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Section 1. Introduction 

We consider a class of estimation problems for which the collection of data is not 
entirely under our control, but depends also on an element of chance. In particular, 
we are interested in data which, no matter how we choose to manipulate our 
environment, is forthcoming only at random times. 

For example, in studying the in situ effectiveness of experimental safety 
devices (such as passive air cushion restraints) relevant data may become available 
only as a result of accidents. Medical data (such as data on drug abuse or an asymp- 
tomatic disease) can sometimes only be obtained when patients voluntarily seek 
help or are somehow otherwise identified and examined, at random times. Other 
examples we have in mind are data collected in response to a mail survey or mail- 
order campaign, data concerning objects uncovered at random times at an arche- 
ological site, and data resulting from an undersea survey of containerized radio- 
active waste (see Dyer (1975), for example). 

We will consider a relatively simple form of such problems-namely ,  the 
estimation of a normal mean. Let y~ ... .  , y, be independent normally distributed 
random variables with unknown mean 0 and known variance a z. We suppose that 
Yl is observed at time h, where 0<t~ < t  2 < ... <t~, and t~ . . . . .  t, are independent 
ofy~ . . . . .  y,. We will, in fact, suppose that t~ .. . .  , t n are the order statistics of positive 
exchangeable random variables x~ . . . . .  x,, which are independent of y~ ... .  , y,, 
so that 

n 

k(t)  = ~ IEo,,l(x,) (1.1) 
i = 1  

denotes the number of observations which have been made by time t > 0. 
For the present suppose that we agree to take at least one observation and to 

estimate 0 by the average of the observed y-values at the time when we stop. 
Suppose also that the loss due to estimation error is squared error loss and that 
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it costs c units to observe the process for unit time. If we observe the process for t 
units of time, then  the conditional expected loss, given k(s), s < t, is 

~2 k(t)-.1 + c t .  (1.2) 

We are thus led to a stopping problem: find a stopping time t which minimizes 
the expected value of (1.2). 

In Sections 2 and 3 of this paper we will consider the more general problem 
of finding a stopping time to maximize 

E {h [k(~)] - c ~} (1.3) 

with respect to stopping times z. We obtain explicit solutions for a large class of 
possible h and a large class of possible distributions for xl, ..., x,. In Section 4 
we apply the results of Sections 2 and 3 to the estimation problem discussed 
above. In Section 5 we propose an adaptive strategy for the estimation problem. 
The adaptive strategy requires only minimal knowledge of the distribution of 
xl, ..., x, and performs nearly as well as is possible when n is large. 

The problem of minimizing (1.3) with respect to stopping times z is of independ- 
ent interest. It has been considered by Taylor (1968), Starr (1970), Wardrop  (1974), 
and Starr and Woodroofe (1974). 

Section 2. Optimal Stopping: Known F 

In this section we suppose that x 1 . . . .  , x~ are independent random variables with 
a common distribution function F. Further, we suppose that F(0)=0;  that F(t)> 0 
for t > 0; that F is absolutely continuous with density f ;  and that f is the right hand 
derivative of F on (0, oo). We denote the class of such F by fq. 

Let h be a given extended real values function on E, = {0, 1 . . . . .  n} for which 
h(0)<oe and Ih(k)[<~ for k>=l, and let 

zh(t) = h [ k ( t ) ]  - c t 

for t>0.  We regard zh(t ) as our payoffif  we stop the process at time t. Let Yt . . . . .  Yn 
be random variables (or vectors) which are independent of xt . . . .  , x,,  and let 

= a {k (s), s =< t, y, . . . . .  yk(t)} (2.1) 

be the information which is available to us at time t. By a stopping time we will 
mean an extended random variable r for which 0_<z<oo w.p. 1 and { z > t } e ~  
for all t >_ 0. We seek a stopping time which will maximize 

v~(~)  = ~ { z h ( ~ ) }  

with respect to z. We denote the supremum of Vh(~) with respect to �9 by Vh(n, F). 
Let b = sup {t: F(0 < 1 }, and p (z) =f(z) /[1 - F(z)], 0 < z < b, denote the failure 

rate. It is easy to check that k(t), O<t<b ,  is a non-stationary Markov chain with 
respect to 4 ,  0 < t < b and that its characteristic operator is given by 

A t g(k) = ( n -  k) p(t) [g(k + l) - g(k)] 

for k~E ,  and all real-valued functions g on E,. 
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Theorem 2.1. Suppose that h(k + l)-h(k) is non-increasing for k<=n-1 and that 
FeN has a non-increasing failure rate. Then Vh(z ) is maximized by 

rh = inf { t > 0: At h [k(t)] < c}. (2.2) 

Proof The proof follows Ross (1971). Suppose first that h(0) is finite. Then Dynkin's 
formula [Breiman (1968), p. 376] and a simple truncation argument show that 

Vh(z)-h(O)=E (A~h[k(t)] -c )d t  (2.3) 

for all stopping times r. In particular, it follows from (2.3) that Vh(Zh)> h(O)> -0% 
so tha tE {rh} < ~ .  Next observe that, by assumption, Ath[k(t)] is a non-increasing 
function of t. Thus, if z is any other stopping time then 

Vh(Zh)--Vh(z)= ~> (Ath[k(t)]-c)d dP+ i I(A,h[k(t)]--c)d dP>=O, 

so that z h is optimal. 
If h ( O ) = -  oo and E {q} = c~, then Vh(O = -  c~ for all z, so that ~h is trivially 

optimal; and if h(O)= -c~ and E{q} < ~ ,  then it suffices to maximize Vh(Z) with 
respect to ~ for which z___ t 1 w.p. 1. For such ~, Dynkin's formula and a simple 
truncation argument yield 

and the argument proceeds as above. 

Example 2.1. If F is an exponential distribution, say F(t) = 1 - e -~t for t > O, Zh = tr, 
where r is the least integer k for which (n -k ) [h(k+l ) -h (k ) ]<ce  -1, and the 
optimal payoff is 

Vh*(n, c 0 = h ( r ) -  ~ c /~(n-k+ 1). 
k = l  

Lemma 2.l. I f  F ~N and G~N and F(t) < G(t) for all t > O, then V(n, F) < V(n, G) for 
all n > 1. 

Proof There are independent random variables u 1 . . . . .  u, which are uniformly 
distributed on [0, 1] and functions f > g  for which xi=f(ui) and yi=g(ui) have 
distributions F and G respectively. See Lehmann (1959), page 73. The lemma 
follows easily. 

Theorem 2.2. I f  F has non-increasing (non-decreasing)failure rate and r e = p ( 0 )  
is finite and positive, then V(n, F)<(>) Vh*(n, a). 

Proof Let G be the exponential distribution with parameter c~. If F has non- 
increasing (non-decreasing) failure rate, then F(t)<(>)G(t) for all t__0. The 
theorem now follows easily from Lemma 2.1. 

For  later reference, we mention the following extension of Lemma 2.1. 



106 N. Starr et al. 

Lemma 2.2. For 5 > O, let W(n, F) be the supremum of Vh(r ) over all stopping times 
r for which z < 6. I fF~ ~ and G ~ ~ and F(t) < G(t)for 0 < t <_ 6, then W(n, F) < W(n, G). 

The proof involves showing that the functions f and g (in the proof of Lemma 
2.1) may be so chosen that f (u)> g(u) when f (u)< ~, and this is easily accomplished. 

Section 3. Optimal Stopping: Bayesian Formulation 

In this section we suppose that x 1 . . . . .  x, are conditionally independent and ex- 
ponentially distributed with parameter w, given that W = w, where W is a random 
variable which has the gamma distribution with parameters e and ft. That is, 
W has density 

f(w)=F(c~) -I fl~w ~-1 e - ~  (3.1) 

for w>0. Such a model might be appropriate if Xl, . . . ,  x, were exponentially 
distributed with an unknown parameter w, and if w were given its conjugate 
prior distribution. It is easy to see that the conditional distribution of W given ~tt 
is again a gamma distribution, but with new parameters, 

k(~) 

~=c~+k(t)  and f l ~ = f i + ~ t i + ( n - k ( t ) ) t .  (3,2) 
j = l  

We denote the prior parameters of (3.1) by So and rio, and % + n  by m. It is then 
easy to check that (cq, fit), t > O, is a stationary Markov process with characteristic 
operator 

Aria, fi) = (m - ~)f'(~, fl) + fl-1 o:(m - o 0 [f(~ + 1, fi) - f(~, fl)] 

where ' denotes differentiation with respect to ft. The domain of A includes all f 
which are continuously differentiable in fi for each ~. 

As in the previous section, we tet h be a non-decreasing function on {c%, ..., m}. 
We require that ]h(a) l<~ for ~>~o but allow the possibility that h ( ~ o ) = - o o .  
We also let 

v~(~) = ~ {h(~, ) -  ~} 

for stopping times r. 

Theorem3.1. Suppose that a(m-c~)[h(c~+l)-h(g)] is non-increasing for ~= 
~o . . . .  , m - 1 .  Then Vh(Z) is maximized by 

Zh=inf {t >=O: Ah(~,  fl0--<_c}. 

The proof of Theorem 3.1 is similar to that of Theorem 2.1 and will be omitted. 
We observe that rh may be written in the form 

za = inf {t >= 0: ( n -  k(t)) [h(~ + 1) - h(~t)] wt =< c}. 

where wt = E { WJ4} is the Bayes estimate of W at time t. (cf. (2.2)) 
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Examples. i) If h(e)= _ e - l ,  then the condition of Theorem 3.1 is satisfied, since 
e(m-~)[h(c~+l)-h(cO]=(m-e)/(c~+l). This example will arise in the next 
section. 

ii) If h(c0 = e, then the condition of Theorem 3.1 is satisfied if, and only if, 
O~ o > n / 2 .  

Let ~(c%, rio) = sup Vh(z) denote the optimal payoff. If c = 1 and the hypotheses 
of Theorem 3.1 are satisfied then we may compute V h explicitly. Let 

~ =e(m - c0 [h( ,  + 1) - h(e)] 

so that the continuation region for the optimal rule Zh is 

4=  {(~, 8): B<~}. 
If h ( ~ o ) > -  0% then Vh satisfies the equation 

AV~(~,/~)=0 (~,fl)~, 
V;(~,p) =h(~) ]~>~. 

Theorem 3.2. Suppose that hypotheses of Theorem 3.1 are satisfied and that h(eo)> 
- -  00.  T h e n  

k 

Vh(C~,fl)=h(a +k + l)+fl ~ ~ %j(CO[~+k--fl] j 
j = 0  

for y~+k+l--<fl<y~+k and k = 0  . . . . .  m - a - 1  and c~<m-1. Here the coefficients 
Ck, j are defined inductively by 

k--1  

% o(~) = 7J+k [h(~ + k) - h(~ + k + 1)] + ~ ck_ 1,i(c 0 [7~ +k-1 - 7~+k] j 
j = o  

and 

ck,~(~) =~j-~ ck_~,j_~ (~ + 1) 

for j = l ,  ...,k. 

Proof Let g~(y)=y-~ Vh(e, y) for y > 0  and e=c% .. . .  , m. Then 

g;(y)= -~g,+~(y) 

for 0 < y  < 7~ and a_<_m- 1 and g,,(y) =h(m) y-m for y>0 .  Thus, for 7~+~+~ _<__y< ~+~ 

g~(Y)=g~(7~+k)+ ~ o~g~+~(u)du. 
Y 

The theorem now follows by a straightforward, if tedious, induction. 

Section 4. Estimation with Delayed Observations 

In this section we consider the problem of estimating the mean of a normal 
distribution when the observations become available at random times. Thus, 
let Yl . . . . .  y, be independent normally distributed random variables with unknown 
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mean 0 and known variance a 2. We suppose that Yi is observed at time ti, i -- 1 . . . .  , n, 
where tl, . . . ,  t, are the order statistics of positive exchangeable random variables 
x 1 . . . .  , x,  which are independent of yl . . . .  , y,. We suppose further that we may 
observe the process as long as we please: that when we stop, we must report an 
estimate 0 of 0; and that if we stop at time t and report the estimate 0, we incur 
the loss 

Lt=(O--O)2 +ct ,  

where c > 0. 
We will first adopt  a Bayesin approach by placing a prior distribution over 0. 

More formally, we invent a random variable O with distribution rc and suppose 
that conditionally given O = 0, y~, ... ,  y,  are independent normal random variables 
with mean 0 and variance o ~2 and that (O, yl, . . . ,  y,) are independent of xa, . . . ,  x,.  
We denote unconditional probabili ty by P~ and conditional probability given 
O = 0  by Po, and we suppose that E~{O2}<oo.  

Let ~ = o-{k(s), s <= t, ya . . . .  , Yk~o} be the information available to us at time t, 
as in (2.1). By a strategy, we will understand a pair 6 =(0, z), where z is a stopping 
time and 0 is an o~t-measurable random variable. The risk function and Bayes' 
risk of the strategy 6 are then defined by 

r(f,O)=Eo{L~} and -~(6,~)=E~{L~} 

respectively. 
It is clear that for any stopping time z,~(~, re) is minimized by letting 0 = 

E{01~}  be the conditional expectation of O given ~ ,  Thus, the problem of 
finding a Bayes' rule may be reduced to an optimal stopping problem. In the special 
case that ~ is a normal  distribution, the stopping problemis  of the form considered 
in Sections 2 and 3. 

Lemma  4.1. Suppose that ~z is the normal distribution with mean mo and variance azo. 
If  z is any stopping time then the conditional distribution of 0 given ~ is normal 
with mean 

m~ = [Oo 2 m o +  a -  2 (y~ + . . .  + yk~O]/(Oo 2 + k(~) a -  5) 

and variance 1/(ao 2 + k(z) a -  2). 

Proof When z is a constant, the lemma follows directly from Bayes' theorem. 
The transition from constants to stopping times then follows from the Strong 
Markov  property. 

Thus, if ~ is the normal distribution with mean mo and variance o -g, then the 
problem of finding a Bayes' rule reduces to the problem of minimizing 

U~(e, z )=E ~ {a2(e + k(~)) -~ +c~} 

with respect to ~, where e = as~oZ. If x~, ... ,  x, are independent with a common 
distribution function F s N ,  and if F has a non-increasing failure rate, this is a 
special case of the problem which was considered in Section 2; and it follows from 
Theorem 2.1 that for any prior n (not just normal priors) U~(e, z) is minimized by 

z~ = inf {t >__ 0: [n - k(t)] p(t) <= c a -  2 [e + k(t)] [e + k(t) + 1]}. (4.1) 
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It also follows from Theorem 2.1 that U~(e, t~) is independent ofzr. As a consequence, 
we have 

Theorem 4.1. Suppose that F~f f  has non-increasing failure rate p. I f  zc~ is the normal 
distribution with mean mo and variance a~ = a2/e, where 0 < e< 0% then the Bayes' 
strategy is 6~=(m~, t~). 

It seems natural to ask whether the strategy 6o is minimax. The answer is 
provided by 

Theorem 4.2. I f  E { q } < 0% then c5 o is minimax. 

Proof When z~ is degenerate at 0, we will write U for U ~. Then, as remarked above, 
~(3~, ~ )  = U(e, t~). Also, it is easy to see that r(6o, 0)= U(0, %) is a finite constant. 
Thus, it will suffice to show that 

U(e, ~) ~ U(0, to) 

as e--*0. See, for example, Ferguson (1967), page 90. To establish (4.1), let z*=  
max {t 1 , ~}. Then, since to is optimal, we have U(0, to) < U(0, t*), so that 

Oi~ < U(O, to ) -y(Se ,  ~ ) ~  U(O, ~'e*)- U(E, 27e)'~gG2-~ - I c(z*~ -z~)dPo. 

Now the event {z* > z~} can occur only if z~ < t i in which case z * - z ~ <  t I - ~ .  
Thus, since E {fi } < 0% it will suffice to show that lira P0 {z~ > q } = 0 as e--* 0. Since 

e -1Po {ti > z~} < U(~, z~) < U(0, %) < oo (4.2) 

for a > 0, the theorem follows. 
As a corollary to Theorem 4.2 it is easily seen that the strategy ~o is best among 

all strategies which are invariant with respect to translations of y~ . . . .  , y,. Indeed, 
3o is invariant, and any invariant rule has a constant risk function. 

One may formulate a similar result if xa . . . .  , x, are conditionally independent 
exponential random variables with unknown parameter w and w has the (con- 
jugate prior) gamma distribution with parameters ~ > 0  and fl>0, as in Section 3. 
Let 

z~ = inf  {t_>0: (m-~,)~,fit - i  <ca -2 [e+k(t)] [e+k(t)+ l ]  

for e>0,  where at and fi, are as in (3.2). 

Theorem 4.3. Suppose that the distribution of xa , ..., x, is as described in Section 3. 
Then for sufficiently small e>0,  6, =(m~,, z~) is Bayes' with respect to rc~. 

Proof The proof  of Theorem 4.3 is similar to that of Theorem 4.1 and will be 
omitted. 

Section 5. An Adaptive Rule 

The strategies developed in Theorem 4.1 and 4.2 require that F, the common 
distribution function of x 1 . . . . .  x,,  be known exactly (and have a non-increasing 
failure rate). The strategy of Theorem 4.3 allows F to be unknown, but requires 
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it to be an exponential distribution. In this section we will develop an adaptive 
strategy which requires knowledge of neither n nor F and performs nearly as 
well as is possible when n is large for a large class of F. 

As in Section 4, let Yl, ..., Y, be independent random variables which are 
independent of xl . . . .  , x, and have a common normal distribution with unknown 
mean OeR and known variance o-2>0. In this section we will only consider 
strategies cr=(0, z) for which z > q  and O=(yl+. . .+yk~O/k(G The minimum 
risk for such strategies is then 

V(n, F)=in f  E{cr 2 k(z) -1 +cz},  (5.1) 

where the infimum extends over all stopping times (with respect to o~ =o.{k(s), 
s<t, y l ,  . . . ,  Yk~,)}). 

Theorem 5.1. Suppose that F e N  has a failure rate p which is positive and continuous 
on [0, t/)for some tl > O. Let c~ =p(0) and a = av = c/c~. Then 

lim inf l /~ .  V ( n , F ) > 2 a l f a  

a s  n----~ o o .  

Proof Let 0 < ~ < ~  be given and let 6 > 0  be so small that I p ( t ) - ~ l < e  for 0_<t<6. 
Also let h(k)=o.2/(k+ 1) for k = 0  . . . . .  n. If z is any stopping time and if z0-- 
min {z, 6}, then 

E{a 2 k('c) 1 +cz} >E{h[k(z)] +cz} 

> E {h [k (%)] + c za} - E {h [k (6)] }. 

It is easy to see that E{h[k(6)]}=O(n -1) as n ~ o o .  Thus, letting W(n, F) be the 
infimum of E{h[k(r)] +cz}  over all stopping times z<6,  we find that 

V(n, F)>_ W(n, F)-O(n-~). 
Next let G(t) = 1 - exp { - (a + e) t} for t > 0, so that F(t) < G(t) for 0_< t <_ c5. Then 
W(n, F ) >  W(n, G), by Lemma 2.2, so that 

V(n, F) > V(n, G) - O(n-1). 

Finally, it follows from Example 2.1 that l im l /~ .  V(n,G)=21/a',  where a ' =  
c/(c~ + e), and the theorem follows by letting e --* 0. 

Let us now consider the adhoc strategy which terminates sampling at time 

Zo = inf  { t>0:  t k ( t )>c-1  O.2} 

and estimates 0 with 0 = [Yl + ' "  + Yk(~o)]/k(zo) �9 Observe that this strategy requires 
knowledge of neither n nor F for its implementation. Let 

Vo(n, F) = E {a 2 k(ro)-i  + c %} 

be the resulting risk. We will now show that Vo(n, F) ~ V(n, I:) as n --+ 0% provided 
that the following additional condition is satisfied: for some m >  1, 

cO 

y [1 - F ( t ) ]  m d t  < oo. (5.2) 
0 

Of course, if (5.2) fails for all m, then V(n, F) = c~ for all n. 
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Theorem 5.2. Suppose that the hypotheses of Theorem 5.1 are satisfied and that 
(5.2) holds. Then 

l i m l ~  Vo(n, F) = 2 a  ] /a  

a s  n --~ o o .  

Proof By Theorem 5.1, it will suffice to show that lira sup 1 ~ .  Vo(n, F)< 2 a t/~; 
and it will suffice to show this in the special case that o - 2  = 1. 

Observe first that k(%) -1 <CZo, so that Vo(n, F)<2c E{%}. Let % = 1 ~  ~0 
and K,(s)= k(s/lfn ) for s>  0. Then 

P{z,>s}=P {K,(s)<~s } (5.3) 

for s>0.  Since K,(s) has the binomial distribution with parameters n and p =  
F(s/l/n), it is easily seen that K,(s)/lfn-,c~s in probability as n ~ o o  for each 
s>0.  From this it follows that the right side of (5.3) tends to 1 if c~s< 1/cs and 
tends to 0 ifc~s> 1/cs. That is, 

~.-* 1/1/~ =So, 

say, in probability. Thus, it will suffice to show that %, n>  1, are uniformly 
integrable. 

To show uniform integrability, write (for n sufficiently large) 

%dP= ~ (%-2so)dP+o(1) 
{zn > 2 so} {r~ > 2 so} 

c-, r (5.4) 
= ~ G.(s) ds+ ~ G.(s) ds+o(1), 

2so c -1 1~ 

where G,,(s)=P{%> s}. For s>=_c -1 I f  n, Gn(s)=P{Kn(s)=O}=[1-F(s/I/-n)] ~, so 
the second integral in (5.4) does not exceed 

n - m o o  

To estimate the first, we use Bernstein's inequality. For fixed x>2s o and t>0,  

_-<exp - nF  (1 - e  -~ . (5.5) 

When s = 2 s  0 and t sufficiently small, it is easy to see that the last line of (5.5) is 
o(nl/n~). Thus, the first integral on the right side of (5.4) also tends to 0 as n~oo.  
This completes the proof. 

Corollary 5.1. If the hypotheses of Theorem 5.2 are satisfied, then 

lim ]~n. V(n, F) = 2 al/a 
a s  n---+ o o .  
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Section 6. Extensions 

1. In Section 2, it can be shown that  if F e N  and h ( 0 ) > -  o% then an op t imal  
rule exists and is given by 

z-=inf  {t=>0: h[k(t)] <= W[n, k(t), F~]} 

where W(n, k, F) = Vh(k + .)(n -- k, F) and F~(s) = [F(s + t) - F(t)]/[1 - F(t)]. 
2. T h e o r e m  2.1 may  be general ized by replacing ct by c(t), provided that  c is 
convex. The  op t imal  rule is then 

% = inf {t => 0: A, h [k(t)] N c'(t)}. 

A similar r emark  applies to T h e o r e m  3.1. 

3. In the context  of T h e o r e m  4.2, it can be shown that  if E(t z) < 0% then 60 is 
admissible. Indeed,  by (4.2), Po {tl > z~} = O(e), so 

c(z*-z~)dP<-l/~oo{tl > z~} " ]// ~ c2 t2 dPo=o(]/~) 

as e ~ 0 ,  if E{tf}<oo.  Admissibi l i ty  now follows from, for example,  Farrel l  
0968).  

4. It is possible to generalize Theorem 4.1 to the case that L(O, O)=lO-Ol~+c(t), 
where c~ > 0 and c is convex. 

5. Suppose  that  the assumpt ions  of Section 4 remain  in force, except we assume 
that  given 0 = 0 ,  Yl . . . .  , y ,  are i.i.d, with Bernoulli  dis tr ibution defined by 
P(yi= 1 ) = 0 =  1 - P ( y i = 0 )  for i =  1, . . . ,  n; that  O has a pr ior  distr ibution rc which 
is uni form on (0, 1); and that  for any s topping t ime z, the risk is given by 

(0 -o )  ~ 
r(6, 0)= Eo {o(-~_o) + C Z }" 

If F e N  has non-increasing failure rate p, then 6o=(m~0, %) is Bayes with 
respect  to ~z and minimax,  where 

Yl +"" Yk(~o) 
m~~ k(~o) ' 

and 

Zo = inf {t => 0: ( n -  k(t)) p(t) <= c k(t)(k(t) + 1)}. 
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