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FOREWORD

At the time these lectures were being prepared and presented,
the author was engaged in research supported by the Office of Naval
Research Contract No. Nonr 1224(21) , and by the Office of Ordnance
Research (Contract No. DA-20-018-ORD-16971). The lectures employ
many concepts and theorems developed in the course of this research.
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1. INTRODUCTION

These lectures include a study of two-terminal series-parallel relay con-
tact networks, multi-terminal relay contact networks, and sequential networks.
General, systematic technjques for the study of series-parallel networks have
employed Boolean algebra or propositional calculusnb3 A basic paper on multi-
terminal relay contact nets makes use of matrices whose entries are elements of
a Boolean algebra‘59 More recent workl@’Bo’Bu’l7 makes use of the algebraic
concepts: lattice, semi-group, group. The concept of ring when suitable spe-
cialized is intimately connected with Boolean algebras. This indicates the ex-
tent to which algebra is invading the mathematical theory of switching. Much
recent workl8!26!5l’52 has employed more advanced aspects of logic than the
propositional calculus. Indeed, the use of logic and its techniques has already
produced significant results and promises still more fruitful ones.

We begin with some preliminary, simple, algebraic and logical concepts
which will lead to a discussion of finite Boolean algebras, propositional cal-
culus, and their application to switching theory.

The work of Lunts>’ (which lists results only) is discussed in Section 6.
The arguments make use of an important correlation between matrices of zeros
and ones and finite binary relations. This correlation is useful in other work
on switching.l9)2§,55

Automata and sequential circuits are introduced in Section 7 and the con-
nection with Burks-Wright logical nets?? is pointed out. Moore's theory and
related work of Mealy and Ginsburg55’5”’u5 is expounded. The equivalence, in
a certain reasonable sense, of finite automaton as defined here and as defined
in Moore is indicated. Finite semi-groups are assoclated with automata in sec-
tion 7.9. In the case of a permutation automaton?? (backwards deterministic),
the associated semi-group is a group. An application is made of this associa-
tion. Kleene's theory57 of regularity as modified in item 28 of the bibliogra-
phy is explained. An alternative notion of regularity is defined and its rela~
tion to the primary concept is established. The discussion terminates with an
example illustrating several of the main results of the sections on automata
theory.

These notes were the basis for the bulk of a course given by the author at
The University of Michigan (1957, 1958) in the Department of Electrical Enci.ecer-
ing.



2. OPERATIONS ON SETS

Let A be a set (class, collection, aggregate) of objects called elements
(or points) of the set. "x is an element in A" is written "x ¢ A." For ex-
ample, ifJ is the set of positive integers, 1 e 9, 2 €9, etc. If A and B are
sets, then A = B (i.e., "A" and "B" denote the same set) if and only if (x ¢ A
<==> x ¢ B). If A and B are sets, the union of A and B, AUB, is defined as
the set of all elements x such that x ¢ A or x € B (i.e., in one or both); the
intersection of A and B, ANB, is the set of all x such that x € A and x € B.
ACB meaus "if x € A, then x ¢ B"; so does BDA. ACB (BDA) means ASB but
A # B.

Exercises., Prove that for all sets A,B,C

AUA = A
(AUB) UC
ANA = A,
(aNB)Nc = aN(BNC),

) =A [Proof. x e (AN(AUB)) if and only if x e A and
if x € AUB if and only if x € A and (x € A or x € B) if and only
x € Aor (x ¢ A and x € B) if and only if x € A.]

e

AU(BUC),

RN DN
U= WO

AyU(ANB) =a,

ifACB, then AUB = B,

if AYB = B, then ACB,

if ASB, then ANB = A,

if AQB = A, then ACB,

AUB = BUA,

ANB = BNA,

AN(BUC) = (ANB)U(ANC),

aU(sNnc) = (AUB)N (aUc).

Example. If A = {1,2}, i.e., A consists of two (distinct) elements
1,2, and B = (2,3}, then AUB = (1,2,3} and A[]B = (2}.

If A and B are sets with no elements in common, then ANB is un-
defined. 1In order to avoid this situation, it is customary to intro-
duce the empty set, denoted by "@," which is defined to be a set with
no elements, i.e., x ¢ ¢ for all x, It follows ANB = ¢ if A and B
have no elements in common. ¢ is the only set with no elements. Ob-
Jects which are not sets also have no Eents.

2.17. TFor all sets A, (1) ANG = ¢, (2) AU¢F = A.
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3. OPERATIONS AND ASSOCTIATED RELATIONS

S be an arbitrary set and ¥ a binary operation defined over the set.

Let Ry be a binary relation on S defined as follows: =xRyy if and
=x % y. ["xRyy" is read "x is in the relation Ry to y."] Similar-

1y define xR¥y if and only if y = x * y.

3.2

A relation R is reflexive over S if and only if xRx for every x € S;

anti-symmetric if and only if xRy and yRx implies x = y; and transitive 1if and

only 1f xRy and yRz implies xRz.

3.3.
(a)
(o)
()

Theorem., Let % be a binary operation on S. Then

if x * x = x for all x € S i.e., ¥ is idempotent, then Ry is reflex-
ive over S;

if x *y =y % x for all x,y € S, i.e., ¥ 1s commutative, then Rx is
anti-symmetric;

if (x % y) #* z =x % (y » z) for all x,y,z € S, i.e., % is associative,
then Ry is transitive.

Proof.

(a)
(v)

()

(2)

XRyxX 1f and only if x = x % X.

If XRyy, then x = x ¥ y; 1f yRxX, then y =y % X. Since x ¥ y =y % X,
it follows xRyy and yRgx implys X = y.

Suppose xRyy and yRgz. To prove: xRyxz. Then (1) x = (xxy), (2) vy =
(v * z). From (1) it follows (3) x % z = (x % y¥) % z while from (2)
follows (4) x * y = x % (y % 2z). Since the operation is associative,
(3) and (4) yield x * z = x * y, but x * y = x from (1) so that x % z

=X, i.e., xRgZ.
*
Statement 3.3 with R in place of Ry also holds.

Example.

Let min be a binary operation on numbers (reals or integers or posi-
tive integers) defined as follows: min(a,b) = a if and only if a
< b; min(a,b) =b if and only if b < a. Then min is idempotent,
anti-symmetric, and transitive, aRp;,b if and only if a = min (a,b)
if and only if < b; aR™MPy if and only if b = min(a,b) if and only
if b < a. Thus Ryj, 1s the relation < while R™" is the relation > .

Let S be the set of rational numbers (fractions; let * be ordinary
multiplication. Then: xRyy if and only if x = x %* y if and only if

3



x =0 or y = 1. Therefore, ORyX and xRyl for all rational numbers x. Notice
that multiplication of rational numbers is commutative and associative but not
idempotent. Theorem 3.3 tells us that in this case Ry is anti-symmetric and
transitive. Note, too, xR O and 1R*x for all rational numbers x.

(3) Let S be the set of non-zero rational numbers and let x * y. Then
xR,y if and only if x = x + y 1if and only if xy = x if and only if y = 1, N
while xRy if and only if y = x + y if and only if y2 = x so that 9R'3, 16R L,
etc.

3.6. Exercises.,

(2) What is R, , RV, Rn » Rn in terms of previously defined relations?
[Note 2.1, 2.2, 2.11; 2.3, 2.4, 2.12.]

(b) Show the greatest common divispr (ged) and the least common multiple
(lcm) of positive integers are idempotent, commutative, associative
operations. What is Ry if x x y means gcd of x,y; if x % y means lcm
of x,y?%

(c) If * is commutative, then xRxy if and only yR*X, and conversely.

(d) Show subtraction of integers is not an associative nor a commutative
operation.

(e) If + is an associative binary operation on a set S, then: if xR1m and
yR'm, then (x+y)R™m(cf.3.1). If, furthermore, + is commutative and
idempotent, then xRtx+y and yR+x+y. Under these conditions (S,+) is a
semi-lattice and R a semi-lattice ordering relation (cf, 3.3).

3.7. A partial ordering relation R over a set S is a reflexive, anti-sym-
metric and transitive relation over S.

Examples.

(2) & 2

(b) Define R over ordered pairs [i.e., (x,y) is to be distinguished from
(y,x)] of numbers (real, integers, etc.) (a,b) as follows: (a,b) R
(c,d) if and only if a < c and b < d. Thus (2,3) R (2,4) but not
(2,3) R (3,2) nor (3,2) R (2,3).

(c) d e



(a)
3.8.

(a)

(v)

xRy if and only if (1) y is above x or (2) y = x.
Rx) R' where % 1s idempotent, commutative, and associative.
Exercise.
V
IS R is a partial ordering relation over S and R is defined as follows:
xRy if and only if yRx, then R is a partial ordering relation.

Y
4
xRy if and only if xRy.
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4. LATTICES %

4,1. A lattice L = (A,v , A) consists of a set A and two binary opera-
tions v ,A such that

(2) each operation is idempotent, commutative, and associative and

(v) aAn(avb) =a, ay (aAb) = a, for all a,b in A. The first of the
two operations is the join operation, while the second is the meet
operation.

4.2. Exercise. If (A,V,A) is a lattice, then so is (A,A,V).

4.3. Examples of lattices.

(a) I A is the collection of all subsets of a set S(T is a subset of S
ff Tc S), then (A, U, N) is a lattice. More generally, if A 1is a
collection of sets such that A is "closed” under U(i.e., S; € A and
Sz € A imply S1U S5 € A) and N, then (A,U, ) is a lattice.

(b) Let A ©be the set of ordered pairs of integers. Define: (a,b)Vi,d) =
(max)a,c), max(b,d)), (a,b)A (c,d) = (min(a,c), min(b,d)). Then
(A, v,A) is a lattice.

L.k, Exercises,.

(1) @Give 4.3(b) a geometric interpretation by introducing rectangular co-
ordinates in a plane and correlating with an ordered pair of integers,
the point which has this ordered pair as itscoordinates.

(2) If A 1is the set of positive integers, and if aV b means the least
common multiple of a,b, and if aAb means the greatest common divisor
of a,b, then (A, V,A) is a lattice.

4.5, A relation < is a lattice ordering relation over a set S ff*S is a
partial ordering relation and every pair of elements in S has a (unique) least
upper bound and greatestlower bound, with respect to this ordering. (b is an
upper bound of x,y means x < b and y < b. m is a least upper bound of x,y means
that m 1is an upper bound and further if b is any upper bound of x,y then m <
b.)

4.6. Theorem.

(a) If (A,V,A) is a lattice, then R - RA is a lattice ordering relation
withVthe least upper bound and A the greatest lower bound with respect
to this ordering.

*Note: ff means "if snd only if."



If < is any lattice ordering relation over a set A, let j(< ) be the
bingry operation on A of least upper bound and let m(f) be the bi-
nary operation on A of greatest lower bound both with respect to <,
then (A,i(<), m(<)) is a lattice.

Proof.

(2)

L.T.

(a)
(b)

(a)

L.8.

SinceAis idempotent, commutative, and associative (L4.1), it follows
(3.3) that RA is a partial ordering relation. We note XRAy if and
only if x = xAy, while xRy if and only if y = xVy (3.1). If xR,y,
then xVy (xAy)Vy =y so that xRVy. If xRVy, then xA\y = x A
(xVy) = x so that xRyy (4.1(b)), which establishes RY = R. (To say
Ri1 = Ro, where R; and R, are binary relations, means that xR;y if and
only if xRpy.) We now write "<" instead of "R." Let x,y € A. We
note x < xVy if and only if xVy = xV(xVy). But xV(xvy) =
(xV(xVy). But xV(xVvy) = (xVx)Vy = xVy. Similarly, since
xvy =yv(xvy) =yv(yVx) = (yVx) = yvy)Vx = yVx, it follows
y < XVYy. Suppose now X,y < m. It is required to show that vy < m,
i.e., m = (xyy)vm. Note that (xVy)Vm = xV(yvym) = xvm (since
y <m) and xVm = m (since x < m) so that xVy < m.

Exercise.
Prove 4.6(b).

Define aRb, where a,b are positive integers as follows: aRb if and
only if there exists an (integer) x such that a .« x = b, where "."
indicates ordinary multiplication, i.e., aRb if and only if a divides
b. Verify that R is a lattice ordering relation and determine the
arithmetic meaning of join and meet in the associated lattice., [Cf,

4.1, 4.5, L.6.]

Every finite lattice has a (unique) maximum and a unique minimum ele-
ment, with respect to the lattice ordering.

If < is a partial ordering relation over a set S such that for any
a,b € § either a < b or b < a, then < is a lattice ordering. (A re-
lation satisfying these properties is called a complete, simple, or

linear ordering relation, )

The meaning of series-parallel network is now indicated in a semi-
formal way. If

a b C
@ - — —— ] a.:ﬂd. Q.___‘ T

o0,

are two-terminal networks, their connection in series is




A network, = , consisting of two nodes (vertices, points) and one
branch (edge) is called a unit network. The two terminals of each of the net-
works above are the displayed ones, the first one being on the left. The class
of series-parallel networks is the smallest class of two-terminal networks con-
taining the unit networks and such that the series and parallel connections of
any two networks in the class is again in the class. Equivalently, a two-termi-
nal network is series-parallel if and only if it is a unit network or is obtain-
able from unit networks by a finite number of series and parallel connections.

4,9, Exercise. Verify, using the definition, that the following networks,
where the two terminals are indicated by "x," are series-parallel.

(a)

4.10. By a chain in a two-terminal network we shall mean a sequence of
distinct nodes beginning with the first terminal and ending with the second
having the further property that consecutive nodes have an edge in common. A
relation < may now be defined on the nodes of the network as follows: x <y if
and only if x is a node which precedes y in some chain containing both. It
turns out that: if the network is series-parallel, then < (where < is the re-
lation just defined) is a lattice ordering of the nodes of the network. In ac-
cordance with M.6(b), a lattice may be associated with a series-parallel net-
work.

For example, if the network is

a

£



then b < c, b<e, b % a, c % a.

4,11. Two elements x,y in a lattice with 0,1 (0 is the minimum and 1 is
the maximum element with respect to <) are called complementary if and only if
xVy =1 and xAy = 0. In the exampie above (L4.10) the following pairs are com-
plementary: {a,c}, {a,b}, {(a,d}, {a,e}, {0,1}. On the other hand, if the net-
work above is series-connected with a unit network, then none of the elements
in the associated lattice, except 0,1 has complements.

4,12, Exercises. Construct a table forVand one for A(analogous to ad-
dition and multiplication tables) for the lattice associated with the networks
below., List the complementary pairs of elements.

b

4,13, A two-terminal network is admissible if and only if each node occurs
in some chain (cf. 4.10). The following can be proved:BO an admissible network
is series-parallel if and only if < (the relation defined in 4.10) is asymmetric,
that is, for no nodes x,y does x <y and y < x hold. It seems reasonable to
call an admissible two-terminal network a bridge network if and only if < is not
asymmetric. It follows from the theorem and definitions that every two-terminal
network falls into one and only one of the following categories:

1. series-parallel,
2. Dbridge,
3. nonadmissible.

Exercise. Gilve two examples of each of these categories of networks.
L.1k, A lattice (A, A, V) is called distributive if and only if for all

X,¥,z € A the following hold: xA(ywvz) = xAy)V(xAz), and xV(yAz) =
(xVy)A(xVz).

4,15. In a distributive lattice every element has at most one (possibly
no) complement. This assertion is an immediate consequence of the following
theorem.



4,16. Theorem. In a distributive lattice, if aVx = aVy, and aAx =
aANy, then x =Y.

Proof. Note that: x = xA(aVx) = xA(aVy) = (xAa)V(xAy) =
((xAa)Vx)A((xAa)vy) =xA((yNa)vy) = xAy, so that x = xAy. If x and
y are interchanged throughout the above argument, it remains valid so that y =
yAx. This together with x = xAy yields x =y.

4,17. 1In the diagram of L4.10, b,c,d,e are each complements of a. It fol-
lows from 4.15 that the lattice associated with diagram 4.10 is not distributive.

4,18, A distributive lattice with 0,1 in which each element has a comple-
ment (by 4.15 unique) is a Boolean algebra.

Examples.

(1) The set of all subsets of a set (finite or infinite) under union and
intersection. Given the set {a,b,c} with three elements, the set of
all subsets is 4@, (a}, (b}, (c}, (a,b}, (a,c}, (h,c},{a,bc}f. Notice
that the given s&t has three elements while the set of all subsets
has eight elements. 1In general, if a set has n elements, the set
of all subsets has 29 elements. This may be proved by putting sub-
sets of an n-element set into one-to-one correspondence with all the
sequences of zeros and ones of length n. In case n = 3 and the
given set is {a,b,c}, a correspondence is:

000 @

100 {a}
010 (b} ~
001 {c}
110 (a,b)
101 {a,c)
0l1 {b,c}
111 {a,b,c}.

Another count of the number of subsets of a given set is obtainable as fol-
lows. According to the binomial theorem

n
(a + b)n - réo <¥) gh-T T ,

where ? is the number of n things taken r at a time, i.e., (%) is the num-

ber of r-element subsets of an n-element set. Substituting in the Tormula a =1,
b = 1 ylelds



Then

(2)

Let n be a positive integer which is not divisible by the square of
any number except 1. Let A be the set of all positive integral di-
visors of n, and let xVy be the least common multiple of x,y and let
xAy be the greatest common divisor of x,y. Then (A,V,N) is a
Boolean algebra. We indicate the proof in the case that n = 30. In
this case, A = {1,2,3,5,6,10,15,30} . Let f be a function defined
as follows:

f(g) = 1 £({2,3}) = 6
({2)) = 2 £({2,5}) = 10
£({3}) = 3 £({3,5)) = 15
£({5}) = 5 £({2,3,5}) = 30.

(a) f(xVUy) = f(x)Vvi(y),

(b) f(xny) = £(x)AL(y), and

(¢) for every v € A, there is a subset u
of (x,y,z} such that v = f(u).

Because of (a), (b), (c) and the fact that all the subsets of a set undery, N
form a Boolean algebra, it follows that (A,V , A) is a Boolean algebra,

such

then

then

then

4,19, If f is a function defined on a set A with values in a set A' and
ifQ = (A,V,A), Q' = (A, V', A') whereV,A,V "', A' are binary operations

that

r
The
k.20

(1)

(1) f(avb)
(2) f(aAD)

f(a) V' £(b),
f(a) A' £(b),

1

is a homomorphism of Vinto ('. If, furthermore,

(3) for every x' ¢ A', there is an
x € A such that f(x) = x',

is a homomorphism of { onto Q'. If, in addition,
(4) x #y implies £(x) # £(y),
is an isomorphism of @ onto @'.
function f of 4.18 (2) is an isomorphism.
. Exercises,
If f is a homomorphism from a lattice @ = (A,V,A) onto Q' =

(A, V' ,A ") (whereV', A°® are binary operations), then (A',V', A")
is a lattice. If (U is a Boolean algebra, then (L' is a Boolean al-

11



gebra, and if a € A and b 1is the (unique) complement of a, then f(Db)
is the complement of f(a).

(2) Define operations V,Aon the ordered triples of 4,18 (1) in such a way
that the correspondence indicated between these triples and the sub-
sets of {a,b,c} is an isomorphism.

(3) Let S be any set (finite or infinite). Let A be the class of all
subsets x such that either x 1is a finite subset of S or x = S-y and
y is a finite subset of S; here S-y is the set of all elements in S
which are not in y. Show that (A,U, N) is a Boolean algebra.

4.21. We now establish some identities for Boolean algebras. The (unique)
complement of an element x in a Boolean algebra will be denoted by "z."

(1) XVY = xAy.

Proof: Using the left distributive law for VoverA: (xVy)V(XAF) =
[(xvy)VXIA[(xvy)VY] = LAl = 1. Similarly using the right distributive law
for A overr V' (xVy) V(RAT) = [xA(RAF)IVITA(EAT)] = 0VO = 0.

(2) XAY = &V¥.

Proof: InterchangeV,Aand 0,1 in the argument for (1).

(3) % =x.

Proof: % is, by definition, the unique complement of X. But x and X are
complementary, i.e., x is the unique complement of %. Therefore x = X.

(4) If x <y then§ < X.

Proof: We note that x <y if and only 1if XVy =y if and only if xAy = x
and that ¥ < ¥ if and only if §MX = X if and only if JAX = §. Since by hy-
pothesis x <y, it follows that § = XVy and, by (1), ¥ = XAy, so that ¥y < X.

(5) If § <X then x<Vy.

Proof: By (4), X <y and, by (3), x <.

k,22, Exercises,

(1) Let A be the set of positive integers augmented by a new element o
(infinity). If x,y € A, define xvy and xAy as in kb (2) if x,y are
both integers; define xVo = o, xAw = x for all x € A.

(a) Determine whether (A,V ,A) is a lattice.
(b) Which elements, if any, have complements?

(¢) 1Is (A,v,A) a Boolean algebra?

12



(2) Show, by mathematical induction, that X3V xpV e++ Viy = X1 AXA-«- Az,
for any n > 1.

(3) In a Boolean algebra (A,V,A) define x +y = (xAF)V(XAy). Show:

(a) (x+y)+z=x+(y+2);

(b) x + x =03

(¢) xA(y + z) = xAy) + (xAz);

(4) 1+ x =%;

(e) xvy =x+7y + (xAY);

(f) 1let A be a class of subsets of S closed under union and inter-
section, and interpretV,Aas union, intersection, respectively;
interpret X and x + y where X,y € A.

(4) Let A be the set {0,1}; OV1l =1VO =1V1l =1, OVO = 0; OAl =
1A0 = OA0 =0, 1A1 = 1. Show (A,V,A) is a Boolean algebra.

(5) Let B be the set of all functions f defined on n-tuples of O's and 1's
with values which are O or 1. Define fVg =h if and only if fx1,%o
cee s X))V E(X15%0s eee 5 Xp) = h(xX1, Xz, «.. , X,) where each xj
varies independently over 0,1 and the "V" operation on 0,1 is defined
as in (4). Define fAg analogously. Show (B,V,A) is a Boolean al-
gebra. Fow many elements does B have?

15
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5. PROPOSITIONAL CALCULUS AND AN APPLICATION

5.1. A formula is a finite (nonzero) concatenation of symbols of the fol-
lowing four types

propositional variables: Dpi, P2, oo« P [n>1]
propositional constants: f, t

propositional connectives: V, A, ~

punctuation symbols: (, ).

For example, pips V (, ~pips are formulas. Such formulas will not be interesting
to us nor will they be given interpretations. The formulas with which we shall
be concerned and to which interpretations will be given are the well-formed for-
mulas. We define inductively on the length (number of occurrences of symbols)

of a formula, a well-formed formula. A formula F is a well-formed formula if and
only if

(a) F is a propositional variable or constant;
(b) F is (F1 V Fs) or (F1 A Fo) or (~F,) where F; and Fs are well-formed
formulas.

The symbols V, N, ~, £, t will be read "or," "and," "not," "falsehood," "truth,"
respectively.

5.2. (a) We may allow an infinite number of propositional variables in 5.1
but for greater perspicuity in the applications to switching theory the finite
cases will be used.

(b) The punctuation symbols of 5.1 are dispensable. We may, for example,
writeV pips instead of (p1 V p2),Apips instead of (p1 A ps), ~p; instead of
(~p1), so that (p1 V (~(pi A p2))) may be written Vp; ~ A p1Ps. We shall, how-
ever, adhere to the scheme of 5.1 with the modification, however, that paren-
theses will sometimes be dropped when it is believed that this will not cause
confusion. The syntax as well as some applications of parenthesis-free notation
are discussed in items 24 and 29 of the bibliography.

i

-

5.3. Define tU t=tuUf=Ffut=1t, f-Uf =7F;
tNt=tandtnf=Ffnt=Ffnf=+=~[cf. k.22 (4)];
Ot=f, OFf = t. -

We will now associate with each well-formed formula F a function g%n) from n-tuples
of t's and f's and with values which are t or f as follows (the xi's below vary
independently through {t,f}):
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n . .
(1) ep )(xl,x2,o..,xn) =x; if F is pj;

t if F is t;

g%'n) (Xl)XZ) e JXn>

(

an)(Xl,X2,°°“,Xn) =f if F is T;
n n . .
(2) gén)(xl;X2;°°°:Xn) = g§l)(X1)X2;°°°;Xn) u 8%2)(X1:X2:"':Xn) 1f F is
(F1V F2);

(3) g™ (xusxe e oxn) = g™ (xnsxaen ) Mgl (k1,325 0 0%0) 17 F 15
(F1 AF2);

(4) gén)(xl:xz;°°°:xn) = []géi)(xl’xg’°°°’xn) if Fois (~F).

n
Now define two formulas F,G to be equivalent, F eq G, Tf gén) - gén).

5.4. Theorem. F gq,G, where at most the variables pi,.-.,p, occur in F,G,
if and only if F gq G where m > n.

Proof. It is obvious by induction on the number of occurrences of opera-
tion symbols (V, A,~) in F that g%m (Xl:x2:'°°:Xn:°'°:Xm) = an (xl,xg,...,xn)
from which the result follows.

Because of this theorem we write '"F eq G" if F gq G for some n.

5.5(a). A binary relation R which over a set S satisfies:

(1) aRa for every a € S (reflexivity)
(2) aRb implies bRa (symmetry)

(3) aRb and bRc imply aRc (transitivity)

is called an equivalence relation. Show that if R(a) is the set of all x such
that xRa, then

* *
(L) a €S, besS, and aRb imply R(a) = Ei(b)
(5) aeS,bes, and afb imply K(a) NE(b) = @
(6) S is the union of all classes ﬁ?a) where a runs througn S.
n
5.5(b) Show = is &
tive integer n, where a

n equivalence relation over the integers for each posi-
8 b means a-b is devisible by n

Conversely, 1f S is the union of disjoint subclasses (i.e., if U,V are sub-
classes either U=V or UNYV = ¢), and if aRb is interpreted as meaning that
a,b are both in the same subclass, then R satisfies (1), (2), (3).

5.6. The class of all well-formed formulas W may be partitioned into sub-
classes Wy ,coo,Wp (ef. 5.5) such that any two formulas in the same subclass are
egq-related, Wy NW3 = @ for 1 # jand W =Wy U.-- UWy. Note that if F eq F'
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and G eq G', then (FV G) eq (F'V G') and (FA G) eq (F'A G'). Hence we may
define Wi =Wy V W3 if H is F vV G) and H € Wk, F € Wi, G € Wj. Wi A W3 is de-
fined analogously.

Theorem. If C = {(Wi,..-,Wp}, then (¢, vV, A) is a Boolean algebra where V, A
are the operations defined immediately above. Indeed (C, V,A) is isomorphic to
(B, V, A) of k.22 (5).

Proof. By virtue of 5.3 and the definition of eqg, with each W; is associ-
ated a unique function from n-tuples of t's and f's with values which are t or
f. Moreover, with each function g of this kind there is a formula F such that
g%n = g. The formula F may be chosen as a disjunction of conjunctions of the
form g3 A go A .o A a, where each g; is p;j or (~pi); for each n-tuple Xj,Xs5,s0.,
Xn such that £(Xi1,Xs,e0e,Xn) = t construct the "corresponding'" conjunction of
q;'s where gy = pjy if and only if xj = t; the disjunction of all conjunctions
of this kind "corresponding" to n-tuples Xi,Xz,..:,X, such that £(x1,Xz,+..,%y) =1
is chosen as F. For this F, ga'/ = g. Hence, for each function g from n-tuples
of t's and f's with values which are t or f, there is a Wi such that for each
F eW;, ggn = g. The correspondence indicated between C and these functions g
vields a correspondence between C and B of 4.22 (5) if t is correlated with 1
and f with O. The correspondence between C and B is an isomorphism between
(C, v, A) and (B, V, A) of 4.22 (5). Since the latter system is a Boolean al-
gebra, the former is. Note, too, this implies r = o2n,

5.7. By virtue of the theorem of 5.6, the identities which hold for Boolean
algebras carry over to formulas of any propositional calculus with "=" replaced
by "eq." For example, x A(y V z) = (x Ay) V(x Az) implies FA(G YV H) eq (FAG)V
(FAH), and XVy = X Ay implies ~(F Vv G) eq (~F) A (~G) where F,G,H are arbi-
trary well-formed formulas of a propositional calculus.

5.8. If G is a well-formed part of a well-formed formula F and G eq G',
then F eq F' where F' is obtained from F by replacing an occurrence of G by G'.
This may be proved by induction on the number of operation symbols which occur
in F. For example, if F is

(p1v (p2 A(~p2))) A ps ,

then G may be taken as pp A (~pz), G= as 0, so that F' is (p1 V O) A ps. Repeat-
ing the process with "G" the formula (p; V 0) and "G'" the formula pi, we obtain
P1 A P3 eq (p1V O) Apz. Thus

(p1 V (p2 A(~p2))) A b3 eqd P1 A P«

5.9. Exercises. Let A, B, C be well-formed formulas of a propositional
calculus. Define:

(A =B) tobe (AAB)V ((~A) A (~B)) ;
(A +B) to be (A A(~B))V ((~a) A B) ;
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(A~ B) to be (~AV B) ;
(A AB) to be (MAAB)) ;
(A Y B) to be (~(A VB))

Show that

(1) (t +A) eq (~);

(2) ((A +B) +C) eq (A + (3 +C));

(3) ((A=3B)=C)eq(a=(B=C));

(4) (A +B) eq (B +A) and (A =B) eq (B =4A)
(5) (t+A +B)eqg (A=B);

(6) ((A~>B) A(B~>A)) eq (A=B);

(1) (A~ (B+A)) eq t;
(8) A eq B if and only if (A = B) eq t;
(9) Eq(A) < Eq(B) if and only if (A » B) eq t, where Eq(A) is the class of
formulas X such that X eq A and < is the lattice ordering of the Bool-
ean algebra (cf. Theorem of 5.6);
(10) there is a formula in A, B, +, A, t which is eg-related to

(a) AVB
(p) A=B
(c) ~A;

(11) same as (10) but replace "+, A, t" by ">, £";
(12) same as (10) but replace "+, A, t" by AT

(13) same as (10) but replace "+, A, t" by "y';

(14) A V (A AB) eq A;

(15) A vV (AAB) egAvVE [cf. 5.10];

(16) (AAB) V(EAC)eqg (AAB)V (RAC)V (BAC).

5.10. Notice that A =B =C (i.e., ((A =B) =C)) is not eg-related to
((A=8) A(B=¢C)). Note, too, that =, + are operations while eq, < are rela-
tions (ef. (8), (9) of 5.9). Furthermore (A = B) is (an abbreviation for) a
well -formed formula cf the propositional calculus but (A eq B) is not.

Tn what follows we will often regard a formula as denoting its equivalence
class, so that the formula will denote an element of the Boolean algebra of 5.6.
Under these circumstances we may write "A = B" instead of "A eq B" and "A" in-
stead of "(~A)."

5.11. Application to series-parallel relay contact circuits. We shall re-
strict the meaning of relay contact to a device with two terminal posts which
is capable of two states, in one of which there is a closed path between the two
posts and in the other of which there is no closed path between the two posts.
A contact is normally open if and only if there is no closed path between its
posts when its controlling coil is not energized and there is a closed path be-
tween its posts in the contrary case. A contact is normally closed if and only
if there is a closed path between its posts when its controlling coil is not en-
ergized and there is no closed path between its posts in the contrary case.
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With a two-terminal series-parallel circuit constructed of relay contacts,
but not their coils, we associate a diagram of the type indicated in 4.8 which
indicates the structure of the circuit with the modification that each branch
will be labeled by exactly one of the following: Pz, El, P2, Eé, «e+s Pn» Eﬁ
and in such a way that

(a) a letter without a bar is correlated with a normally open contact; a
letter with a bar is correlated with a normally closed contact;

(b) if one branch is labeled q; (gj is pj or pj) and another 3, then 1=
if and only if the coils controlling the contacts associated with aqj, qj are the
same.

We now associate with each 4.8 diagram (but with branches labeled) a formula
as follows. With the diagram Pi w is associated the formula p; which will
be interpreted as "coil p; is energized." (By coil p; we mean the coil which
controls the contact associated with the branch labeled ”pi.”) With the diagram

Pi

is associated the formula p; which will be interpreted as "ecoil pj is not ener-
gized." Labels "t",("f") on such a diagram are interpreted as '"there is a closed
(open) path between the terminals." If with the diagrams

the formulas A, B are respectively associated, then with their series connection

o——_-—___—-.—_--——-_--g

the formula (A A B) is associated, and with their parallel connection

//\\\

- N
(\ »
~ yd

~ e
iz

the formula (A V B) is associated. The interpretation of (A A B) is obtained by
following the interpretation of A by "and" and then the interpretation of B. The
interpretation of (A V B) is obtained similarly but writing "or" instead of "and."
Here "or" is understood in the inclusive sense, i.e., (A V B) is false if and
only if both A and B are false.

For example, with the diagram Ty

P1
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is associated the formula pi N (P1 V pz) which is interpreted as: coil py is en-
ergized and (either) coil p) is not energized or coil ps is energized.

Conversely, given any well-formed formula constructed out of pi, P1, P2,
Do, .. by means of V, /A, there is a two terminal series-parallel network (es-
sentially unique) which has the given formula as its associated formula. Notice
that there is a closed path between the terminals of a two-terminal network when
and only when the associated formula (under the given interpretation) is true.

Two networks are equivalent if and only if there is a closed path between
the terminals of one when and only when there is a closed path between the ter-
minals of the other. If this statement is properly understood, it follows that
two networks Ci, Cs are equivalent if and only if their associated formulas F,,
Fs are eq-related, i.e., F; eq Fo. Thus the network indicated above is equiva-
lent to the network.

Pa P2

since (p1 A (D1 V p2)) eq (py N ps). The former network contains three relay
contacts while the latter network contains only two.

5.12. Exercises. (1) TetP=a VvV (EADAT) V(aADbAc)V(anbAc).

(a) Write P in expanded disjunctive normal form (i.e., as a disjunc-
tion of conjunctions, each conjunction of which involves all three letters).

(b) Put the negation (complement) of P in the same form. [This may
be done by inspection from (a).]

(¢) Simplify P and indicate with a diagram the two-terminal series-
parallel network associated with the simplified formula.

(2) The formula (a A Db) V(aAc)v (aAb)V (bAc) is a disjunction of
four conjunctions. Which, if any, of the conjunctions, when deleted, yields a

formula equivalent to the given one?

(5) Find a relay contact network equivalent to the one given below but us-
ing at most five relay contacts. Hint: The result of (2) may be useful.

(L) Construct a relay contact network (if one exists) controlled by three
coils and such that whenever the state of exactly one of the coils changes, the

state of the network changes.

(5) Same as (4) but change "exactly one" to "exactly two."
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Diagram for exercise 5.12 (3).

5.13. Quine's method.55 This subsection is concerned with those and only
those formulas which are disjunctions of conjunctions. Each conjunction is a
conjunction of literals, a literal being a propositional variable with or with-
out a bar over it (i.e., negated or affirmed). It is assumed that a conjunction
contains at most one occurrence of a letter. Conjunction will be denoted by con-
catenation. A conjunction which is part of a formula is called a clause of that
formula. An example of such a formula is: plpgié‘v P2ps. Its clauses are
P1P2P3 and pops.

An implicant of a formula F is a (nonempty) conjunction A such that (A + F)
is a tautology. Given two conjunctions A and B, A is said to subsume B if A
(possibly rearranging its constituent literals) may be written BC (C is a, pos-
sibly empty, conjunction) where "BC" denotes the concatenation of B and C. An
implicant of a formula is prime if it subsumes no implicant other than itself.
The prime implicants of the formula above are: P1P2, P2Ps-

5.13.1. Theorem. Given a formula F (not a tautology), there is a formula
F' such that F eq F' and F' is a disjunction of all and only the prime implicants
of F. Rules (1), (2), (3) below may be applied (in any order) only a finite num-
ber of times to the formula F at the end of which time the formula F' is obtained.
(If one conjunction is obtainable from another by rearranging its constituent
literals, the two conjunctions will be identified.)
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Rules: (1) 1If A,B are clauses of a formula and A subsumes B, then delete
A from the formula.

(2) If p; and P3A (for some i) are clauses of a formula, replace
P;A by A; similarly if p; and Dy are interchanged.
If pijA and iiB are clauses of a formula G and A and B are both
nonempty, then replace G by G V C, where C is obtainakble from
AB by deleting duplications of literals; this rule is appli-~
cable provided that (a) no letter both with and without a bar
occurs in AR and {(b) C subsumes no conjunction which is part
of G.

—~
\N
-

Proof. Note that a clause of a formula is an implicant of that formula.
To show the rules can be applied only a finite number of times, note that, if A
is a clause of a formula, then applications of any of the rules yields a formula
which contains the clause B (possibly A itself) which is subsumed by A. It fol-
lows, because of proviso (b), that rule (3) cannot "yield" the same clause C
twice. Since there are only a finite number of (distinct) clauses which are im-
plicants of a given formula, it follows that rule (3) can be applied only a fi-
nite number of times. Since applications of rules (1) and (2) reduce the number
of occurrences of literals in the formula and since rule (3) can be applied only
a finite number of times, it follows that rules (1) and (2) can be applied only
a finite number of times.

It will now be shown that if the prime implicant A of a formula G (not a
tautology) is not among the clauses of G, then either rule (2) or (3) is appli-
cable to G. Since G is not a tautology, there is an assignment of truth values
to the letters occurring in G which will make G false. Since (A.» G) is a tau-
tology, 1t cannot be that no letter in A occurs in G, for if that were the case,
an assignment of truth values to the letters of A could be made (independent of
the assignment to the letters of G) which would make A true. If A is of the
form q;B (where a is py or §i) and p; does not occur in G, then (tB >~ Gg) is a
tautology so that (B + G) is a tautology, which contradicts the assumption that
A is prime. Hence each letter which occurs in A occurs in G. Furthermore A
subsumes no clause of G, for each such clause is an implicant of G while A is
a prime implicant. Thus A has the properties: (a) it subsumes A; (b) it sub-
sumes no clause of G; (c) every letter which occurs in A occurs in G. There is
a longest conjunction L (with no duplications of letters) which satisfies (a),
(b), and (c). Note that, since L subsumes A, L is an implicant of A, and since
A is an implicant of G, it follows that L is an implicant cf G. It cannot be
that every letter in G occurs in L, for if this were the case, then for every
clause C of G, every letter in C occurs in L but since L does not subsume C, by
(b), the truth assignment to the letters of L which makes L true will make C
false. From this follows (L - G) is not a tautology, which contradicts the fact
that L is an implicant of G. Thus some letter, say p;, occurs in G but not in
L. Consider pjL and DPijL. These conjunctions satisfy (a) and (c). Since L is
a longest formula satisfying (a), (b), and (c), it follows that p;L subsumes a
clause of G; p; must occur in this conjunction since L does not subsume it; call
this conjunction p;D (D possibly empty). Similarly piL subsumes p;E. (The con-
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Junctions p;D and §iE are distinct since both p; and ii cannot occur in the same
formula.) Not both D and E can be empty for this would mean G is a tautology.

If exactly one of D,E is empty, then rule (2) is applicable; if neither is empty,
then rule (3) is applicable. Thus, if rules (2) and (3) are not applicable to a
formula G, then every prime implicant of G is a clause of G.

If rule (1) is not applicable to a formula G, as well as rules (2) and (3),
then every clause of G is a prime implicant of G. For suppose the clause A, of
G, is not a prime implicant. Then since A is an implicant of G, it subsumes a
prime implicant B of G. Since rules (2) and (3) are not applicable (by the ar-
gument of the preceding paragraph), B is a clause of G, so that rule (1) would be
applicable.

To complete the proof of the theorem, it is necessary only to observe that
application of any of the rules yields a formula equivalent to the given one [cf.

5.9 (14), (15), (16)].

5.13.2. To recapitulate, suppose a formula F is given. Applying any of
the three rules to F yields a formula F; yields Fo, etc. The formulas Fi, Fo,
are obtained such that F; eq Fo eq F3 eq .... The first paragraph of the proof
shows that this sequence of formulas must terminate, i.e., there is a formula
Fp in the sequence such that none of the rules is applicable to F_ . The second
paragraph establishes that, if rules (2) and (3) are not applicable to F;, then
every prime implicant of Fy (the prime implicants of F and F; are the same since
F eq Fi) is a clause of F;. In particular, every prime implicant of Fp(F) is a
clause of Fj. In additlion, by the third paragraph, every clause of F is a prime
implicant of F_(F).

5.13.3. Exercises. (1) Prove the following corollary to 5.13.1: if F is
a disjunction of conjunctions of propositional variables, then every prime impli-
cant of F is a clause of F. Hence applications of rule (1) above are enough to
produce the F' of the theorem.

(2) Let rule (3') be the same as rule (3) except that the restriction "A
and B are both nonempty" is removed. Then the statement obtained from theorem
5.13.1 by replacing rules (2) and (3) by rule (3') is a theorem. If one applies
rule (3') successively, without intervening applications of rule (1), one obtains
a formula such that every prime implicant of the formula is a clause of the for-
mula. Having obtained such a formula rule (3') is no longer applicable [even af-
ter one or more applications of rule (1)] so that F' (of the theorem) may be ob-
tained from F by repeated applications of (3') followed by repeated applications
of rule (1).

(3) Show that, if A is an implicant of B and B an implicant of C, then A
is an implicant of C. [Cf. 5.9 (9).]

(4) Determine whether ((A > B) - C) eq (A > (B > C)).
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5.13,4. The significance of prime implicants for the simplification of for-
mulas (which are disjunctions of conjunctions of literals) is this: 1if a clause
of a formula is not a prime implicant, then it may be replaced by a prime impli-
cant which is subsumes, yielding an equivalent formula which is "simpler," e.g.,
from the point of view of number of occurrences of propositional variables. (Re-
call that the number of relay contacts in the associated relay contact network is
equal to the number of occurrences of propositional variables.)

5.15.5. If one makes use of 5.13.1 tc simplify a formula, it is better strat-
egy to apply rules (1) and (2) as often as possible [rather than to proceed as in
5.13.% (2), for example]; that is, at any particular time, if (1) or (2) is appli-
cable, one applies either independent of whether (3) is applicable or not, so that
(3) is applied only when rules (1) and (2) are not applicable. The method will be
illustrated by the following example:

(1) DP1P2Ps V P2P3 V P1PaPs V D2bPs V PaPa V Ps V DibPabPa
Rule (2) yields: Pipzps V Pobs V DPi1Ps V D2Ps V PsPs V Ds V D1DP3Pa

The last clause subsumes the third and may therefore [rule (l)] be deleted. Ap-
plying rule (3) to the third and fourth clauses yields the clause Pi1ps which is
subsumed by the first clause. Thus, the following formula is obtained:

(2)  Dp2Ps V D1Ds Vv DP2Pa V PPz VY DPsPs YV Ds

Applying now rule (3) to first and third clauses, to first and fourth clauses, to
first and fifth clauses, and to third and fifth clauses yields:

(3) DP2Ps V PiPsa V DP2bsa Y DP1P2 V P3Psa V Ps V [DPaPa V Pibs V PaPa V Paps)

None of the rules is now applicable, so that all prime implicants of the given
formula have been obtained. The clauses in brackets are clearly Jjointly dispen-
sable. Other clauses may be dispensable possibly conditional upon the presence
of some or all of the bracketed clauses. If A is the formula obtained from (5)
by deleting the first clause, then one may check that (psps > A) is a tautology,
s0 that A eq B where B is the given formula; however, psps is not dispensable
from (2). Notice that pips is dispensable from (2) since it was obtained by
rule (3) applied to D:iP» is dispensable from (2) since it was obtained by rule
(3) applied to DP1ps and Pops, which are present in (2). Another way of seeing
that Pips is dispensable is to note that (PiPs » C) is a tautology where C is
(2) with PP deleted. Thus the given formula is equivalent to

(4)  p2DPa V DP1Ps V DP2bPa V DP3pa V Ds V [P1D2V Dsba V Di1Ds V DP2Pa V Pobsl
where the clauses in brackets are simultaneously dispensable. To check whether

this formula is "simplest" would require much tedious labor. We will not carry
the argument further.

As the argument has, perhaps, already demonstrated, the simplification pro-

23



cedure is straightforward and reasonably quick up to the point where one obtains
all prime implicants. From that point on the procedure is in complicated cases
quite tedious and lengthy if cne wants to be sure he has a simplest equivalent of
the given formula. Notice, however, that the given formula has sixteen occur-
rences of literals while our simplest equivalent has only nine.

For further examples and simplification suggestions the reader is referred
to item 2 of the bibliography, page 1.

5.14, A law of duality. The dual AD of a well-formed formula A is now de-
fined inductively on the length of a formula.

(1) If A is t (£), then AP is £ (t); if A is p;, then AP is p;.
(2) 1If A is (B V), then AP is BPA ¢P; if A is (B AQ), then AD is BPv P,
(3) If A is ~B, then AP is ~(BD).
Thus, for example, if A is py; V (~(pz A p3)), then B is p1 A (~(p2 V p3)).
Lemma. If g is the function (of n variables) associated with the formula A
(ef. 5.3) and gD is the function associated with AD, then gD(xl,x2,--o,xn) =

8(X1,X2,---,%), where the bar over g indicates the complement of g(X1,%z,---Xp),
T is f, and T is +.

The proof is by induction on the length of the well-formed formula.

Proof. If A is t, then AP is £, g(x1,%p, -+,%,) = t, g2(X1,X2,.--,%y) = T,

g(X1,%X2,..-,%n) = t, and g(X1,X0,...,%,) = £, so that the conclusion of the lemma
is satisfied. If A is g, the argument is analogous. If A is P;, then AD is P;i»
8(Xl:x2:'°':xn) =X{» & (Xl:X2;'°°;Xn) = Xi, g(ilyzé:°°°:§h) = zi) and g(ilyzz)

-++3Xp) = Xi, sO that the conclusion of the lemma is satisfied in this case. Now
EUPBOSE A is E_V C, 8B(X1;X2,'°°:Xn) = Eﬁ(ilJié;°'°:§h); and gg(x1,X2,°°°,Xn) =
gc(xl)x23"°)xn)- Then gA(Xl)XZ,"'°Xn) = 8B(xlyx2)"‘3xn)LJ gC(Xl:X2:°"JXn)) 50
that

gA(Zlyié:°°°)§n) = gB(Elyzé:°")§h> U 8c(§1:§é;'°°:xn)

= gp(X1,X2, " ,Xy) N go(X1,X2,¢ - »%n)

Il

gg(xl;XEJ"'an) n gg(xlsxey'°°:xn)

since AP is BD A D, it fo%lows that gﬁ(xl,XE,oe-,xn) = gg(xl,x2,eoa,xn);ﬂ
gg(Xl,Xg,'°'Xn), so that gA(xl,XQ,--n,xn) = ga(¥1,X2,++,%Xn). The argument in
the case A is B A C is analogous.

Now suppose A is ~B and gg(xl,x2,»on,xn) = gp(X1,X2,°**>%Xy). Then gp(x1,x2,
"’:Xn) = gB(X1;X2:°“',Xn), so that gA(Xl;X2:°'°:Xn) = gB(lexz;'°°:Xn)o Since
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AD is ~BD, it follows that gB(Xl,X2,°'°,xn) = gg(xl,x2,"',xn), so that (using
inductive assumption) gR(xi,xz,---,%n) = Bp(X1,X2,"*,%,) = gp(X1,Xa,-s%y) =
gA(Xl;X2:°°°;Xn)o

Theorem. If A eg B, then AD eq 8D,

Proof. The result.is immediate from the lemma: gﬁ(xl,-=~,xn) = galx1,°0 5
Xn) = gB(Xl:”':Xn) = E}%(Xl;"')xn)n

Corollary 1. If A is a tautology, then ~(AD) is a tautology.
. . D D ,D D
Proof. Since A eq t, it follows that A" eq tY, A" eq f, and ~(A ) eq t.

Corollary 2. If (A =B) is a tautology (cf. 5.9), then (AP = BP) is a tau-
tology.

Proof. By previous corollary ~((A =B)P) is a tautology. On the other hand
(A =B)D eq ~(AP = BD) (see exercise 1 below), so that (AP = BP) is a tautology.

Exercises. Show (cf. 5.9) that
(1) (a=8)" eq ~(a” = 8P);

(2) ~(A =B) eq (~A) =B eq A = (~B) eqg A + B;

(3) (A AB)D eq (AP Y BD);

() (A~ B)P eq ~(BD > AD);

(5) if A > B is a tautology then (BP + AD) is a tautology;

(6) if Eq(A) < EBq(B), then Eq(BP) < Eq(AD);

(7) A=BR=CeqA +3B +C.

(8) Every formula is equivalent to one in "expanded conjunctive normal
form." Define this form by analogy with 5.12 (a). Use the result
of 5.12 (a) and a duality law to obtain the desired result.

Ml

5.15. Preliminary to establishing a representation theorem for finite Bool-
ean algebras, we note some further properties of Boolean algebras.

5.15.1. (1) x<xVy; x>xAy;
(2) if x<yand x'<y', thenxVx' <y Vy' and x A x' <y Ay';
(3) if x <yand x <y', then x <y Ay', and if x > y and x > y',
then x > y v y' [these statements are immedizte consequences
of (2)1;
(4) x <y if and only if x Ay = O if and only if X Vy = 1.

Proof. Suppose x
XAy =0. ThenxV Yy

y. Then x Ay =xand 0 = (x Ay)A ¥ =x AF. Suppose
(x A y)V y =y, so that x < y.

niA

(5) An element a in a Boolean algebra is minimal if and only if
a # 0, and for all x if x < &, then x =a or x =0. Ina fi-
nite Boolean algebra, given any element y # 0, there exists a
minimal element less than or equal to y.
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(6) An element a in a Boolean algebra is an atom if and only if
a # 0 and for all x either x Aa =a or x Aa =0. An element
is minimal if and only if it is an atom.

(7) If a,b are atoms and ab # O then a = b.

(8) Let a, a1, ag, --- ay be atoms of an arbitrary Boolean algebra.
(a) Ifx=2a1VaxV- -V a and a < x, then a = a; for
some 1.

(b) a<yvV z if and only if a <y or a < z.
(¢) a<yAzif and only if a <y and a < z.

Exercise. Prove (1), (2), (3), (5), (6), (7), and (8) above.

5.15.2. Lemma. In a finite Boolean algebra, every element x is the join
(least upper bound) of all atoms a in the algebra such that a < x.

Proof. Suppose ay, az, *°+, &, are all the atoms less than or equal to x.
Then the element y = (a1V azVv +-- Vv ay) < x [ef. 5.15.1 (3)]. It is sufficient
then to show that x < y which is equivalent [cf. 5.15.1 (k)] to showing xy = 0.
We shall show that the assumption that xy # O leads to a contradiction from which
the desired result follows. If xy # O, then there is an atom [5.15.1 (5)] a < Xy
so that a < x and a < y. From a < x and the choice of the aj's it follows that
a = aj for some i. Hence a <y. Thus a<yA Yy =0 [cf. 5.15.1 (3)], so that
a = 0, contradicting the choice of a.

5.15.%. Theorem. If (A,V , A) is a Boolean algebra, it is isomorphic to
(C, U,N) where C is the class of all sets of atoms.of A. Indeed, the function h
which associates with each x € A the set h(x) of atoms a in A such that a < x is
an isomorphism of (A, V, A) onto (C, U, N).

Proof. TImmediate from 5.15.2 and 5.15.1 (8). (Cf. k.19.)

Corollary. If r is the number of elements in a finite Boolean algebra, then
r = 2 for some m. Two finite Bollean algebras are isomorphic if and only if they
have the same number of elements.

5.15.4. Example. Below is a lattice diagram of the Boolean algebra asso-
ciated with the formulas of the propositional calculus in the case n = 2. (cf.




5.1 and 5.6.) Recall that p; + pz is an abbreviation for PiP2 V Pib2 and p1 = P2
is an abbreviation for pips V P1DPa-

The atoms of this algebra are: DpiPs, PiD2, DiPz2, PiPe. The isomorphism
which the theorem establishes applied to this case is:

n(f) = ¢ n(p1=p2) = {P1P=2,P1P=2}

h(pip2) = (pip2) n(p2) = {p1P=2, PiP2)

h(pibz) = (p1P2) h(p1) = (Pip=2, DP1P=2) _
h(P1p2) = (Pip=2} n(p1V po) = {P1P2, Pib2, PiPz)
h(P1p2) = (P1P=2} h(p1VDpz) = (PiP2, P1D2, Pabz)
h(pi) = {pip2, P1P2) n(p.V P2) = (pip2, PiP2; PiP2)

I

h(p2) {Plpzy_ilpz} n(PiVv P2) {Plﬁg; PiP2, ﬁiﬁg}
n(pi+p2) = (Pip2, PPz} n(t) = {pip2; P1P2, P1P2, PiP2}

Notice that 5.15.2 provides the information that x 1is the join of the elements
in h(x), e.g., P1V D2 = PiPe V PiDP2 VDibz; the right-hend member of the equal-
ity is the expanded disjunctive normal form of p1 V Da.

5.15.5. Exercises. (1) In a mammer analogous to the correspondence es-
tablished on page 10, establish a correspondence between L-tuples of O's and 1's
and the set of all subsets of pips, P1D2s, DPiP2, PibP2. This correspondence to-
gether with the correspondence h in the example immediately above yileld a cor-
respondence between the elements of the Boolean algebra depicted in the lattice
diagram and L-tuples of O's and 1's. This correspondence 1s an isomorphism. Re-
label the lattice diagram of the example above in a way indicated by this corre-
spondence and check that join and meet are preserved under this correspondence.
Note that such a correspondence may also be obtained by associating with a for-
mula the sequence of values of its associated function, for a fixed ordering of
its arguments. (Cf° 5.50)

(2) A set S of elements is closed with respect to a binary (n-ary) opera-
tion ° if and only if x1 © Xz [° X1,X2-+-Xpn] is in S whenever xi,Xz [X1,X0,° 0+,
xp) is in S. What is the smallest class of elements in the 16-element algebra
depicted above containing

(a) p1, p1+P2, and closed under join and meet?
(b) pi, pi+pz, and closed under join, meet, and complement?
(¢) pi = ps, P1tPo, and closed under join, meet, and complement?

(3) An isomorphism of an algebra onto itself is called an automorphism.
Show that a Boolean algebra with 20 elements has exactly n. automorphisms.
Hint: In any automorphism, atoms will go into (be associated with) atoms.
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6. MULTI-TERMINAL NETWORKS-Z?2

6.1. An example.

P1P2 V P1P2

Consider a particular truth assignment, say 1, 0, O (i.e., t, £, f) to p1, Ds,
Ps, respectively. Then the following matrix

1 1 0 0 0

2 0 1 1 1

3 0 1 1 0

L 0 1 0 1
th

has a "1" in the i,j position (i.e., the i~ row and jth column counting from
top to bottom and left to right, respectively) if there is a closed path be-
tween node i and node j (for this truth assignment); otherwise the i,3jCB entry
is "0." The convention that there is a closed path between a node and itself
is adopted. Let the i,jth entry be ajj. Then the matrix can also be described
as follows:

a,. =1, a.. = aji’ 8pg = 84 =1, and a;, = 815 =874 = 8z, = 0.

6.2. Pierce and matrix product. With each binary relation R defined
over a finite set S of n elements, n > 1, a matrix M(R) of O's and 1's is
associated as follows. We assume S = {1,2, ..., n}. The i,j*® entry of M(R)
is 1 if iRj, otherwise O. Every n x n matrix (n rows and n columns) of O's
and 1's is M(R) for some R. For example, the matrix of 6.1 is M(R) if R is
reflexive over 1,2,3,4, symmetric, and 2R3, 2Rk, 1¥2, 1¥3, 1Rk, 3RL.
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The (Pierce) product Ry x Ro of two binary relations is defined as follows:
¥(Ry x Ro)y if and only if there exists an element 2z such that xRiz and ZRoY .
The (matrix) product C = A x B of two n x n matrices A = (Aij) and B = (bij) is

defined as follows: cs53 = 2£=1—gi£_: bkj' (It is convenient to use the same
symbol "x" for both Pierce and matrix product.) This makes sense if an opera-
tion "+" and an operation "«" are defined over the elements denoted by the en-
tries of the matrix. (It is also assumed here that "+" is associative.) We
shall be interested in the case where the matrix entries denote elements of a
Boolean algebra (more generally, a lattice) and will, therefore, write

I

Cij = 1\{\:/1 aik/\bkj

and "A" will sometimes be omitted (but understood). This matrix product will
sometimes be referred to as "the Boolean matrix product.” Notice that, if A
and B have 1's along the main diagonal then so will C, since cij = \/%21 8410y =
1 since among these disjuncts is ajibi3 = L.

6.2.1. Theorem. If R;, R, are binary relations defined over the same set
S of n elements (assumed without loss of generality to be the first n positive
integers), then

M(R1 x R2) = M(Ri) x M(Rz) .

Proof. Let cy3, 833, bij be the i,jth element of the respective matrices

M(R1 x Ro), M(R1), M(R>). Then

n

15 T (B A yy)

so that Cie = 1 if and only if there exists an integer k, 1 < k < n, such that
aj =1 = gkj if and only if there exists k € S such that iR;k and kR>J if and
only if i(Ry x Rs)J.

6.2.2, Corollary. The function M is an isomorphism between the system of
all binary relations (defined over a fixed set of n elements) under Pierce prod-
uct,V ,Nand the system consisting of the set of all n x n matrices with 0, 1
entries, under Boclean matrix product and V, A,

Let A = (aij)7 B = bij) be n x n matrices with all the ajjs bij elements of
some lattice. The 1,] element of AVB is by definition aij\/bij° AAB is de-
fined analogously. For binary relations *(RiVRs)y if and only if xRjy or xRsy.
Ri/ARs is defined similarly.
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6.2.3. Theorem.

(2) The set of n x n matrices of 6.2.2 form a lattice under V A, and if
I, is a Boolean algebra, then this lattice is a Boolean algebra.

(b) The subset of matrices of (a) with 1°'s along the main diagonal (i.e.,
asj; =1L for 1 <iK< n) is a Boolean algebra, if L is a Boolean algebra.

(¢) Ax (BVC) =(AxB)V(AxC).
(d) (AxB)xC=Ax(BxC).

Proof.

(a) It is obvious that this system of matrices forms a lattice, say‘ofo
& has a zero (one) element, namely, the matrix all of whose entries
are "0" ("1"). If A = (a ), it is easily seen that A = (a: J)
(b) It is obvious that this system of matrices forms a lattice, say D,
' has a zero element, namely, the matrix all of whose entries are
"0" except the elements along the main diagonal which are all "1."
has a one element, namely, the matrix all of whose entries are "1."
If A = (aij), B = (bij), and bij = 8ij for i # j and by = 1, then
B =A.

(c) The i,jth element of A x (BVC) is

\/ v \V/ v
2 (PgVegy) = (aikbkj aikckj)

k:l k=l
@
210 k Y Fikkj

which i1s the Jjoin of the i,jth element of A x B and A x C,

(d) The i,i"™ element of (A x B) x C is

n n n n n
\Yi <>!£ ai£b£%> Ckj = \!i aigbprCkj = ;!{ a1y <;!{ bszk;>

th jement of A x (B x ),

which is the i,]
6.3. Connection matrix. An n x n symmetric matrix with 1's along the main
diagonal and with entries which are formulas of the propositional calculus may
be associated with those relay contact networks constructed as follows: With
each i,j, 1 < j, a two-terminal network with terminals i,j is constructed whose
behavior is given by the propositional formula which is the l,Jth entry of the
given matrix. The two-terminal networks are then "connected" together by con-
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necting (identifying) those terminals with the same name. If each two-terminal
network with terminals i,J is so chosen to be the series-parallel network whose
"structure" (cf. 5.11) as well as "behavior" is given by the i,j%P entry of the
matrix, then the (labeled) network associated with the matrix is "essentially"
unique. Conversely, given a network, if one "labels" enough of its nodes, 1,2,
«e. , N, there is an n x n matrix (of the kind mentioned above) which has the
given network as an associated (in the above-mentioned way) network. B
choosing enough nodes, the two-terminal network associated with the i,j‘h entry
of the correlated matrix will be series-parallel. A matrix correlated with a
network in this way is called a connection matrix of the network. Any symmet-
ric matrix with 1°'s on the main diagonal and propositional formulas as entries
is a connection matrix of some labeled network. A labeled network corresponding
to the diagram of 6.1 has as its connection matrix the symmetric matrix A =
(aij) with 1's along the main diagonal and

814 = D1

I

Q1o

|
3
\V)
o]}
w
»

P1P>VDBibs , ais

I

P1P3V PiP3 P1P2P3 -

3

RN
1}

e}

V)

A3

¢
|

o3

6.4. Characteristic matrix. The characteristic matrix x(A) of a labeled
network with connection matrix A is a matrix with the property: the i}jth entry
is a propositional formula which takes on the value 1 for those and only those
truth assignments which correspond (cf. 5.11) to states of the relay coils which
result in there being some closed path between nodes i and J.

In example 6.1 the characteristic matrix x(A) = (bij) where
biz = P1pPoVDibs , b1z = P2P3V B1P2ps big = P1 ,

P1BaV PiPs » bos = D2 bag

bogs Pi1P3VD1PoDP3VD1DoPs .

We indicate the calculation for bjg. The condition under which there is a closed
path from node 1 to node 3 and not passing through any labeled nodes is given by
PoPs. The conditions under which there is a closed path from node 1 to node 2
and from node 2 to node 3 and not passing through any labeled nodes (except 2)

is given by (p1poVDP1D2)(piPaV P1Ps). Similarly "corresponding” to 143 is
P1(P1p2pa), to 1243 is (pipoV Bifs)Po(pipeps), and to 1423 is §y(Fs)(pibsVBips).
Thus the condition under which there is any closed path from node 1 to node 3

is given by (pzPs)V (P1poVE1Bs) (p1B3VD1p3)V B1(p1p2ps) V (P1boV D155 )P=(p1p2ps)V
B1B2(p1BsVBips) which simplifies to paBaVBiBsps.

6.5. Analysis theorem.

6.5.1, Theorem. If A is the n x n connection matrix of a labeled network,



then A < A2 < A% < .., < AT =A™ o = A" = .. = x(8), where r < n.

Proof. Consider a fixed truth assignment T to the propositional variables
occurring in the entries of A yielding a matrix A, of O's and l's. Let Ry be
the associated relation, i.e., M(RT) = Ap (cf. 6.2). Then iRTJ, m > 1, means
there is a closed path (under this truth assignment) from node i to node j pass-
ing through at most m-1 labeled nodes of the network other than i,j. Since
there are only n-2 such nodes, it follows that RT n-l R% = R%+l = .s¢ « Hence,
by 6.2.1, AB-t - aR =B - L. since Rp SR <R < ... (feen, xRTy im-
plies xRTy, etc., or still otherwise stated, RT RT R%, ete.), it follows
(6.2.2) that Ap < A2 < A2 < ... . Inasmuch as these relations hold for each
truth assignment T and (A x B)T Ap x B (by 5.3 and the definition of matrix
product), the results follows.

6.5.2. Corollary. A = A2 if and only if A = y(A).

Proof., If A = A2, then A x A = A2 x A so that A = A2 = A3, Similarly A =
An-L =7 (). If A = 4(A) then A = AP-1 and A2 = AP = 4(A) = A.

6.6. Synthesis theorem.

6.6,1. Lemma. If A,B,C,D and n x n matrices whose entries denote elements
of a lattice and if A < C and B <D, then A x B < C x D.

Proof. The i,jth elements of A x B and C x D are, respectively,

n
k\=/l 8ikPkj kY1 Cikdkj -

<

Since A < C, it follows ajk < cjk. Similarly byxj < dxj. Hence ajkbkj < cikdkj.
It follows that

n n
1}=/l 8ikPrj = k\=/l Cikdijy -

6.6.2, Corollary. If A, B are connection matrices then (a) A < x(B) if
and only if x(A) < x(B); if A < B, then x(A) < x(B).

Proof,

(a) If y(A) < x(B), then A < x(B) since A < y(A). If A < y(B), then
AxA< X(B) x y(B) = X(B) Similarly A4 < x(B), etc. Hence y(A) <
x(B).

(b) If A<B, then A < 4(B) and (a) gives the result.

3 6.6.%3, Theorem, If x(X) < x(Y) < x(4), then X\A\ = y((AAX)VY), where
X is understood in the sense of 6.2.3 (b) (i.e., X is obtained from X by comple-

32



menting each element of the main diagonal).

Proof. It will be shown that (a) x(A) < x(AXVY) and (b) x(AXVY) < x(a).
There will be several applications of 6.6.2 (a). DNote that since X < x(¥), it
follows [5.15.1 (4)] that Xvy(Y) = 1 (the all 1 matrix). Hence A = A(XVy(Y)) =
A(AXVx(Y)) so that A < AXVx(Y). Now AXVx(Y) < (6XvY)?L = y(AXVY) since
among the disjuncts of (AXvY)-1, (8%)2L anda Y™ appear. Thus, A < x(AXVY)

and (a) follows. To obtain (b), note that AX < A < x(A) and Y < x(4) so that
AXVY < x(A) and (b) follows.

6.6.5. Theorem. If x(A) = x(B) and if A < C < B, then

(a) x(a) = x(c),

(b) x(a) = x(AVB);

(c¢) x(a) = x(A x B).
Proof.

(a) Immediate from 6.6.2 (b) and hypothesis.

(b) A <AVB so that x(A) < x(AVB).
AVB < x(A)Vx(B) = x(A) so that y(AVB) < x(A).

(c) Analogous to (b).

6.6.5. The results of 6.6.% and 6.6.4 are now applied to 6.1 (cf. 6.3, 6.4).

1 P1PoV P1P2 PoPs P1
A = 1 P1DP3 V PiPs Do
1 P1P=Ps
1
1 P1P2 V Pi1P> « P2Ps V DPib2Ps P1
w(8) = 1 P1Ps Vv PiPs P2
1 baa
1

where Dz4q = P1P3V DP1P2Ds V Dibabas

Let Yio = P1Po, Yis = PoD3, Y14 = P1, Y23 = PiP3y Yoa = Do,y Y34 = P1DPoPa.
Then Y < x(A). Choose X = Y2 so that x(X) = x(Y). A calculation yields:
X1o = PlEZV PiP2; X13 = PoPas X14 = P1sy Xo3 = (PLV P2)PsV P1PoPs; Xoa = Doy
X34 = P1DP2PaV P1PsD3VDP1PoPs. If Z = AXVY, then a calculation yields: z35 =
P1DP2s Zis = PoDP3s Zi14 = Dis 223 = P1DPoD3V DP1Pas Zo4 = Do, and Zgy = PiPs. Thus
x(2) = x(A). Let uis = Pibo, Uiz = PoPa, Uia = D1, Usz = P1P3VD1P3, Uoa = Do,
Ussa = P1Ps. Then Z < U < x(A). Hence x(U) = x(4).
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6.7. Exercises.

(1) Prove: If A is an n x n matrix, with elements in some lattice, then
AVAZ V ., vaAR —avaz v o, vaA™T 150,

(2) (a) Show that the n x n matrices with elements in some lattice with
zero element and which have zeros along the main diagonal are closed
under the operation (dual to "Boolean™ matrix product).

A
cij = k=1 (aikV bkj)o

(b) Define a (binary) operation on binary relations (dual to Pierce
produce) which "corresponds" to the matrix operation defined above,
in the case where the elements are drawn from the two-element Boolean
algebra.

(c) Determine whether the set of connection matrices modified so as
to have O°s along the main diagonal is closed under matrix product.,

(3) A permutation of a set S is a 1-1 function from S onto itself. If A

is an n x n matrix with elements in some lattice, the determinant |A]
of A is defined as follows:

8] =V ein(a) sen(a) +-e (n)

7

where n runs through all permutations of S = {1,2, ... , n}. Show:

(2) [a[A[B] < | x B|;

(p) ARt M where A is a connection matrix and m;. is the determinant
of the matrix obtained from A by deleting the jth row and jth
column., Is the assumption that A is symmetric essential?

(4) If connection matrices are called equivalent if their characteristic
matrices are equal, then it has already been shown that each equiva-

lence class is closed under V, x. Does the same hold forA?

(5) Let matrix B be the same as matrix A except that by = byy = Py V
P2V D3z and bog = bys = p1V DV Ds.  "Simplify" B.
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7. AUTOMATA AND SEQUENTTAL CTRCUITSZ?22833,45,48,55

7.1l. Definition. An automaton A is a quintuple (I, V, Q, f, g) where

is a nonempty finite set of objects called input states,

is a nonempty finite set of objects called output states,

is a nonempty finite set of objects called internal states,

is a function (called the direct transition function) from I x Q
to Q, i.e., a function which associates with each 1 € T and q € Q
an element f(i,q) € Q, and

g 1is a function from I x Q to V (called the direct output function).

H O << H

With each automaton A and internal state g of A are associated functions Ti,q’
Ti a (respectively called transition and output functions) from finite sequénces
of ’élements of I to elements of V as follows:

Ti,q(i) £(i,q),
TR,q(1) = (i),
Th o(81) = £(i,T} 4(8)),
T2 ,q(51) = g(1,Th 4(8)),

where i1 is an arbitrary element of I,and S is an arbitrary (nonempty) finite
sequence of elements of I. The subscript "A" will be dropped in discussions
concerning a single automaton.

7.2. An example. ILet I = {0,1} =V, Q = {d;, 42, d3} and f,g be given by
the following table:

f g
0, a1 d1 0
O; d= qS 1
0, ds d= 1
l; da Qs 1
1, as a3 0
1, as d1 1

Notice that the table specifies the automaton completely. The information in
the table may also be presented by a direct transition-output diagram.
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The label "a-b" refers to input state a and output state b. The transition and
output functions associated with each of the internal states is now indicated:

Sequences
of input i T2 7t T2 Tt T2
1 da dz d2 as ds

states
0 a1 0 ds 1 do 1
1 ds 1 ds 0 d1 1
00 d; 0 do 1 ds 1
01 ds 1 aq 1 ds 0
10 ds 1 do 1 dz 0]
11 oY 1 dz 1 ds 1
011 dy 1 ds 1 d 1
100 da 1 ds 1 di 0

T.3. It is often convenient to interpret the transition and output func-
tions of an automaton, relative to an internal state g, in the following way.
The automaton A is regarded as being in state g at "initial" time, say time
t = 0. If Tj q(S) = q*, Tz q(S) = v where S = igiy...1p, ix € I, q,a* € Q, v ¢ V,
this is interpreted as meaning: if the input state of the automaton at time t = k,
O =k =n, is iy, then the internal state of the automaton at time t = n+l is g¥
while the output state of the automaton at time t = n is v. The corresponding
interpretation for the direct transition and direct output functions of an automa-
ton is this: if at a particular time t the internal state of the automaton is g
while its input state is i, then f(i,q) is the internal state of the automaton at
time t+1 while g(i,q) is the output state of the automaton at time t.

With this interpretation in mind, note that associated with each sequence i,
i35..., ipn of input states and internal state g is the sequence q, TX q(io),.,..,
2
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X, q(igis -+ iy, ) of intiinal states and T q(ig), Ta,q(lola)s- - % - (ioir .- -1n)
of output states. The k"™ member of each of the three sequences is, respectively,
the input state, the internal state, and the output state of the automaton at time
k-1. TFor the automaton in 7.2 above we indicate some sequences of input states
and the associated sequences of internal and output states, assuming the automaton
at time t = O is in internal state 4.

Input state: 1 0 1 0 1 0 1 0
Internal state: di ds de ds dz Qs dg ds
Output state: 1 1 0 1 0 1 0 1
Input states: 0 0 1 0 0 1 0 0 1 0 0 1
Internal states: 93 91 d3 93 92 493 d1 d1 91 493 Q=2 Qs
Output states: 0 0 1 1 1 1 0 0 1 1 1 1

Input states: 1 1 0 1

0] 0 0] 1
Internal states: q3 ds Q3 a1 as do Q3 d2 Qs
Output states: 1 1 0 1 1 1 0 1

Tn the same way in which finite sequences of internal states and output states
are associated with finite sequences of input states, one may associate infinite
sequences (corresponding to times t = 0,1,2,...) of internal and output states with
infinite sequences of input states.

7.4h. We now indicate how a logical nete2,25 may be constructed to '"behave"
as does a given automaton by applying the process to the example of T.2. The
first step is to "code" the input, internal, and output states. In our case, it
is necessary only to "code" the set of internal states. By this is meant: as-
sociate with each internal state an ordered pair (or triple or quadruple, etc.)
of zeros and ones. The ordered pairs associated with distinct internal states
are required to be distinct. For example, the association

d1 00
do 01
ds 11

is permissible.

Corresponding to the table in 7.2 for f,g is the table

X ab a¥ b¥ y
0, 00 0 O 0
0, 01 11 1
0, 11 o 1 1
1, 00 1 1 1
1,01 11 0
1,11 0 O 1




a*, b*, y may be expressed as propositional formulas in x, a, b as follows.

[Note that, since not all arguments x, a, b are specified in the table, more
than one Boolean function (say for y) will satisfy the conditions expressed

by the table.]

a* = XabVxabvxab = Xabvxa

p* = a(b Vv x) or ¥ = abyvax

b¥ = ¥ bvXabvxabvxab = abv Xabvxab
= abvxabv xa
= abv xby xa
= Xbvxa

* =.}_C-bvxg
y = xabyxabyxabyxab = XxXbyxabyab
=b(a\/3c_)v§-€x

We now construct a switch(es) with inputs x, a, b satisfying a* = a(b v x).

or

a¥

In a similar way, switches may be constructed for b*, y. It is assumed that
these switches act "instantaneously." 1In addition the net will require delay
elements

c¥ ; & >
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whose input and output are related as follows:

c*¥(t) = c(t+l).

It is further assumed, here, that c(0) = O.

We may now schematically indicate a net whose behavior corresponds (via the
coding chosen) to the automaton. The states (i.e., O or 1, active or inactive)
of Junctions a, b correspond to the internal states of the automaton.

. ]
——-33-—-lpi..
a¥ a y
—.—{ '———?u—. ———
a
S
b b* b
EEEEEEE—— g i L
@ 1 I '\—-.-

The "behavior" of this net is indicated by the following equations:

a(t+l) = a(t)(b(t) v x(t))

b(t+1) = x(t)b(t) v x(t)a(t)
y(t) = Db(t)(a(t) v x(t)) v a(t)p(t) x(t)
a(0) = 0
b(0) = 0.

The "behavior" of this

a¥*(t+l)
b*(t+1)

y(t+1)
a*(0)

b*(0)
y(0)

net may also be expressed by the following equations:

a*(t)[b*(t) v x(t+1)]

x(E+1) b*(t) v x(t+1) a*(t)

b*(t)[ax(t) v x(t+1)] v a*(t) b*(t) x(t+1)
x(0)

x(0)

x(0).

[Note that, if the internal state g and the output v of an automaton at time

t+l are regarded as functionally dependent on q(t), and the input i at t+l and
further g(0) and v(0) are dependent on g(0) and i(0), then (a*, b*) would corre-
spond to the internal state of the associated automaton.]
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The "input junction" labeled "x" assumes one of two (input) states. The
"internal junctions" (a,b) assume one of three (internal) states, viz., 0 O,
01, 11, The "output junction" y assumes one of two (output) states. If x
x(0) =1, x(1) = 0, x(2) =1, x(3) = 0, x(4) =1, etc., the corresponding se-
quences for a, b, y are as follows:

time 0 1 2 3 L 5 6 T

< oo N
o or
H o
or O H
H PO
O F O H
H O
o r O
H RO

7.5 The previous section indicates how our notion of automaton is associated
with synchronous sequential circuitry. We now indicate a connection with asyn-
chronous circuitry as typified by (sequential) relay circuits. This will be done
by constructing a relay circuit associated with the logical net above as follows:

"y" 5311 indicate the state of a relay contact whose coil is outside the
circuit;

"g," "b*" will indicate the state of coils in the circuit and

"a," "b" will indicate the state of the contacts which relays a*, b* operate;

..t

y" will indicate the state of a certain point in the circuit (high potential
or low potential).

a(t)
b(t) { (%)
- V(t) l |_______
a(t) b(t) x(t)
— @ —

% ()

Le



There are certain difficulties with this circuit, however. These difficulties
can be appreciated by reference to the direct transition-output diagram of T.2.
Let us suppose the initial input of relay contact x is 1, 1l.e., x(0) = 1 and the
coil controlling x remains energized. Then (a,b) starts in state (0, 0), then
passes to (1, 1), then back to (0, 0), and back to (1, 1), etc. Coils a*, b*
would oscillate back and forth between being energized and not, and the state of
y would be constantly low potential.

If the coil controlling x is now de-energized, the output would depend on
the states of a,b at that time which, in general, could not be predicted in ad-
vance. A relay circuit associated with the automaton below does not suffer the
same difficulty. If the coding of the internal states is such that at most one
relay coil changes state at any instant, then if we assume the contacts on any
relay operate "simultaneously," the "behavior" of the relay circuit would cor-
respond to the '"behavior" of the automaton.

11-1
00-1

Ol-l Ol"l

q1 )4 11-02 Lo

10-0 00-0 01-C

00-0

10-0

11-0
10-1 10-1

11-1

01-0
7.6. Exercises.

1. Construct the logical net associated with the automaton indicated above
where d;, do, dg, 44 correspond, respectively, to 00, 01, 11, 10.

2, As 1 but construct a diagram of a relay circuit instead of a logical
net.

3. If an automaton A has one input state, then for any internal state q
there are integers m = O, p > O such that Ti,q(t) = Ti,q(t+p) for all t =z m (cf.
7.1). The argument t represents an input sequence of length t. Further p is
less than the number of internal states of the automaton.

4, TLet f be any function on the non-negative integers with values in a
finite set V and such that, for some m = 0, p >0, f(t) = f(t+p) for all t =z m.
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Construct an automaton A with one input state, whose set of output states is V
and such that Ti q(t) = f(t) for all t, for some internal state g of the automa-
ton A. Here, agéin, the argument t of the function Ti,q is to be correlated with

an input sequence of length t.

T7.7. Behavioral equivalence.

T7.7.1. Two automata A,B with the same set of input and output states are
behaviorally equivalent with respect to (nonempty) subsets Qp, Qp of the internal
states of A,B [written (A, Qa)~(B, Qg)] if and only if for each qp € Qp there
exists qpg € Qp such that (cf. 7.1) TA,qA = TB,q and similarly for A and B re-
versed. Two such automata are isomorphic if ang only if there exists a 1-1 func-
tion ¢ from the internal states of A onto the internal states of B such that
fra(i,a) = £5(i, B(a)) and gp(i,a) = gg(i, #(a)). An internal state q' of an
automaton A is accessible from an internal state q of A if and only if g' is q
or there exists a finite sequence S of input states of A such that TE(S) =q'.

An automaton A is minimal with respect to a subset Q of its internal states
[briefly, (4,Q) is minimal] if and only if (1) for every internal state q' of A
there exists an internal state g € Q such that q' is accessible from g and (2)
if q,q' are distinct internal states of A, then TS # Tgx. An automaton is re-
duced if and only if (2) holds.

7.7.2. Theorem. (a) Given any automaton A and (nonempty) subset Qn of
its internal states, there is an automaton B (whose internal states are a sub-
set of the internal states of A) and a (nonempty) subset Qg of its internal
states such that (A, Qa)~(B, Qp) and (B, Qg) is minimal.

(b) If (A, Qp)~(B, Qp) and (A, Q), (B, Qp) are minimal, then A and B are
isomorphic.

Proof. (a) Let Q be the set of internal states of A which are accessible
from (elements of) Qa. Call two elements q, q' of Q equivalent if and only if
Ti q = Ti ;. This binary relation is indeed an equivalence relation (cf. 5.5)
and “so pa%%itions Q into equivalence classes. Call this relation R and let R¥*(q)
be the set of all elements q' € Q such that qRq', i.e., the set of all elements
¢' such that Ti,q = Ti,q" Let ¢ be any function defined over the R-equivalence
classes @ with the property c(a) € . The function c¢ "chooses" from each equiv-
alence class exactly one element from that class. We will now "construct" an
automaton B to satisfy the theorem. Iet the set of all internal states of B be
the set of values of ¢, i.e., the set of all c(R¥(q)) where g € Q. Notice that
c(R*¥(q)) is equivalent to q and, for q € B, c(R¥(q)) = q and c(R*¥(q)) and c(R*(q"))
are either equal or not equivalent. Let Qp be the set of all c(R*(q)) where
q e Qa. Let (fp, ga), (fp, Tp) be the direct transition and output functions of
A and B, respectively. Define: fp(i,q') = c(R¥(fa(i,q"'))) and gg(i,q') =
gp(i,q') where g' is an internal state of B. The desired result will follow from
the following lemma.
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Lemma 1. If o' = c(R¥(q)), then Ti’q = Tﬁ,qt and c(R*(Ti’q(S))) = T, q (5)

for all finite sequences S of input states.

2 . . . 2 .
Proof. Note that TA’ql(l) = gp(i,a") = gp(i,q?) = TB,q:(l) and
Tg,qr (1) = Tp(1,a") = c(B*(f4(1,a'))) = c(R¥(Ty g1 (1)) = c(R*(Ty 4(1))).
Inductively assuming that the lemma holds for a finite sequence S, it is requlred
to show that it holds for Sl, Recall that Tﬁ ( is equivalent to c(R*(TA q(S)))
80 that Tﬁ Sl) = gp(i, TB qg(s)) = gp(i, c(R*(TA (S)))) = gp (1, TA q(s)) =
T3 ,q(51) and T§ o1 (S1) = Fpli,Th ,q1(8)) = c(R*(fAil T qv(S))))

e (B¥ (2 (1,0 (R*(T]_4(8)))))) = c(R¥(£4(1,T5 4(8)))) = c(R*(Th,q(51))), and the

lemma is proved.

Thus, given any q e Qp, there exists a' e Qp, namely, q' = c(R¥(q)), such
that Tﬁ = T% qr- Given any q' ¢ Q » there exists g € Qp, namely g = q' =
c(R*(qrj%, such that iy q = B ,qts €0 that (4, Qy)~(B,Qg). Furthermore, (B,Qp)
is minimal because: (l5 Supp0be q is any internal state of B. There is an
internal state q € Qy such that q" is accessible (1n A) from q 81nce a" € Q. Let
q' = c(R¥(q)). Then g' € Qg. By the lemma, c(R*(TA q( ))) = TB, +(S). Now S
may be chosen in such a way that TA (8) = q". Since c(R*¥(q")) = q", it follows
that TlB ,(S) = q" so that q" is aéceselble from an element of QB (2) 1lLet
9,q' be ény two internal states of B. Then g,q' € Q and TA ,d # T q' But
g = c(R*¥{q)), a' = c(R*¥(q')) so that, applying the lemma T% . # TB,q"

3 -~

We shall need the following lemms.

N Lemma 2. For any automaton A and 1nternal state g of that automaton, if

TA’E(SO) 4y, then, for all S, Tj q(s S) = TA 96 (S) and TA q(s S) = TA qO(s).

Proof. If S is i, a sequence of input states of length one, the result
follows from 7.1. Now suppose thc result holds for S', 5 is 8'i, and
(S St) = g'. By inductive assumption g' = TA q(SOS‘) = Ti q (S') and
? 2 ' t - Tl s
. (S St) TA,qO(S ). By 7.1, f(i,q') = TA (SOS i) = Ti,qo( i) and
2 e L m2 '
g(i,q') = TA,q(Sob i) = TA,qO(S i) and the lemma is proved.

]

Proof of (b)a Since (A,QA)~(B,QB), for g e Q) there exists q' € Qp such
that T = T2 . Because of the minimal character (second defining property)
of (B, QB ), i’ TA TB q" also, then qf = q". Similarly, for each q' € Qg,
there is exactly one q € QA such that T® q TB ,q'e Thus, there is a 1-1 func-
tion d from QA onto QB such that TA ,a TB ,d(q) for all g € Qa- We not extend
the domain of d to all the 1nternal states of A and its range to all the in-
ternal states of QBG Let q be any internal state of A. Then, because of the
minimal character (first defining property) of (A,Qa), there exists S', q' such
that T} qa(S ) = q. We would like to define d(q) = Ty a(q )(S'). In order for
this requlrement to well-define d(q), it must be shown that if Ti w(8") =g
also, then TBﬁd(q")( ") = TB,d(q )(S‘). Observe that TA, 1(818) = Tg,d(qr)(s's)

L3



for all finite sequences of S of input states. By lemma 2 Tirq(S) = TA qg(S S)
2 — mil 1

and TR, q*(8) = TB ,a(g! )(S S) where g¥ —2TB,d(qf)(S ), so that T% q = i

Slmllarly if g** = TB a( n)(S then TF [ °= T% qxx HenceT ax = T2 L %x SO that

q* = g** by the minimal nature of B. Thérefore; d(q) = d(é )(S ) &ell defines

d(g). 1If d(q) = d(q') then T% ,q = 1% a(q) = T3 ,a(ql) = TA , and so, because A is

minimal, g = q*. Thus the domdin of & has been’ extended td the set of all internal

states of A and it has been shown that d is 1~ l, Tf g¥* is any internal state of B,

then for some S' and d(q') € Qg, a* let q = Tﬁ qt(8'). Then

d(q) = Th ,a(q') ( ') and by what has been sgown above ,TR ,q = TB d(q) But, because

of the symmetrlc roles of A,B, T% ,q = TB ,q¥ and so d(q) = g*. Thus the range of

d is the set of all internal states of B.

B,q

Corollary. If (4,Qp)~(B,Qp) and (B,Qg) is minimal, then A has at least as
many internal states as B (which indicates why the word "minimal" is used).

Proof. By (a) of the theorem, there is an automaton A' and a subset of its
internal states Qur such that (4,Qy)~(A',Qar) and (A',Qpr) is minimal. Further-
more, the internal states of A' are a subset of those of A. Moreover, since
(A',QA:)~(B,QB), by (b) of the theorem, the number of internal states of A' and
B are the same.

T.7-3. Exercises. 1. Show that if ¢ is an isomorphism between automata A
and B and if Qy is any subset of the internal states of A and Qp is the set of
@(q) where q € Qq, then (A,Qy)~(B,qp).

2. Let K be the class of all automata which have the same set of two input
states, two internal states, and two output states.

(a) How many elements are there in K?
(b) How many (A,Qy) are there where A ¢ K, (A,Qq) is minimal, and
(1) Qa contains exactly one element,
(2) Qy contains two elements?
(c) The relation of isomorphism between automata in K is an equivalence
relation. How many equivalence classes are there?
(d) Ccall two automata A = (I,V,Q,f,g) and B = (I',V',Q',f*,g"') isomorphic
in the wider sense if and only if there exists 1-1 functions ¢l, ¢2, 53 from I,
V,Q, respectively, onto I', V', Q', respectively, such that f' (@ (i), Bs(f(i
and g' (@ (i), @¥s(a)) = 02(g(i,q)) for all i € I and g € Q. The relation of
isomorphism in the wider sense is an equivalence relation on the elements of K.
How many equivalence classes are there? Show that, if A,B are isomorphic, then
they are isomorphic in the wider sense.,

T.7.4. Define a family of equivalence relations over the set of all internal
states of a given automaton as follows. For each positive integer k, q Ry gq' if
and only if Tﬁ(Sk) = T t(Sy) where Sy varies through all finite sequences of input
states of length k or lesq Notice that, if g Ry,7 a', then g Ryq'. ILet g R q'
if and only if TE(S) Tqy(S) for all sequences S of input states (of any length).
If 9 R q', then g Ry q' for every k.
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We now define a family Rj of equivalence relations over the same set of in-
ternal states of the given automaton. Let Rf = Ry. Assuming R} has been defined,
define R, as follows: q Rf,7 q' if and only if (1) g Rf ' and (2) for all in-
put states i, £(i,q) Rf f(i,q') where f is the direct transition function of the
given automaton.

Lemma 1. For all n, R, = R}.

Proof. By definition R; R{. Assume Ry = R, k> 1. To prove Ry g = R£+l'

q Rf,q a' if and only if f(i,q) R{ f(i,q') for all i if and only if f(i,q) Ry f(i,q')
for all i if and only if T Q)(S ) = T? (Sk) for all i and Sy if and only if
Tz(isk) = qg(lsk) for all 1, Sy [using fé ,qg Ta( i) and T7.7.2 lemma 2] if and

only if q Ry,q qt.

Remark. By virtue of lemma 1 and the definition of Ry, it follows: g, q'
are in the same Ry,j-equivalence class if and only if they are in the same Ry-
equivalence class and f(i,q) = f(i,q') for all i, where i is the direct transi-
tion function.

Lemmag 2. In any automaton, if ¢ R; g Ry gt for all q, q', then q R g' for
all q, q'

Proof. By hypothesis T5(i) = Tag(i) for all i. Assume TS(S) = Té,(s) where
S is any sequence of input states, and let q" = Ta(q), g'*t = T+, (S). Then
applying T7.7.2 lemma 2, T2 Si) Ef‘ and TZP(Sl) Tq,"( %y hypothesis
TSN( i) = thv'(l) so that Tq(bl) = T 1(S1) and the conclu81on follows.

Lemma 3. For every positive integer k, R = Ry 1f and only if Ry q = Ry

Proof. If R = Ry, it is obvious that Ry,7 = By. If R # Ry, then there
exist q, q' such that g Rx q* but not g R g'. Let S be a sequence of minimum
length, say m, such that Ta(S) # Tg (S). Then m > k. Assume m > k+1, for if

= k+1 the result is immediate. ILet 5 =1L, , 1M 12 where the subscripts in-
dicate the length of the sequence. Then using 7.7.2 lemma 2, an(Mk+l) #
Tg'?g<Mk+l) so that g" ﬁk+l q''*. On the other hand, let U'be any sequence of
input states of length k or less. Then T§(Iy-x-1U) = Tﬁ:(Lm_kmlU) because
Ly-x.1U has length less than m. Again applying 7.7.2 lemma 2, Tén(U) = Té,,,(U)
so that 9" Ry q'''.

Lemma 4. If Ry # R, then there are at least k+l Rp-equivalence classes.

Proof. BSuppose k = 1 and R; # R. If there is exactly one R;-equivalence
class, i.e., g9 Ry g for all q, gq', then by lemma 2, Ry = R, contradicting the
hypothesis. Now assume inductively Ry % R implies there are at least m+l equiv-
alence classes. Suppose, now, that Rm+l # R. Then Ry # R and by the inductive
assumption there are at least m+l Ry-equivalence classes. But Ry 1 % Ry because
by lemma %, if equality held, then R, = R. Hence there are more R equlvalence

m+1
classes than Rm—equivalenceo Thus, there are at least m+2 Rm+l—equivalence
classes. q.e.d.
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Theorem., Given an automaton with n > 1 internal states. Then for some Kk,
k £ n-1, R = R. In particular, R,.1 = R.

Proof., Applying lemma 4, there exists j such that RJ = R. Let k be the mini-
mum of all such j's. If k = 1, the result is immediate. Suppose k > 1. Then
Rx-1 # R and there are at least k Ri.1-equivalence classes (lemma 4). If k > n-1,
i.e., k=1 z n-1, then there are at least n Ry_j-equivalence classes. But there
are all together only n internal states and the R-equivalence classes are obtained
by partitioning each Ry.j=-equivalence class into one or more classes. Hence
R = Ry_1, which contradicts the choice of k. The assumption that k > n-1 has led
to a contradiction. Therefore, k £ n-1.

Corollary. Given an automaton with n internal states. Suppose for some g,q’
that Z TZ,o Then for some sequence S of input states of length at most n-1

12(5) % 12, (8).
Proof. Since Té # Té,, a % q' and n > 1 so that the theorem applies.

T7.7.5. Let g, q' be distinct internal states of an automaton. To determine
whether T2 = T2, "directly" would require checking for each finite sequence S of
input states whether TE(S) = Té,(S)u Since there are an infinite number of such
sequences, this checking cannot be carried out. The theorem 7.7.4, however, pro-
vides a finite checking procedure, i.e., an algorithm, for determining whether

2 _ m2
Tg = Tqr -

Exercise. Provide an algorithm for determining whether gq' is accessible

from q, for any internal states q, q' of an automaton. [Cf. 6.7 (1).]

7.7.6. If A = (I,V,q,f,g) and A' = (I,V,Q',f',g') are two automata, their
direct sum B = A + A' is the automaton (I,V QB,fB,gB) where Qp is the union of
Q x (0} and Q' x (1}, fg(i,(q,0)) = £(i,a), fp(i, (a',1)) = £'(i,a'), ep(i,(a,0)) =
g(i,a), ep(i, (a',1)) = g(i,qa'), and i € I, 9 € Q, q' € Q'. [Recall that if M, N
are sets, then M x N is the set of ordered pairs m, n where m ¢ M, n ¢ N and {0}
is the set whose only element is O. If we considered only those automata A,A!
such that QNQ' = ¢, then the internal states of the direct sum automaton could
be taken simply as QUQ'. Notice that even if Q NQ' # ¢, it is nevertheless
the case that Q x {0)nQ' x {1} = ¢.]

To obtain the direct transition-output diagram for B from the diagrams for
A,A" one merely changes the label g in the diagram for A to (q,0) and the label
q' in the diagram for B to (q',1l) and the two diagrams taken together constitute
the diagram for B.

The following lemma is obvious.
Lemma. (a) Ta q = TS a, O) and TA' vo= 1§ (q',1)- Moreover,

(Ti,q_(s ) OS = Té ) and (TA! (SS, 5 = 1B ( )(S) for any
sequence S of input states.

L6



Theorem., If A,A' are automata with n, n' internal states, respectively,
if q, q' are, respectively, internal states of A, A'. and if Tﬁ # TA',q"
then for some finite sequence S of length n+n'-1 or less, TA q(S) # TAx’q(S)o

Proof. Immediate from lemma (a) immediately above and theorem T.T.k.

Corollary. If A, A' are automata with n, n' internal states, respectively,
and Qu, Qy: are subsets, respectively, of the internal states of A, A', then
whether or not (A,Qy)~(A',Qy:) can be effectively determined. More explicitly,
whether or not (A, Qy)~(A', Qu:) can be determined by examining Ti’q(s), TZ' ,q' (S)
for all g € Qa, 9' € Qa' and for all sequences S of length at most n + n'-1 and
applying the theorem,

7.7.7. Exercises. (1) Given automata A,B. Iet B = B8(d,q') be a binary
relation such that: qi B go if and only if (1) there exists S such that
Tk,q(s) = q; and Tqu,(s) =gs or (2) ¢ = g and ' = go. Prove:

(a) If Th ,q = TS ,q'» then gy B q2 implies T ,qp = Tﬁ’qz.
(b) If g1 B 4o 1mplles Tﬁ = T3 q2 (1) for all input states i, then
2 _ m2
TA,q = TB,qio
c) From (a), (b) it follows: T% , = T8 if and only if for all gi, 4o
s A,q B,qt , ) ’

d1 P gz implies gp(i,a1) = gp(i,qz) for’all 1.
(d) It is possible to decide effectively whether q; B Qs or not.

(2) Apply theorems 7.7.4 and 7.7.2 to the following problem. Given the
logical net indicated below with two delay elements.

X v a(0) = 0, b(0) = O
» a(t+l) = x(t)[a(t) b(t) v a(t) b(t)]
— [ 1} b(t+1) = T(t) &(t) B(t)
y(t) = a(t) D(t) v x(t)[a(t) b(t)V
— —[_ | a(t) B(t)]
b

Find another (equivalent) net (of the form)

with one delay element with the property: for any sequence x(0), x(1), ..., x(t)
of (input states) of "wire" x in both nets, the determined (output) state y(t) is
the same for bcth nets



7.8 Strongly connected automata,u8

7.8.1. Given any automaton A. Define TA’q(iliZ,..in) to be the sequence of
output states
2 . 2 - > - .
TA’q(ll)’ TA,q(lllz)""", TA’q(lllza-oln) °

As usual the subscript A will sometimes be dropped in discussions concerning
only one automaton.

Lemma. For any automaton, Ty= Tyr if and only if Té = Tgyn Further: q Ry q'
if and only if Tq(S) = Tq:(S) for all sequences S of length k.

Making use of T7.7.2 lemma 2, the proof follows readily.

7.8.2. An automaton is strongly connected if and only if for every ordered
pair (q,q’) of internal states of the automaton, g' is accessible from g. Note
that, given an automaton, one can effectively determine whether it is strongly
connected or not [cf. 7.7.5].

Theorem. ILet A be a strongly connected automaton. Let B be any automaton.
Suppose that for each internal state g of A and for each finite sequence S of
input states there exists an internal state q' of B such that TA’q(S) = TB,q'(S)=
Then for each internal state q of A, there exists an internal state q" of B such
that for all finite sequences S of input states TA,q(S) = TB,q"(S)’

Proof. Define eq(S) as the set of q" = TlB’qz(S) where q' is an internal
state of B satisfying TA’q(S) = TB,q'(S)° Let ceq(S) be the number of elements
in eq(S)c Notice that ceq(S) is at most equal to the number of states q' such
that TA’q(S) = Tp qx(S)c Hence, for any sequences S, S', ce,(SS') = ceq(S) be -
cause if TA,q(SS’ = TB’qr(SS‘), then also TA’q(S) = TB’qx(S%o Indeed, the
following holds:

Lemma . eq(S'S) is the set of q" = T%,qr(s) where q' € eq(S‘) satisfies
TA,E(S) = TB,q’(S): where @ = Ti,q(sl)°

Let S; be an arbitrary finite sequence of input states. Suppose there is
some S such that ceq(S18) < ceq(Sl), Pick one and call it Ss. Suppose there is
some S such that ceq(SlSZS) < ceq(SlSZ), Then pick one and call it Sz.°°° This
procegsscannot go on indefinitely since ceq(S) is a non-negative integer for all S.
Thus, there is a k such that for all S, ceq(SlsgoooSk) = ceq(SlSZ,agskS)a Let
s° = 51S5...5k. Then ceq(SO) = ceq(SOS) for all S. Let the set of internal
states of A be {Q;,d5y:.0, An}. Since A is strongly connected, there exists a
sequence, say S, of input states, possibly of length zero, such that q; is
accessible from Tﬁ’q(so)o Then Ti,q(sosl) = gq;. In general, there are sequences,
sJ (some of which may have length zero), j = 1,2,...,n, such that Tk’q(SOSlSZu.QSJ)
= qj. Moreover, ceq(SOSISZ°,°SJ) > 0, for each j, since it follows from the
hypothesis that for any S, ceq(S) > 0.
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Let q' € eq(SOSlo,.SJ), We shall show TA = Tg L by supposing the con-
trary and deriving a contradiction. Suppose tneﬂ for Zome S, Ta ;a4 (s) # TB 1 (S).
Then ceq(SOSI,noSJS) < ce,(8°) since not all q' ¢ e (”O%.Q.GDJ sa 1sf1es‘(cf the
the lemms) Ty q(S) Tg,q° 1 (S) and ceq(SO) = ceq(SoS es.8d) = ceq(Sosl.o,SJS), and
this contradicts the choice of SO.

7.8.3. Lemma. In a reduced automaton k < n implies there are at least k+1
Rk=-equivalence classes.

Proof. It follows from the hypothesis that there are exactly n R-equivalence
classes., If Ry = R, then there are at least k+l Ryx-equivalence classes since k+l
s n. If Rk # R, then the conclusion follows from T.7.4 lemma 4.

7.8.4. Theorem. GCiven a reduced automaton with n internal states. ILet
eq(S)‘be the set of q" = Tav(S) where q' is such that T,(S) = Tq (S). Then for
every g, there exists S of length n(n=1) /2 such that ey S) has exactly one element.

Proof. Iet ceq(S) be the number of elements in eq(S)° Let £(S) be the length
of S, It is to be proved that, for each q, there exists S such that 1(8) =
n(n-1)/2 and ceq(8) = 1. The theorem is obvious in case n = 1. Assume, therefore,
n>1,

Claim. If £(S) < k(k+1)/2, 1 < k < n-2 and ceq(S) = n-k, then for some k' > k
there exists S', an extension of S, such that £(S') < k'(k'+l)/2 and ceq(8') = n-k'.
To justify the claim, note that there are at least k+2 Ry,j-equivalence classes
(7.8.3). DNot all n-k members of eq(S) can be in the same Ry, ;-equivalence class,
for if this were so then the automaton would have at least (n-k)+(k+l) internal
states (since each equivalence class is nonempty). It follows that there exist
d1, ds such that q; ¢ eq(S), 4z €q(S) and qy P41 dz. For some Spi1s £(Siyp) =
k+1 and Ty (Spi1) # Tg,(Sg41). If T = Ta(S), then q e eg(S) and either
T (Sk+l % Tq, (Sk41) oT Tq<sk+l ) # Tys (Sk41)- Hence, by lemma T7.8.2 (applied in
tne case A = B), ceq(SSk41) < ceq(S). Let 8' = SSk41 and choose k' such that
ceq(S') = n-k'. Then k' > k. Furthermore, £(5') < k(k+1)/2 + k+l =
(k+l)(k+2)/2 < k'(k'+1)/2 and the claim is justified.

Since the automaton is reduced, there are at least 2 Rj~-equivalence classes.
Suppose n = 2 ant Tq(i ) # Tqt(i). Then n(n-1)/2 = 1, eq(i) = {Ta(i)} so that
ceq(i) = 1 and the theorem igs verified in this case.

Suppose, now, n > 2. For some S, q', £(S) = 1, Ty(8) # Tq(S). Therefore,
ceq(8) < n-1. Let k be such that ceq(S) = n-k. Then 1 < n-k < n-1 so that
1<k<n-l. If k = n-1, then ceq(S) 1 and the conclusion of the theorem is
satisfied. If 1 <k <n-l1, i.e., 1 <k < n-2, then the hypothesis of the claim
is satisfied. Hence there is & k' > k and an extension S' of S such that L(8")
< k' (k'+1)/2 and ceq(S') = n-k'. Now k' # n because Ta(S') € eq(S'). Therefore
either k' = n-1, in which case the conclusion of the theorem i1s satisfied, or
else k' < n-2, in which case the hypothesis of the claim is satisfied and the
procedure is iterated, thereby obtaining a k" > k' > k and a S" such that
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2(8") < kx"(k"+1)/2. Thus, for some n, k(1) _ n-1, I(S(n)) < (n-1)n/2 and
ceq(S(q)) =1, If s(n) is extended in an arbitrary manner to a sequence of
length (n-1) n/2, then this latter sequence satisfies the conclusion of the
theorem. q.e.d.

Exercise. (1) Construct a reduced automaton A with I = {0,1} = V such
that, for some q, TA q(S) = 1 for those and only those sequences S which do not
con81st solely of Of so For each q, answer the question: Is A, {q}) minimal?
Is there an automaton with exactly one internal state (and the same input, out-
put states as A) which "behaves" in the same way? Construct an automaton B with
{0,1} as its set of input and output states and such that, for some g, T%’q(S) =1
for those and only those sequences S which consist solely of 1l's

(2) Find a sequence S such that for all internal states g of A [exercise (1)]
ceq(S) = 1.

(3) The theorem fails if the automaton is not reduced. Indeed, one can find
an automaton such that, for all q,S, ceq(S) > 1.

Construct such an automaton.
(.C.5. The following is an alternative, more perspicuous, formulation of 7.8.k.

Tleoren. Given a reduced automaton with n internal states. Then

/q\\s/{!\ ET;,(S) FTR(8) == T..(8) # T (8)InL(S) = 9%—”]

(i.e., for all g, there exists S such that for all q'...).

Proof. It will be shown that ceq(S) = 1 if and only if‘/\[Tq (8) = Tq(S)
= T3/ (5) = T5(S)1. d

(1) Suppose ceq(8)

1]

1 and Tq:(8) = Tq(S). Then T gr (8) € eq(S). Since

TH(S) € eq(S) and ce (s) =1, it follows that Tt x(s) ( ).
(2) Suppose q i (8) = )= T v(S) = Tq(S)] and suppose q" € eq(8)
Then for some q', «(S% q" and Tqy(S) = Tq(S)q It follows that q" = Té,(s) =

Ta(S) so that eq(S) has exactly one element, viz. Ta(S)o
The theorem is now immediate from 7.8.L.

7.8.6. The use of quantifiers permits a more perspicuous formulation of
theorem 7.8.2: Let A be a strongly connected automaton and B any automaton.

Then if
41\/5‘}\!/' [Ta,q(8) = Tg,q' (8)],

it follows that
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/\\/ [Ty, q(S) = T qi(S)]

7.8.7. Corollary. GCiven a reduced automaton such that

/N A\ /s\ la # a'== T5(S) # T4 (S)] then /) \S/ DN Lo =D g (8) £ Tg(ENA
1(8) = n(n-1)/2].
Proof. Immediate from 7.8.5.

7.8.8. Corollary. If the direct sum of two automaton A and A' is reduced,
then

/q\\s//q\ [Ty, q(8) # Ty g0 (8)A £(8) = n(n-1)/2]

where q,q' are internal states of A, A', respectively, and n is the number of in-
ternal states of A + A'.

Proof. [Cf. T7.7.6.] T%q’o)(S) # T%q',l)(s) and the result follows from

7.8.5.

7.8.9. Theorem. In a reduced automaton:

2
\{/q\ A ETé.(S) FT5(8) =3 T(8) # T, (S)]A £(8) = _____n(;-l) ]

where n is the number of internal states of the automaton.

(Cf. Reference 33 for an S of shorter length than is given here. Note that
in both References 33 and 48 the output state of a machine is a function only of
the internal .state. The notion of automaton adopted here has the output state a
function of both input and internal states. One must be on guard in interpreting
results established by different authors because of differences in basic concepts.)

Proof. TLet di, ds,...0n be the set of all internal states of the automaton.
Let 9qf = gy and let S; be such that

n(n-1)

/n\ [T§(S1) # Tgy (S1) ==Tq(81) # Ty (S1)] and £(S1) = —
q
Suppose 1 < J <n-1 and q3 and Sj have been chosen such that
) £ Ty ) = Tq(S3) # Tqe(8;)] and £(S;) = n(n-1)
/\ a q5\2d J/ T 75 °

q
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Then let gt =T (S1S2...5.) and choose S, such that

J+1 9j41 J J+l
N N _ n(n-1)
q

Let S = S5182...5,_1- It is claimed that this S satisfies the requirements of the
theorem. ILet 1 < j < k < n and suppose T§.(S) # Tl . Then T§. (S S2)...53) #
qk(slsgnaosj)u If j = 1, then qu(sl) # g (51) so that Tq (s) (S). Now
suppose that j > 1. Then Tq (5185...5 ) = qu(S and Tq Slbz,, S % = T S ) where
q = qu(SlSZ.aon_l) so that Tq(SJ) # Tq 1(S3)% Hence Tg( § Tq SJ) Note that
Tq:(815z2...83) = Tq (slsz., sJ l)TqJ(SJ) and qu(slsz,,,%j) = Tgy(S152...85-1)Tq(S3)
so'that qu(slszo ) # Tg, (S1S2..83). It follows that qu(s) # T (S).  a.e.d.

7.8.10. The direct sum of two automata has been defined (7.7.6). In an analo-
gous way one can define the direct sum A = Ay + A + ... + Ap of automata,
Ay = (I, V, Qu, T1, 81), A2 = (I, V, Qz, 2, g2), osoy Ap = (I, V, Qns fn, gn)°
The direct sum automaton A = (I, V, Q, f,g) has as its set of internal states
Q Z‘szl(QJ X J) and f(i) <Q.;J)) =(fj(j-:q)) J)y g(i; (Q.JJ)) = gj(i)(l) where
iel, qce Qj. It is easy to see that A; + As + ... Ap is isomorphic to
[...((A1 + Az) + A3) + «.. + Ap]. Indeed, A is isomorphic to the direct sum of
the automaton A;, Az, ..., Ap taken in any order and any groupings. For example,

Ay + Ap + Az + Ay, (Bs + A1 + Ay) + A, (As + As) + (Bs + A1)
are all isomorphic.

Lemma. If Aj, 1 < J £ n, are strongly connected reduced automata noniso-
morphic in pairs, then their direct sum is reduced.

Proof., Note that (AJ, QJ) is minimal, where Qjis any nonempty subset of the
internal states of AJ It follows from 7. 7 2 (b) that Ajy Ax, J # k, are isomor-
phic if and only if q X TA ,a= ThAy,q! 1]. (Indeed if Aj, Ay are isomorphic,

/\ }{ TA ,q 1] Slnce As, Ak are not isomorphic, @ /q\' [TAqu £ TAk:Cl]
It follows %hat the dlrect sum of the AJ‘S 1s reduced.

7.8.11. We now note some corollaries of 7.8.9.

(a) Given a reduced automaton such that

A A Al #a =>10(8) £ T (s

a q' S

then -
VoA /\[(Q¥q?=—9Tqa(S)#Tq(s)),\l(s)zg%_l_)_:] o
S q ¢q
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(b) If the direct sum A of A1, Ap, ..., Ay is (1) reduced or (2) Aj,
1< J<r, is strongly connected and reduded and nonisomorphic in pairs, then

. - ~-1)2
VANLG =T, 1(8) £ Ty ((8))AL(8) = n(n-1)2/2]
S g q J
where q', g are internal states of Aj, Ay, respectively, and n is the number of
internal states of A.

Proof. If j # k, then Tg’(ql’j)(S) # T&,(q,k)(s) for any S and any q', g
Aj, Ay, respectively. If A is reduced, the result follows

holds, the result follows from the lemma and what has just

internal states o
from 7.8.9. If (
been proved. q.e

7.8.12. Theorem. Given any function h from finite sequences of elements of
I of length at most n, which has values which are elements of a set V. Then there
is an automaton with input states I and output states V such that for all sequences
S of input states of length at most n Tz(S) = h(8) for some internal state g of the
automaton.

We illustrate a general method for constructing such an automaton, in the
casen =3, I = {0,1} =V and h as indicated below.

h: 0
1
00
0l
10
11

000
001
010
011l
100
101
110
111

HOOHHOOHFHORFOH®HKEO

The desired automaton is indicated by the diagram below (a modification of a
transition-output diagram) where the heavy dots represent internal states. The
leftmost dot plays the role of the g of the theorem.

It is obvious that the indicated automaton satisfies the requirements of
the theorem.
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7.8.13. Exercises. (1) Knowing that the table in 7.8.12 was obtained
from an automaton with two internal states, find the automaton (but do not enu-
merate all the two internal state automata'!). Cf. 7.7.4k, corollary.

(2) Call the T internal state automaton indicated in T7.8.12, A. Construct
the minimal automaton B such that TB,q' = Tp q for some q' of B. Modify A Dby
altering the transitions from the "rightmost" four internal states in such a way
that the minimal "B" has two internal states.

(3) In the automata indicated below, determine whether 7.8.11 (b) (2)
holds, and if so, find an S satisfying the conclusion of 7.8.11 (b).

1-1 0-0 o
o i 1-0 0-1 .

1-1 0-0 ‘ /,\
AZ Ql q2 O—l

1-0
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T.9. An application of group theory. We digress to introduce some further
concepts and establish some elementary mathematical results. An application is
then made to automata theory.

7.9.1. The notion of "finite set" has, up to now, been presumed understood.
It will be worthwhile at this point to give a precise characterization of "finite.
A set M is finite if and only if every 1-1 function which takes M into itself
takes M onto itself, i.e., for every function f from M into M,

1"

X,/y\eM Fy==31(x) £ f(y ——BQM 1}g&(vﬂ"(u))] .

A set of M is infinite if it is not finite, i.e., a set is infinite if and only if
there exists a function f from M into M (such that)

[X’yeM x Fy=f(x) £2y))A NV A(v #f<u>>].

veM ueM

In the case of the non-negative integers, for example, f may be chosen so that
f(x) = x + 1. Alternatively, f may be chosen so that f(x) = 2x. If M is finite
and m is the number of elements in M, then there are m™ functions from M into M,
of which m! are 1-1 functions (and, therefore, onto). A permutation of a set M
is a 1-1 function from M onto M. If M has exactly m elements, then there are m!
permutations of M.

Exercise. If f is a function from a finite set onto itself, then f is a
prermutation. Give a counter-example in the case of an infinite set.

T:9.2. The set of all functions from a set A into a set B will be denoted
by B®. If f,g ¢ M [f,g are also called unary (singulary) operations on M], then
by fo g is meant a function from M into M such that

o g(x)="~7(g(x)).

The binary operation "e°" is called "composition" and f o g is the result of com-
posing f and g (in that order). In general, f ° g # g o . Composition is,
however, associative:

(feg)°h(x) = fog(h(x)) = f(g(h(x))) = f(g°h(x)) = fo(goh)(x).
Often "fg" will be written instead of "fog." There is a unique element, call it

[more explicitly, I = I(M)], satisfying I ¢ Ml and I(x) = x for all x ¢ M. For
all £ ¢ ML £I = £ = 1.
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Theorem. If M is finite, f,g € MM, and fg = I, then f and g are permutations
and gf = I.

Proof. By hypothesis fg(x) = x for all x ¢ M. Suppose g(x) = g(y). Then
x = fg(x) = fg(y) = y, so that g is 1-1. Since M is finite, g is onto, i.e., g is
a permutation. For every x e¢ M, there exists y € M such that f(y) = x, namely,
y = g(x). By the exercise above, f is a permutation. For every y ¢ M, if f(y) = x,
then y = g(x), since f(g(x)) = x and f is 1-1. It follows that gf(y) = g(x) =y
for all y € M, that is, gf = I.

Exercise. If the requirement "M is infinite" is deleted from the theorem
above, show the resulting statement becomes false. The following statement holds,
however: If f,g ¢ M1 ana fg = I = gf, then f and g are permutations.

7.9.5. The ordered triple (M, °, 1) is called a semi-group (with identity)
if and only if
(1) x°y ¢ M, for all x,y € M,
(2) (x°yrz = x°(y-z), for all x,y,z ¢ M,
(3) 1 e Mand 1°x = x = x°1, for all x ¢ M.

If (A,v ,~) is a lattice with 0, 1 (e.g., a finite lattice), then (A, ~, 1) and
(A,v, O) are semi-groups. If M is an arbitrary set, then (MY, o, I) is a semi-
group. If PMQ;MM is the set of all permutations of M, then (Py, o, I) is a semi-
group. To Jjustify this latter statement, it is necessary only to establish that
the composition of two permutation is a permutation. ILet f,g ¢ Pyand x € M.
Then f(y) = x and g(z) = y for some y and z. Hence fog(z) = x., Suppose fg(x) =
fg(y). Then g(x) = g(y), since f is 1-1, and x = y since g is 1-1. Thus fg is a
permutation.

Lemma 1. If (M, o, 1) is a semi-group, a ¢ M, and, for all x, ax = X, then
a=1.

Proof. Since ax = x, in particular, a°l = 1. On the other hand, a°l = a.
Hence a =1,

Lemma 2. If (M, °, 1) is a semi-group, then the function L taking a e M
into Iy is an isomorphism of (M, -, 1) and (R, °, I) where¥< M1 is the set of
all I, where a ¢ M and Lg(x) = a°x for every x ¢ M.

Proof. L. ° Lb(x) =a°(b'x) = (a*b)+x = Laab(x>' Thus L, ° L =1L ..

If Ly = Ip, then a = Ig(l) = Iy(l) = b. Hence L is 1-1. By definition, L is
onto. Thus L is an isomorphism.

T-9.4. A semi-group (M, ., 1) is a group if and only if égM ;g& xy = 1.

Suppose Xy = 1 = yz. Then z = 1z = (xy)z = x(yz) = x°1 = x. Thus, if xy = 1,
then yx = 1. Suppose xy =1 = xy'. Then yx = 1 = xy', so that y = y'. Hence,
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in a group, for each x, there exists a unique y such that xy = 1. This y satis-
fies yx = 1 also and is denoted by ny=l," In a group, ax = b has a (unique)
solution for x, namely, X = a~lb.

Tt has already been observed that (Py, ¢, I) is a semi-group. It is also a
group because if g is any permutation of M, the requirement fg(x) = x for all x e M
defines an element f ¢ Py.

If (M, *, 1) is a g{oup, then (£, °, I) is a group of permutations (cf. lemma

2, 7.9.3) and La‘l = La .

Theorem. If (M, +, 1) is a group, ES M is finite, and X,y, € E=% x'y ¢ E,
then (E, *, 1) is a group.

Proof. If a ¢ E, then Ly is a 1-1 mapping of E into E. Since E is finite,
Ly is onto. Hence ax = a has a solution for x in Ej it follows 1 € E. Thus,
(E, *, 1) is a semi-group. Since Iy is an onto function, ax = 1 has a solution
in E and (E, °, 1) is a group.

Corollary. If E is a finite set of permutations closed under composition
(i.e., f,g ¢ E =3 fog ¢ E), then (E, o,I) is a group.

Proof. If the elements of E are permutations of S, say, then E is a subset
of the set Pg of all permutations of S, (PS, oy I) is a group and the theorem
applies.

7.9.5. Theorem. If (E, o, I) is a group of permutations of S, then the re-
lation p defined as:

apb if and only if a,b ¢ S and there exists mn ¢ E
such that n(a) = b is an equivalence relation.

Proof. Since I ¢ E, it follows apa for all a € S. If apb, then w(a) =D
for some x € E and a = 1 +(b), L E, so that bpa. Finally, if apb and bpc,
then x(a) = b and n'(b) = ¢ for some n,n' € E so that n'n(a) = c and apc.

7.9.6. A semi-groupd (A) is associated with every automaton A = (I, V, Q,
f,g) in the following way. With each finite sequence S of input states, define
Ls ¢ Q% as follows: Lg(Q) = T4(S). If ¢ is the sequence of length O, then
Lg =1c¢ QQ. It is easy to verify that Lgg: = Lgolg:. Thus, if X is the set of
all Lg, (¥, o, I) is a semi-group. Notice that J(A) depends only on the direct
transition function f (and not on the direct output function). Ifky(A) is a
group, then A is called a permutation automaton. (Cf. Ref. 33, p. 277. 1In
Ref. 23, p. 286, def. 5, an equivalent concept '"backwards deterministic" is
defined.)

Lemms, . QQ(A) is a group if and only if L; is a permutation for each input
state i of A.

57



Proof. The composition of two permutations is a permutation (7.9.3). The
result follows, then, from T7.9.4 corollary.

Theorem. Every permutation automaton A is isomorphic to a direct sum of
strongly connected permutation automata.

Proof. The relation p, defined relative to u%A), partitions (7.9.5 theorem)
Q, the internal states of A, into equivalence classes Qj, Corresponding to each
Q. is an automaton Aj = (1, v, Qj, fj, gj) where fj(i,q) = f(i,q) and gj(i,q) =
g?i,q) for each 1 € I, 9 € Q;. The isomorphism may readily be verified.

T7.9.7. It has been remarked earlier that some authors use a notion of
(finite) automaton in which the output at time t depends only on the internal
state at time t. Let us refer to such an automaton as a Moore-machine. Let us
suppose a Moore-machine given. Let the machine initially be in state q and
suppose an arbitrary sequence of input states i, is,..., ip given. Then the cor-
responding sequences of internal states and output states are given by:

. Tis s 1. s .
a, Ta(ll), Tq(lllg), oeoy Ta(lllgou.ln)

and
1,. ,. . 1,. . .
g(q), gTq(ll): gTq(lllz), ceoy gTq(1112~-~1n)

where g is the direct output function of the automaton. Notice that the latter
two sequences are of length n+l while the former is of length n and that the
initial output state is independent of the input sequences. It is natural to
associate with a Moore-machine and an internal state of the machine the function
Tq, from finite sequences S of input states to output states, defined as follows:
T(s) = gTa(S), where g is the direct output function of the machine.

Theorem 1. Suppose an automaton A and one of its internal states q1 given.
Then thera is a Moore-machine M with an internal state q; such that, for all non-
1 2
null S, Ty (S) = TA,ql(s)u

Proof. Let A = (I, V, Q, Ty, gy). ILet M= (I, V, Q', fy, gy) where Q' =
(I x QU (a1} and fiy(1,(i',a)) = (1, £a(i',a)), fy(i,a1) = (i,a), gyl(i,a) =
ga(i,a), gy(ay) may be defined arbitrarily.

We list the sequence of internal states for both automata A,M corresponding
to an arbitrary sequence of input states:

i, is ig i, o in
A di do ds Qa An 9n+1
M da (i191) (iz2,92) (iz,393) (in_l’qn_]_) (in,Cln)

which makes the result rather clear. Proceeding more formally, we claim that
Th,ql(Si) = (i, Ti’ql(s)) for all input states i and sequences S thereof including
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the null sequence (which has length 0). For S null, we obtain

Th,of1) = fu(i,a1) = (f,40) = (4,Th,q, (4)) -
Suppose

Tt gi) = (i, T* (s
Then M}ql( ) ( 2 A)ql ))

. - . . . . ool . R |
Th,q1(811') = Iy ’Ti,ql(Sl)) = fM(l',(l,TA,ql(S))) = (1‘,fA(1,TA,ql(S))) =
. 1 .
(1')TA,ql(Sl)) s
which establishes the claim.

It remains only to recall that

1 . . 1
Th,q, (51) = €a(1,Tx g, (5))

and
A1, .. 1 . JR § R §
T (Sl) = gM(TM,ql(Sl)) = gM(l,TA’ql(S)) = gA(l’TA’ql(S))» q.e-d-
Theorem 1 states, roughly speaking, that every behavior which is realizable
by a finite automaton in our sense is realizable by a Moore-machine provided, of
course, 'behavior," particularly of the Moore-machine, is properly understood.
We now show the converse also holds. More precisely:

Theorem 2, Suppose that a Moore-machine M = (I, v, Q, T, gM) with an internal
s&ate qy given. Then if A = (I, V, Q, £, gp), where gp(i,q) = gyf (i,a),
TM}(S) = Ti,ql(S) for all non-null S.

Proof.

2 . R . oml 1 . a1, ..
TA,ql(Sl) = gA(l’TA,ql(S)) = ng(l,TA’ql(S)) = gMTM,ql(Sl) =Ty (51). q.e.d.

The following two diagrams illustrate theorem 1.

O-a
1-b
Automaton
O-c
A
1-d

59



(0,q1) 0 (0,a2)

0
a c
0 1
0 C .
orresponding
, 1 .
d1 Moore-machine
M
1
0
(l)ql) 1 (l)QE)
b - 1 d

7.9.8. Exercises

1l. Given an automaton A and an internal state q of that automaton. Define
a binary relation Qy as follows:

Sy g Sz if and only if Ta(Sl) = Ta(sg).

Ascume eac:n internal state of A is accessible from q.
Show that:

aq is an equivalence relation over the finite (including the null) sequences
of input states. There is a 1-1 correspondence between internal states of the
automaton and aq-equivalence classes. Treat the equivalence classes as internal
states of a new automaton A' with the same input, output states as the given
automaton. Define a direct transition and a direct output function for A!' in
such a way that A, A' are isomorphic. If the assumption concerning accessibility
is dropped, what is the relationship between A, A'?

2. Define a binary relation Bq as follows:

= TZ where

S1 Bq Sz if and only if Tgl a

1 1
d1 = Tq(sl) and Qs = Tq(sz) .

Treat the Bq-equivalence classes as internal states of an automaton B and define
a direct transition function and a direct output function of B (as for A') in
such a way that (A, {q} is equivalent to (B, Q), where § is the Pq-equivalence
class containing the null sequence. If these functions are defined in a certain
"natural" way, B will be minimal.
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8. REALIZATION OF EVENTSZ0:3T

8.,1. By an I-event is meant a set (possibly infinite) of finite sequences
of elements of a finite set I. An automaton (or a logical net) with two out-
put states O, 1 and input states I is said to realize the I-event E (relative
to one of its internal states q) if and only if (1) if S ¢ E, then Tg(s) =1
and (2) if Ta(s) =1, then S ¢ E. The notion of "realization of an event" is
another way of expressing behavior of an automaton. Certain I-events are called
regular. The significance of regular events is this: every (two-output) auto-
maton realizes a regular event and conversely, every regular event can be real-

ized by a (two-output automaton) (cf. Refs. T, 16).
8.2. If a, B are I-events, then
Se (o v B) if and only if Sea or Sep
Se(a + B) if and only if for some S;, So, Sied, So€f and S = S355

Se o if and only if for some n > 1, S;, S2, «oo , S,, 55 and § = 8185...

Sy
The class of regular I-events is the smallest class containing the empty set
and the unit sets of length one sequences of elements of I, which is closed un-
der v, . , ¥ - Regular I-events may be denoted by regular I-expressions; these
are well-formed formulas constructed out of symbols denoting the empty set, the
unit sets of length one sequences of elements of 'I and v . , ¥ . (Different
regular expressions may denote the same event.) For example, letting I = (0,1}
and letting "0,"™ "1" denote, respectively, the unit sets (0}, (1},

then (0 v 1)* is the set of all (0,1} - sequences;

*
(0 « 1) is the set of all {0,1} - sequences, beginning with O, terminating
with 1 and alternating between 0,1;

(0.1 v 0-0.0) is the set consisting of the two sequences, 01, 000;

1.(0v1)* is the set of all sequences of length two or more which begin
with a 1;

(O*al-O*vl»O*vO*elvl) is the set of all sequences containing exactly one 1.
If @ is an I-event, then let [a] be the I x {0,1} event defined as follows:

i11p...1p
e[a] if and only if for some k, P =land 1;ip 4 .o ijea
P1P2e««Pp
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i,
here we have written "pg" for the ordered pair (ij, pj) where ijeI and pje(O,l}.

Theorem. There is a logical net (and hence an automaton) realizing [a] for
every regular I-event Q.

Proof. The proof is by induction on the number of operation symbols oc-
curring in a regular expression A.

(a) If A is i, denoting @ = {i}, then a net realizing [a] is

The set I is the set of all input states which "cable" a may assume, while the
"wires" b, c are capable of assuming the states O, 1. The switch indicated is
such that for all t,

c(t) =1 if and only if a(t) = i Ab(t) = 1.

Hence this net realizes [a].

Let the expression A, Aj, A, denote the events &, O3, Os. Suppose the fol-
lowing nets realize [Qy], [Qs], respectively.

ag

and /t\ [cj(t) =1 <==>\4 [t' <t bj(t’) = l/\aj(t’)aj(t'+l)...bj(t) € aj]:l .

(b) Let A = (A1VA5); then the net

al=a:a2

Ci

c2
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realizes [0y ] because c(t) = 1 <=> ci(t) = 1Veo(t) =1 so that

1
/t\ c(t) = JL<;--->\/Y Lt <tAps(tt) =
th,J -

l/\aj(t')aj(t’+l) cee aj(t) € a-]]

J

and since /:\ [al(t) = a(t) = as(t)Abi(t) = b(t) = ba(t),

it follows/g\ [e(t) = 1 <==>.\¥< T < tAD(E') = LAa(t')a(t'+l) ...
a(t) e a]]

(c) Let A = (Ays As). Then the net

8po=8

delay [062] ;»

realizes [Q] = [alwoé]. We proceed to Justify this assertion. Suppose

\4[tﬂ§tAMtw = 1Aa(t)a(t'+l) ... a(t) e a] ;

then there exists t", t' < t" < t, such that
a(t') vo. a(t") ... a(t) = a(tal(t'+l) ... a(t) ,
a(t?') .. a(t") € 0z and a(t"+1l) ... a(t) € o .
Hence
a1(t') «o. 21(t") € @1 and b1(t') = 1 so that
c1(t") =1. It follows that

bo(t"+1) and as(t"+l) ... as(t) € a4 so that c(t) = 1.
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Suppose now c(t) = 1. Then for some t*, t' < t, bo(t?) =1 and ax(t') ...
as(t) € . Since by(t') =1, t' # 0. It follows cy(t'-1) = 1. Hence there
exists t" < t' - 1 such that b1(t") = 1 and a;(t") ... a;(t'-1)e az. It fol-
lows that D(t") = 1 and a(t") ... a(t'-1)a(t') ... a(t) € & = a3« Op and the
assertion has been Jjustified.

(d) Let A = A]. Then the net

a;=a

[

realizes [@] = [0h]. We proceed to justify this assertion. Suppose for some
t' <t, b(t*) =1 and a(t') ... a(t) € @, Then, for some n, t:, to, ... tp,

n 3?1, tr = t', t1 <tp < ... <ty < Ot a(tl)sla(t2)sga(tn)snaft) =a(t!) ...
a(t) and a(t1)s1 € o, a(tz)8s € a,a(ty)s,a(t) € @. Since b(ty) = 1, we have
by(ty1) = 1 and a(ty1)Sy € @. Hence d(ty) = 1 and b(ts) = 1. It follows d(tg) =
1. Similarly, d(t,) =1 and by(t,) = 1. Since also a(ty)Spa(t) e @, it fol-
lows c(t) = 1.

Suppose c(t) = 1. Then for some t' < t, ay(t') ... ai(t) € @z and by(t') =
1. Hence eithner (1) b(t') = 1 and a(t') ... a(t) e af or (2) b(t*) £ 1
and d4(t') =1 so that t' # 0. Assuming the latter alternative holds, it fol-
lows c(t' - 1) =1 so that for some t; < t', a;(t1) ... a:(t*-1) € oy and
by(t1) = 1. Hence either (1) b(ty) =1 or (2) b(t1) # 1 and d(ty) = 1 so that
ty # 0. In case (2), it follows c(ti-1) = 1 so that for some ts < ti, 81(ts)...
a1(t1-1) € a3 and by(ts) = 1. Since there is no infinite sequence of nonnega-
tive integers t > t' > t; > t5; > ... , it follows for some n, the first alterna-
tive will hold. For such an n, then, we have

b(ty) =1 and az(ty) ... az(ty_y - 1) € og so that a(t,) ... a(t) € a. g.e.d.

If the net

)
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realizes [a], then the net

— c

:@_ delay B

realizes & because b(o) = 1 and b(t+l) = O so that
(1) if a(o) a(l) ... a(t) € @, then, since b(o) =1, c(t) = 1;
(2) if c(t) = 1, then for some t' < t, a(t') ... a(t) e @ and b(t') = 1.
Hence t' = 0 and a(o) a(l) ... a(t) € a.

Corollary. There is an effective procedure for constructing a net which
realizes a regular event given by a regular expression.

It is to be emphasized that the theorem gives a purely rote procedure for
constructing a net (and hence automaton) which manifests any desired automaton
behavior.

We leave the converse theorem to the bibliographical references.

8.5, We digress in this section to indicate a variant of the point of view
adopted.

8.%3.1. A brief demonstration is given of the theorem of the previous sec-
tion in terms of Moore-machines. To motivate the construction, constructions
are given first in terms of nets.

(a)

a
c
b delay [~
——]

The switch is such that

c(t+l) = 1 if and only if a(t) = iAD(t) = 1.
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Furthermore, c(0) = O.

Suppose the following nets given:

ai ] . ao .
b1 [041_1 ' ! bo [042]
—P —_—

anc(i c):i(t+l) = 1 if and only if aj(tglai(to+l) ... a;(t) € a;ADb;(tp) = 1, and
Ci O = Oo

(b) Then the net below with output c realizes [¢; - 062].

ay=a ao=a
—_ —
C
] [T [ee] [T 7
—_— -
b1i=Db

If b(to) = 1Aa(ty) a(ty+l) ... a(t) e @ = a3+ Qp, then by(tg) = 1 and Tor some
t1y, to < t1 < t, alty) Ag a(ty) Ay a(t) = a(to) a(totl) ... a(t)Aai(tplhy e o
Aas(ty) Ay as(t) € ap, so that c1(ty) = 1 = bo(ty). Hence c(t+l) = 1. If
c(t+l) = 1, then for some ty, ty & t, as(ty) ... as(t) € A Abs(ty) = 1. Since
c1(0) = 0 = by(0), it follows t; > 0. Thus, for some t~ < tp, al(‘to) .
ai(t1-1) € ;Abi(ty) = 0. It follows a(to) ... a(ti-1) a(ty) ... a(t) e aA
b(sp) = 1. Note, tos, that c(0) = 0.

(c) The following net realizes [a] = [af], i.e., has the property c(t+l) =
1 if and only if b(tg) = 1Aa(ty) ... a(t) € @ = of for some to < t.

al =a
(@]
b [o 1] '
—adO—
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Suppose b(ty) = 1Aa(tg) ... a(t) e & for some to < t. Then a(ty) ... a(t) =
a(ty) Ag alty) Ar .. a(t,) A, a(t) for some n,tj and a(ty)hy, alty) Az, oov
a(ty) A, a(t) e oz, Since ai(t) = a(t) and since bi(ty) =1, it follows c(ty) =
1 so that by(t1) = 1 also. Similarly, c(ts) = 1, bi(ts) =1, ... , and c(ty) =
1, ba(ty) = 1. Since az(ty) A, a(t) e ax, it follows c(t+l) = 1.
Suppose c(t+l) = 1. Then for some ti; < t, a(ty) ... a(t) e 01 and by(t1) =
1. Then either (1) b(ty) =1 or (2) c(ty) = 1. If (1) holds, the argument is
completed. If (1) fails to hold but (2) holds, then ty; > O and for some ty < tj,

a(ts) ... a(ti-1) € @y and by(ts) = 1. Again one of two alternatives holds and
the argument proceeds as before.

We now give the "corresponding" constructions for Moore-machines.
(a) Suppose o = {i}. Let Qg = (0,1}. Define

fral (i',2), @ =1 if and only if i' =1 and a = 1,

We take g = O as initial state.
(b) Suppose @ =B.7y. Let Q[a] _ Q[B] x Q[V]' Define
fra)(i, x5, a5, a') = (%[B](i’ X, a)y T (35 grpy(a), q'i)
groy(er a') = g y(at),
where 1 € I, x € {0,1}, 9 € Q- ,71, d4' € Qr_1.
Ir qp] is the initial state gor the automaton realizing [B] and similarly for

q[7], then we take as initial state q[a] = (q[B], q[y]).

(c) Suppose a =p*, Let Q[ 8l Define

al T
f[a](i: X, q) = f[B] (i; g[B](Q)VXJ a) >
g[B](Q) = 8{5}((1)-

The initial state of the machine "for [@]" is taken as the intial state of the
machine for [B].

(d) sSuppose @ =BVYy. Let Qal = (8] * Yyl-

f[oz](i’ X, g, a*) = Q[B](i’ X, 4), f[,y](i, X, q’D,

g[a](Q, q') = g[B](Q)\/g[y](qw)-
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This initial state is chosen as in (b).

(e) Given a machine "for [@]," we now construct one for «. Let Qy =
Q[q] X {0,1}. Define

(i, g, x) = (g[a](i, X, 4), §> s
gqld, 1) =0, gyla, 0) = g[q(a)-
The initial state gy is chosen to be (q[gy], 1).

8.3.2. Let a (A ,I)-event be any set of I-sequences, possibly including
the null sequence A. The class of (A,I)—regular events is the smallest class
of (A,I)-events containing ¢, {A}, {1} for each i € I and closed under v, - ,

1’ where S € ol if and only if S = A or, for some n, S € @®. Then, since O - OdT=
«* (=al-a), it follows if an I-event is regular, it is (A ,I)-regular.

If o,p are sets, -8 = QNP is a set of elements in & but not in g. If «
is a (A,I)-event, let @ = @ - { A}. We wish to show the class of (A ,I)-regu-
lar events consists of exactly those (A,I)-events 9‘9. is I-regular., If o is I-
regular, aV { A} is U\,I)—regular. We now show if o is (A ,I)-regular, then
Q¥ is I-regular. This follows from the following equalities:

(avp)0 = Ovel |

(a-)°

(af)O

i

8%V (2-0°).8%Ve®. (8-6°) [note oo = ¢ = g.al

(a0)x

The (A ,I) event realized by a (two-output) Moore-machine is the I-event
realized by the machine augmented by Aif and only if the machine has output 1
at initial time. It follows from the underlined statement above and 8.%.1 that
every (A,I) event is realizable by a Moore-machine. It follows, too, that
every (A ,I)-event realized by a Moore-machine is (A ,I)-regular

8.4. An example. We illustrate the theorem of 8.2. Let the given (0,1} -
regular set be (u-uVv)* where "u" denotes {0} and "v" denotes {1}. The dia-

grams below indicate the application of the algorithm.

1.
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no

delay

7

—

x(cwvb)

The behavior of the output b* of this net may be described as follows:
(1) a* = X(cVDb), b*¥ = TaVx(eVd) .

[Here, the argument "t" is to be understood throughout. ]

It
Il

(2) Db(t+1) v*(t) , (o) 0,

0.

il
]

a(t+l) a¥(t), a(0)
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Assume now wire c of the net below connected to wire ¢ of the net above.

| delay

Call the resultant net N. N may be regarded as an automaton with 8 internal
states (viz., the states associated with wires a, b, d), 2 outputs states
(viz., the states of wire b*), 2 input states (viz., the states of "cable"x) ,
and direct transition and output functions given by the table below.
To facilitate construction of the table, we set down the appropriate equations.
1. Equations for direct transition functions:

%(t) E(t)Vb(tD ,
%(t) a(t) x(t) (d(t) b(pj) ,

1}

(i) a(t+l)

(ii)  Db(t+1)

(iii) da(t+1) 1.

2. Equation for direct output function:
(E) = (o) ale)va(e) (Te)Vo(r)
5. Equations for initial internal state:
a(0) = b(o) = da(0) = o

It is clear that the states (a, b, 4) = (1, 1, 0), (1, 0, 0), (0, 1, 0) are
not accessible from (0, 0, 0) and so these states are omitted from the tablebelow..

I Q Q \
X a b d a b d b*
0] O 0 O 1 0 1 0
0 O 0 . O 0 1 0
0 o 1 1 1 0 1 0
0 1 0 1 O 1 1 1
0 1 1 1 1 1 1 1
1 O 0 © O 1 1 1
1 O 0 1 O 0 1 0]
1 O 1 1 o 1 1 1
1 1 0 1 0O 0 1 0
1 1 1 1 o 1 1 1
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Below is a direct transition-output diagram corresponding to the table above.

Notice that internal state 111 is not accessible from state 000. We therefore
delete 111 from the set of internal states. We now partition the four internal
states into equivalence classes.

Ri: (000, O11}, (101}, {001}
Ro: (000, 011}, (101}, {001}

Thus the minimal automaton equivalent (relative to {000}) to the given
automaton is given by the diagram below.

0-0

._//’"“\\ 1-0
000 )_ ( 101 1-0 ] 001 0-0
0-1 \/

One may check at this stage that this automaton realizes the event in question.
We now rename the internal states and then construct a net with an output which
behaves like b* above,
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1-1

0-0 A 1-0
- 1-0 O-O
00 3 —< o1
0-1 \_J

X e f e T y

0 0 0 0 1 0

0 0 1 0O O 1

0 1 0 1 0O 0

1 0 0 0 O 1

1 0 1 1 O 0

1 1 0 1 0 0
£ = Xxef,e* = XefVxefvxeT = efVxe f. To simplify e*, we may
require that e* be 1 when x = e = f = 1. That is e*¥ = e fVx e fvxe f =

e fVx f. y=xefvxefVxef =x"fvyxef.

e* | e
ot delay
T delay 7

We terminate this discussion with the schematic diagram above. It should
be clear however, how to proceed to construct a detailed net.
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