6,3. Theorem, Given a formula Y/x\)([a, b, s, x], K as
in 8,6.2, of L5 « There exists an A/B-autmtonﬂ, such that

lm JM) €p = .(V/\u) 1¢ and only AL, # # (cf, 8.1) where

m#m
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¥ = g% Whsther or not ¥, = # can be effectively decided (by the
method given in proof) and if ¥, ¥ @, one can effectively produce an
automaton satisfying the condition (by ths method below),

Proof. From 8,6,1 and 8,6,2, it follows that
Ln T c 8 <> T 8

The set BL may be sffectively obtained (8.5 (4)). The problem is
now reduced to 8,1,

8,6.4. In connection with 8,6.3, it should be noted that:

1nJ0) ¢8 +=> /\ <401 DV N\Ma, v, 5, 3]
a,b 8 X
where & , L are as in 8.6,1,
9. Remark. We give a metamathematical proof that the set

n n

g = {mb‘a ac+ra|n> 0} is not regular, Let a,b & e,
If the set were regular, then there would be a formula ?[f] of Li
such that Tz?- B, Theny = 2x <==> \/+ £(x) = b AL(y) 0 A

£
/z\(z >y D £(z) = O)AF[f). Thus regularity of p implies that

doubling is definable in Li and by results of R. M. Robinson {10}
it would follow that the set of true sentences of Li is not effective,

contradicting 5,8.



CHAPTER IV
NON-EXISTENCE OF CERTAIN ALGORITHMS

10. Let L2 be the class of well=formed formulas constructed

out of individual variables and monadic predicate variables, by means
of the successor operation ('), addition (¢), =, propositional connece

tives, and first order quantification,

1
Let L2

variables ranging over natural numbers and the monadic predicates

be the system consisting of Lz with the individual

rangs over properties of natural numbers which are ultimately false and
remain false (we could have used finite set variables instead, as in 5)
and the unary and binary (non-logical) operations interpreted as indi-
cated and the logical operators and = interpreted in standard fashion,

It will be convenient, as a device for abbreviation similar to
5,3 remark, to employ unary function symbols (we shall use '1') in forn-
ulas such as 1(x) = a where a ¢ A and A 1s a finite set of symbols, By
coding A, i.e,, putting A into 1-1 correspondence with a set of r-tuples
of zeros and ones, for appropriate r, the function symbol "i" may be
replaced by a sequence of r distinct monadic predicate variables, To say
i is free means that the associated r monadic predicate variables are
free, If o= abc is a word (finite sequence), a,b,0 8 A, then
1(x)1(x+1)i(x+2) = o will abbreviate i(x) = a A 1(x+l) = b A 4(x+2) = o,

Notice that in L3:

Xm0 @mp> x+x=Xx

x<y ®=>\/ x+usypugo,
u

i3~
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s0 that as further abbreviations, we shall employ O, <.

Given a formula G = G[i,m] in which only i,m ocour free
where i is a unary function (interpreted as a function on the natural
numbers with values in a finite set B) and m is a monadic predicate,
With each i,m such that G[i,m] is trus and m(0) holds associate the
finite sequence T.(i,m) of words (in B) whose first n words are
1(1)1(2) e 4(x)), 10x)#1)4(x)#2) o= 0d(x;), *ovy 2x g ¢LIA(x ;42) 00 od(x )
where 0 < x; < x, < ¢¢¢ <Xx are the first n + 1 numbers for which m
holds, Let T(G) be the set of all TG(i,u) such that G{i,m] is true
and m(0) holds,

10,1, Lemma, For every Post normal system P there is a
1
2

formula F = F(P) in L, such that T(P) is the set of all proofs of P,

Proof. Let C (x,y) abbreviate:

n(x) n(y) (x<y) /\ (x<s<y>aE),
]

icoo,

nx) An(y) A Vx+usyAa~u+u=u
u

A/\[(Vx*u"ﬂl\'vu’“"uAV'*“‘Y’\ W*u-u)b;m].
2 u n )

With each pioduction of P
(o—l, vz)k: o'l]‘_B - po-:
associate the formula
S, ag(0%) i L0002 e 1el(]) = o A Nu o e 7
A 1(urd)3(us2) + +1(ust(o5)) = of
AY z+w+£(ol{)-x/\z+x*1.(o§) -y

A/\(~u'0n-u/\\/ufv-s‘.‘li(w+l(o§) +u) =
u v .

1(x+u) )]
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where (o) represents the length of 6. This formula expresses the

condition that 4(w+l)i(w+2)e++i(x) = oll‘a and 1(x+1)i(x+2)++i(y) =
2

Bo-g for same B, Let (o'l,crz)l, (o'l,oz) ) °°% (O‘i,a'z)n bs the produc-

tions of P and let a be the axiom of P and define

Sp(i,m): /\ [(C

(w,x) C_(x,y) D8 (Wyx,y) Vv 220 v 8 (w,x,7))
w,x,y* o ’ - 01100% o, R

172
Aw-o:x-1m>Aunua-nxam»-aﬂ.

Then F is

[Sp(i,m) Am(O) A V xFfOAYFO0AXFYAn(X) An(y)] v m(0) A
X,y

\/E:;lof\m(x)t\ (NyFfonm(y)oy=x)>x=4(a) A
x h 4

1unmr~uua)-q.

10.2, Theorem., The set of satisfiable formulas of L% is

effectively enumerable but not effective, Indeed, the degree of
unsolvability of this set is maximum among all effectively enumerable
sets, If P is a Post normal system with 2 letters (see M, Davis,
Computability and Unsolvability, McGraw-Hill, New York, 1958, page 100,
theorem 5,3) which generates the complete (Post, 1944) set of natural
numbers and if F = F(P) A ycm(x, xm+l) A i(x+l) = L AL(x+2) = 1 A

ees  4i(x+n+l) = 1, then every recursively enumerable set is recursive
in the set of GBdel numbers of the satisfiable formulas ’n’

Proof, n ¢ Sp (see Davis, page 85, definition 1.,ii) if and
only if 1\,4; F_ is true, 1,e,, if and only if F,_ is satisfisble,

The fact that the satisfiable formulas are effectively enumer-

able follows readily from the Presburger result,
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10.3. It is clear that the results of 10,1 and 10,2 hold if
the individual variables are interpreted over positive integers rather
than non-negative integers, Hence, ons obtains for either the non-
negative integers or the positive integers:

2
Corollary. If L2 is the system consisting of the formulas Lz

but with the interpretation of the predicates unrestricted, then the

set of satisfiable formulas of Lg is not effective,

Proof. The property of a predicate that it becomes ultimately

false and remains so is definable in Lg.

This (for positive integers) is Putnam's theorem 4 [8, page 50],
Putnam's argument can, however, be adapted to give the stronger result:
The set of satisfiable formulas of L3 is not aritimetic.

10.4. Let Lg bs the system consisting of the class of formulas
L2 with individual variables interpreted as ranging over all the
integers and with the predicates ranging over finite sets of integers,

Analogues of the lemma of 10,1 and the theorem of 10,2 hold
for Lg. T(G) is defined exactly as before,

Notice that in Lg:

X=0 == VYxe+xmx, x=]l dmuud Vy-OAy'-x,

X J
x>0 <= \/ /\[p(y)r\yr‘lbp(y-l)]rxp(x)
P ¥

and

p(y-1) <==> V2! =y Ap(s).
2

To establish the analogues for Lg, we show that " Y " can be moved all
P
the way to the left,

Let D(p) stand for /;[p(Y) AY#1Dp(y-1)]. Notice that
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D(p) holds for p if and only if p is a consecutive set of positive
integers beginning with 1,

Then F = F(i,m) is modified by conjoining 4\!(:) > D(p) A p(x)
and prefixing the conjunction by })/. In the formula F, wherever one
wishes to express x < y, one writes ¥x +u=y Ap(u).

10.5. Let L‘z‘ be the system consisting of the class of formulas
L2 with individual variables interpreted over natural numbers and
predicates interpreted over ultimately periodic sets (a set of natural
numbers is ultimately periodic if its characteristic function is),

Corollary. The set of satisfiable formulas of Lg is effectively
enumerable but not effective, The degree of unsolvability of this set
is maximum among all recursively enumerable sets.

Proof. That the set of satisfiable formulas is effectively
enumerable follows from the Presburger result, The rest of the state-
ment follows from the fact that the property of a predicate of being
finite is definable in L% and from 10,2

A similar result holds for "integers" in place of "natural
numbers",

10,6, Corollary., Given an input-free automaton¥l and a
formula B of L‘z‘ in which the predicates are interpreted as outputs:
the problem of deciding whether Ul satisfiea B is effectively decidable
while the question "does there exist an U such that Y satisfies BI" is
undecidable, See Bfichi, Elgot, and Wright [1] and Elgot and Wright

(4L, page 68, last paragraph].
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FOOTNOTES

This was pointed out to me by J. R, Buchi,

This result has been obtained independently by J. R, Btuchi,

This was suggested by J. R. Buchi,

This was pointed out to me by J. B. Wright,

The proof is closely related to Kdnig's infinity lemma, Theorie

der endlichen und unendlichen Graphen, Leipsig, Akademische

Verlagsgesellschaft M. B. H., 1936, p. 81, Sats 6,
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