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1. Introduction 

I n  this paper  we continue the s tudy  of  the zero set of  a stable process on the 
line. I n  [20] one of  us showed tha t  the zero set of  the Wiener process has Hausdorff  
dimension 1/2 and zero Al/2-measure, with probabi l i ty  1. This result  was part ial ly 
extended by  B L V M ~ T H ~  and GwToo~ [2] to the symmetr ic  stable process of  
index g ~ 1 ; they  showed t h a t  in this case the zero set has dimension fi ---- 1 - -  1/~. 
There is of  course no problem when ~ ~ 1, for then the zero set is almost  surely 
trivial. 

I n  1957 Paul  L ~ v r  suggested tha t  for the Wiener process it should be possible 
to determine an exact  measure funct ion for the zero set Z ~ {t: X (t) = 0}. By  this 
is meant  a function ~ (h) defined for small h ~ 0, vanishing at  the origin, increasing 
and continuous, such tha t  the r andom quantit ies 

(1) q ~ - - m ( Z n [ O , t ] ) ,  t > 0 ,  

are almost  surely positive and finite. Here ~ -  m(E)  denotes the Hausdorff  
~-measure of the set E ;  the definition is recalled in section 5. The main objectives 
of  the present investigation are to find such a measure funct ion ~ for a general 
(not necessarily symmetric)  stable process X (t) of  index g > 1, and to identify the 
resulting stochastic process as defined by  (1). I n  fact  we show t h a t  this stochastic 
process, which should be though t  of  as measuring the extent  of  the zero set in the 
t ime interval  [0, t], can be identified, apar t  f rom a constant  of  proport ionali ty,  
with the local t ime at  zero in the sense of BOY~AN [4] or BLVMENTHAL and GEToo~ 
[3] ; cf. section 3 below. To formulate  this precisely let us state our main  result. 

Theorem 1. Suppose X (t) is a stable process o/order ~ > 1 on the line, with zero 
set Z and local time at zero A (t). Then there is a finite positive constant el depending 
on the parameters o/ the process such that almost surely 

q~ - -  m ( Z  n [0, t]) = cl A (t) 

/or all t > O, where ~ (h) = h~ (log I log h l)l-~ , fi : 1 - 1/~. 
The plan of  the paper  is as follows. Section 2 contains the basic definitions and 

asymptot ic  relations needed in the sequel. I n  section 3 we review properties of  the 
local t ime and of  its inverse funct ion T (t). Local asymptot ic  laws for T and  A are 
derived in section 4, and their counterpar ts  at  infinity are stated, generalizing a 
result  of  K]~ST~ [11] for the Wiener  local time. Methods of  CIES~LSKI and  
TAYLOR [5] are modified in section 5 to obtain a positive lower bound  for the 
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~-measure of  Z;  a finite upper  bound  is obtained in section 6, by  a method  similar 
to t h a t  in [21]. The paper  concludes with the proof  of  the main theorem in section 7. 
Positive constants  whose value is un impor t an t  occur f requent ly:  these will be 
denoted by  cl, c2 . . . . .  c25. 

2. Preliminaries 

Throughout  this paper  we will be considering versions of  stable processes on 
the real line which satisfy H u ~ ' s  hypotheses (A): they  are s t rongly Markovi~n, 
and have r ight-cont inuous and quasi-left-continuous paths  almost  surely. (The 
reader unfamiliar  with I tu~T ' s  contr ibut ion [9] will find an admirable summary  of  
the meaning of  these conditions in G~TOO~ [8].) The general stable process of  
index a, see L~vY [14], is a process X (t) = X (t, ~o) s tar t ing at the origin, having 
s ta t ionary  independent  increments,  and for which the characteristic funct ion 
E{exp  i O X ( t ) }  is exp {--  t~ (0)} where, for 0 < ~ < 1 or 1 < ~ <= 2 ,  

(2) V (0) = a [01 ~ {1 -~ i y  (sgn 0) tan  (za /2)} ,  

in which a ~ 0, - -  1 g ~ ~ 1. I f  ~ = 0 then  X (t) is symmetric.  When  g = 2 we 
m a y  as well take y ---- 0 in (2) ; then X (t) is the Wiener process. When  ~ ---- 1 it is 
necessary to modify  (2), bu t  the stable process of  index 1 will p lay  no role in our 
discussion. I n  fact  f rom this point  on we will assume t h a t  we are discussing a fixed 
process X (t) with index ~ > 1. I t  is well known tha t  in this case the process is 
point  recurrent,  so tha t  the zero set Z is unbounded  almost  surely. 

I f  in (2) we have y ---- - -  1 and 0 < ~ < 1 the corresponding process has non- 
negative increments and is called a stable subordinator.  To distinguish this case we 
will denote a stable subordinator  by  ~(t) and  call its index fi, 0 < fl < 1. The 
range of  a stable subordinator  is the r andom point set 

Q = {~(t):0 g t <  oo}. 

Whenever  X and ~ occur together  in a discussion it is unders tood t h a t  fi : 1 - -  1/~. 
The Laplace t ransform of the distr ibution of  ~ (t) is given by  

(3) E {exp (--  s ~ (t))} = exp ( - -  b ts~) 

where b is a positive constant .  Note  t h a t  since ~ (t) is increasing, the closure Q of  
the range differs f rom Q only in the countable set of left limits ~ (t - -  0) at  points of  
discontinuity.  

We require estimates for the tails of  the distr ibution of ~(1), which we collect 
now for ease of  reference; these are s ta ted for the case b ---- l,  the corresponding 
results for general b being obtainable by  a scale change. Le t  F ( x )  = P(w(1)  ~ x} 
be the distr ibution funct ion of  T (1). Then 

(4) F (x) ~ c2x ~/2(1-~) exp (--  c3x-~/(1-~)) , x --> 0 ,  

with C2 : (2X~Ca) 112, C3 ~- (1 - -  f l ) f l l -~; and 

(5) 1 - - F ( x )  ~ cdx-~, x ~ o o ,  

where ca : 1IT(1 - -  fl). 

The relations (4) and (5) are easily deduced f rom the corresponding results for 
the densi ty  .F' (x), due respectively to LINNIK [14] and POLLARD [16] ; cL also the 
convenient  tabula t ion in SKOI~OHOD [18]. 

The following lemma is due to D ~ ] ~ I N  [6]. 
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Lemma 1. The probability that an interval [a, b) contain8 a point o /Q is equal to 
b/a 

c5 Su- I (u  -- 1)-~du 
1 

where c5 ~- ~-1 sin ~fl. 

3. The Local Time and its Inverse Function 

In [2] BLVM~NTH~ and G]~Too~ generalized a result of L]~vY by showing that  
2 and 6, the closures of Z and Q, are stochastically the same in the following 
sense : if ~I~), b ~ 1, 2, . . . ,  n, is any finite disjoint collection of open intervals then 
the two events 

( Z n I ~  * 0, b = 1 , 2 , . . . , n }  
and 

{ Q n I ~ . 0 , k = l , 2  . . . .  ,n} 
have the same probability. This equality of probability then extends to the 
a-algebra generated by  such events, but  it  is not always technically easy to check 
that  a given event of interest belongs to this a-algebra. This complication is 
circumvented and the stochastic identity of the two random sets is neatly account- 
ed for by the theory of local times, which we now proceed to sketch. 

I t  was shown by T~o~TE~ [22] for the Wiener process, and by BoYLA~ [4] for a 
wide class of processes including our X (t), tha t  with probability one there is a 
function L (t, x), called the local time at x, which serves as a density function for 
the occupation times of the process. That  is, for each sample path outside a fixed 
null set the equation 

t 
S IB(X  (u))du -~ ~ L(t,  x)dx 
o .B 

holds for every Borel set B and each t > 0. The function L is jointly continuous in 
both arguments and non-decreasing in t. (Applying the machinery of additive 
funetionals of Markov processes BLVMV,~TH~ and GV, TOO~ [3] have developed a 
slmilar and in some ways more extensive theory of local times. Neither they nor 
we are concerned with the dependence of the local time on the space variable x, 
and it is not difficult to verify that  Box%AN's L (t, 0) and BLVM~NTH~-G~Too~'s 
A (t) may be identified.) S~o~v. [19] then showed that  the function inverse to A (t), 
namely 

~(t) = ~(t, o~) = inf  ( u : A  (u, o~) > t} , 

is a stable subordinator of index fl ---- 1 --  1/~ and scMe factor b given by  

b ---~ 0~ (sin 7~ ~-1) all~ [Re ~(1 -~- i ~ t a n  (x~/2)  - 11~)]-1. 

(It should be clear that  all of the functions X ($, co), ~ (t, co), A (t, co), are defined on 
a single probability space ~ of points co.) He showed further tha t  Q, the closure of 
the range of ~, is almost surely equal to the zero set Z, which in turn is almost 
surely a closed set, the set of points of increase of A (t). These results are valid for a 
slightly larger class of Markov processes (which SToN~, calls ,,semi-stable") tha t  
need not have independent increments; in particular all stable subordinators of 
index fl ~ 1 appear as inverses of appropriate local times, whereas only those for 
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which fl < 1/2 arise f rom our X(t),  since then fi = 1 - -  1/~ and ~ < 2. Our results, 
depending as they  do on those of  STONE, are thus  valid for the zero sets of  semi- 
stable processes; in the  definition of  the exact  measure funct ion q we have only 
to  take fi as the p r imary  parameter .  

This means t h a t  we can consider the subordinator  ~ (t) as the pr imary  process, 
so t h a t  A becomes the "hi t t ing  t ime"  process for ~, given by  

A (u) - -  A (u, o)) = inf {t: ~ (t) > u} 

and we m a y  as well s tudy  ~0 - -  m(Q n [0, t]) instead of  (1), since O - -  Q is count- 
able and Z = O. I t  is clear f rom (3) t h a t  a change in b amounts  only to a change 
in the t ime scale of  the subordinator ,  and therefore does no t  affect the range Q. 
Then  it is a consequence of  STONa~'S results t h a t  the stochastic s t ructure of the  
zero set Z does not  depend on the parameters  a, )J. Hence it  Mll be enough for us to 
prove Theorem 1 in the case b = 1 ; the general case will follow on replacing c~ by  
be~. 

4. Local Asymptotic Results 

Our main  object  in this section is to  obtain an asymptot ic  law for the sub- 
ordinator  ~ (t) as t --> 0. Al though the result  of  the next  theorem is an  immediate  
corollary of  results recent ly  obtained b y  F~ISTEDT [71 we present a proof, as we 
need some auxil iary estimates not  contained in [7]. 

Theorem 2. I f  ~ (t) is a stable subordinator of index fl, 0 < fi < 1, b ~-- 1, and 
~7 (t) ---- t~/f (log l log t ])1-1/~ then with probability 1 

l im in_f ~: (t)/~ 7 (t) = d ,  
t-->O 

where d = c(a 1-~)/f. 

Proof. We first show tha t  the lim inf is  almost  surely a t  least d. Given a positive 
2 < 1 choose q between 2f  and  1, and set ts = q~, k = 1, 2 . . . . .  Since ~(t) and 
ul t imately  ~ (t) decrease with t we have, for ts+l <= t ~ ts and k large, 

(6) ~(t)/~ (t) >= z(ts+l)/r 1 (ts). 

Let  As  be the event  t ha t  the r ight  member  of  (6) is less than  2d. Since the distribu- 
tions of  ~ (t) and  t 11~ ~ (1) coincide we have 

P {As}  = P (1) < (ts)} 

~- F (q-  ~/a 2 d (log k -~ log t log q I }1- lift) 

~ c6 (log k) ~ exp (--  es log k) ,  k --> oo.  

Here  c6, c7 are un impor t an t  constants,  while es = (q2-[J)l/(1-~) > 1. Therefore 
P ( A s )  < oo. I n  view of  (6) and the arbitrariness of  2 < 1 the Borel-Cantelli 

k 
l emma then  implies t h a t  lira inf ~(t)/~ (t) ~ d. 

t--~0 
The opposite inequal i ty  could now be easily deduced f rom Borel-Cantelli 

a rguments  applied to the r ight  member  of  the inequal i ty  

lim inf  ~ (t~)]~ (ts) ~ lim inf  {v (ts) --  ~ (ts+l) }]~ (ts) ~- lim sup T (ts+l)[~ (ts) 
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(7) 

Now we have 

for t~ tending sufficiently rapidly to zero, say t~ ---= exp (-- kl+~ (5 > 0. However, 
we need an upper hound for the probability of events of the form 

{~(t) > (1 A-2s)d~( t )  for all t z ( l , m ) }  

where 0 < l < m and l is much smaller than m. To this end consider the events 

Dk = {~ (t~) > (1 -4- 2 e) d~ (t~)}, t~ = exp (-- kl+~ 8 > 0, k = 1, 2 . . . . .  

Lemma 2. For e > 0 there exist positive constants 8, c~,  e~r and mo such that 

P ~ < exp(--e~m~") ,  m > too. 

fro@ ~etE~ = {~(t~) -- ~,(t~+l) > (1 + e)d~(t~)}, P{E~} = 1 - -p~,  
f~  = {~(t~+l) > ee~(t~)}, P{~'~} = q~. Since A D ~  ~ E ~  ~ ~ F ~  and the 
events E~ are independent it follows that  

e { ~  D~} < I - I  (1 - p~) + Ze~ 
__< exp ( -  ~p~) + ~q~.  

p~ = F((t~ -- t~+1)-1/#(1 -k e)d~ (tk)) 
= F ((1 -- t~- lte+z)-1/# (1 -F e) d {log l log t~ l} 1-1//~) 
--> F((1 -F e)d{log(2 m)~ 

for k ~ 2m, since t~ > t~+l and 1 -- 1//3 < 0. Hence, using (4), 
2 m  

~. pk ~ me9 (log m)ellexp { -  (1 ~- e)-#/(1-#)(0 + 1)log (2m)} > e9 (log m)~l~m c1~ 
~b 

for m sufficiently large; positivity of the constant el0 is assured by taking 8 suffi- 
ciently small. The logarithmic factor may be absorbed by making a small down- 
ward adjustment of c10. This leads to an estimate of the form 

(8) exp -- p~ < exp(- -cgm~) ,  mlarge.  

Similarly, using (5), we have 

q~ 1 ~ . - 1 / #  ed~ (t~)) 
= 1 -- F (e d (tk/tk+l) 1/# {log I log t,~ I }1-1/~) 
<= cza (t~+l/tk) (log [ log t~ 1)1-# 

c18 (log k~ exp (-- (8 + 1) k o) 
--<_ c14 (log 2 re)l-# exp (-- (8 + 1) m o) 

for m ~ k ~ 2m. Then 
2 m  

(9) ~ q~ ~ c14(m -}- 1) (log 2m) exp (-- (8 -}- 1)m~ m large. 
~b 

The factors outside the exponential may be absorbed into the exponent, with 
small adjustments. Then the sum of the two bounds (8) and (9) is majorized by 
another of the desired form, for all sufficiently large m. Reference to (7) completes 
the proof of Lemma 2. 
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Corollary. I / M  ~ 2 m and m >= mo then 
M 

M M 

Proof. FI g A . 
m [ M / 2 ]  

I t  follows f rom the corollary t h a t  P { l i m  inf  D~} = 0, and  therefore t h a t  for 
each e > 0, P { l i m i n f ~ ( t ) / ~ ( t )  ~ (1 ~- 2 e)d} = 0. This completes the proof  of  

t - + 0  

Theorem 2. 
Similar calculations show t h a t  the  theorem also holds for large t: 

Theorem 3. Under the conditions o /Theorem 2, 

P {lim inf  ~ (t)/~] (t) = d} = 1.  
t--+ c~ 

However ,  the slow decay of 1 - -  F(x)  as x --> oo (cf. (5)) makes  it  appa ren t  t h a t  
there  can be no nondegenera te  "] im sup"  law for ~ (t), t tending to zero or infinity. 
I t  is possible to define upper  and  lower classes of  functions and to characterize 
t h e m  using results of  K ~ I N C H ~  [12] ; see F~ISTEDT [7] for a summary .  

Since v and  A are inverse to each other,  while ~ and  90 are asympto t ica l ly  so 
(i. e. 90 (~ (t)) ,-~ t ,,~ ~ (90 (t))) i t  is possible to res ta te  Theorems 2 and  3 in te rms  of 
the  local t ime  A and the  funct ion 90. 

Theorem 4. P { l i m  sup A (t)/90 (t) = d-~} = 1. 
t -+O, co 

This generalizes Theorem 1 of KESTE~r [11] for the  Wiener  process. Note  t h a t  the 
r emark  af ter  Theorem 3 implies t h a t  there  cannot  be any  result  of  the  form 

lim i n f A  (t)/h (t) = e ,  0 < c < oo. 
t - > c o  

We have  not  a t t e m p t e d  to ex tend  KESTEN'S Theorem 2, to give a s~rong law for 

l im inf  {sup L (t, x)}/h (t) . 
t - > c o  X 

For  convenience of  reference we now give a special case of  the  corollary f ramed 
in te rms  of A and 90. 

L e m m a  3. Let t~ = exp( - -k l+0) ,  u~----2d~(t~)  and d ' =  (2d)-~. Define the 
events 

D ;  = {A (u D < d'90 (u~)/2}. 

Then/or  appropriate positive constants (~, v16, c17 and mo we have 

M , 

providing that m ~ mo and M ~ 2 m. 

P r o @  For  sufficiently large/c  we have  d'90(uk)/2 ~ ~l-l(u~/2d) ---- tk. Then 
D;  is contained in the  event  {A (u~) < tk} = {u~ < ~(tk)} = {2d~(t~) < ~(tk)}. 
Then  the  result  follows f rom the corollary, on taking e = 1/2. 
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5. Lower Bound for the Hausdorff Measure 

We wish now to show tha t  the Hausdorff  measure induced by  ~v, 
{~o c o  

- re(E) = ~ i . f ( ~  ~(d(a/)):E c U J / ,  d(J~) < ~), 
~ > 0  1 1 

is positive, possiblyinfinite, on certain sets E of the fo rmZ (3 [a, b], or equivalently, 
as noted at  the end of section 3, on sets E = Q n [a, b]. Direct application of the 
definition would require the determination of positive e, ~ such tha t  any covering 
of E by  sets J i  of diameters d(J/) < ~ has the property tha t  ~q.)(d(J/)) > e. 
This is difficult, as it  is not sufficient, for instance, to consider coverings of E by  
finitely many  intervals all of the same length. One may  get a more economical 
covering by  using intervals of widely differing lengths. 

We therefore resort to a method first used in [g] for showing tha t  the Hausdorff  
measure of some random sets is positive. This involves "spreading" a set function 
defined on all Borel sets "uniformly" on E and then analyzing it by  the following 
lemma, which is a modified (and simpler) version of Lemma 3 of [17]. 

Lemma 4. Suppose that iv is a completely additive measure de/ined on the real 
Borel sets and that E is a Borel set such that ]or each x e E 

lira sup F Ix, x + h] < k < oo. 
h~o ~o (h) - -  

Then 
k cf -- m (E) > F (E). 

Proof. Since 17 must  be a regular measure in the sense tha t  

/~(E) = sup{F(K)  : K  c E ,  K compact~ 

we may  assume tha t  E is compact. Let  ~ > 0 and pub 

Hq = ( x e E :  sup F[x , x  + h]/qJ(h) < k + ~}. 
0 < h < l / q  

o o  

Then Hq is closed and E -~ [,.J Hq. I f  T - -  m (E) -~ c~ there is nothing to prove. 
q = l  

I f  ~ - -  m (E) < co then cf -- m (Hq) < c~ and we can find a covering of Hq by  
intervals J/,  q whose lengths arc less than 1/q and such tha t  

~ q) (d (J/, q) ) < cf -- m (Hq) + ~. 
i = 1  

We may  assume tha t  the intervals J~, q are dosed and tha t  their left endpoints 
lie in Hq. Then 

F(J/ ,q)  =< (k + ~)~(d(&,q)) 
so tha t  

F(Hq) <= ~ F(J~,q) < (k + ~) (of -- m(Hq) + ~). 

Since ttq is increasing in q and E = [,.J Hq this gives 

/~ (E) ~ (k -~ ~) (~v - -  m (E) -~ ~), 

and the lemma is established by  letting ~ decrease to zero. 
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We now use Lemma 4 to prove tha t  

- m ( Q  n [0, ~(])]) 

is almost surely positive. The appropriate set function F (E) = F~  (E) to spread 
over the set Q(og) n [0, z(1, co)] is the one induced by  the local t ime A(t,  o~). 
That  is, we define a measure F o  (E) of Borel sets E by  setting F~ [t, t ~- h] equal 
to the difference A (t ~- h, (o) - -  A (t, o)) and extending the definition from intervals 
to Borel sets in the usual way. Since A increases only at  the points of Q, and A, 
are inverse to each other, i t  follows tha t  F~  is carried on Q (oJ) and tha t  

F~[0 ,  ~(t, o~)] = F ~ ( Q ( @  n [0, ~(t, ~)]) = t; 

therefore ff E is a Borel set then F(Q n ~(E)) is simply its Lebesgue measure. 
Now l e t / "  denote the set of pairs (t, o~) e [0, 1] • t9 at which 

lim sup F~ Iv (t, co), ~ (t, ~) + h] < d-~ 
h-~0 ~ (h) = " 

By the strong Marker  proper ty  and Theorem 4 applied at  0 we see tha t  each 
t-section of /~ has probabili ty 1. Then by  Fubini 's  theorem almost every ~o-section 
A =- / t  (~o) has Lebesgue measure 1. Then Lemma 4 implies tha t  almost surely 

9 ~ --  m(Q n [0, ~(1)]) ~ ~ - m(Q n 7:(A)) ~= d~F(Q n ,~(A)) = dZ > O. 

6. Upper Bound for the Hausdorff Measure 

In  order to show tha t  ~ - -  m(Q (~ [0, 1]) ~ oo we have to provide aneconom- 
ical ~-covering of the set; i t  is easy to see tha t  i t  is not adequate to consider 
coverings by  intervals all of the same length. In  fact, one can modify the arguments 
of ITo-McKwA~ [10] p. 50 for the Wiener process to deduce tha t  using coverings 
by  equal intervals ~11 only give finite measure with respect to the measure 
function hZ. In  order to make use of coverings of a more general nature we modify 
the arguments first used in [21]. To this end we need a lemma which will enable 
us to deduce tha t  we have not been too wasteful in our final covering. This means 
tha t  we do not want  to use intervals tha t  overlap too much. Consider the collection 
An of intervals [(?" - -  1)/2h, (] + 1)/2n), ?" ~-- 1, 2, . . . .  Any interval of length 
1 < 2 -~ can be covered by  one of the intervals of Ah. Then any interval I is 

contained in an interval of ~ J  Aa of length at  most four times tha t  of I ,  providing 
h0 

tha t  the length of I is a number  in the interval [2 -n- l ,  2-h0). 
We make precise the fact tha t  the intervals of An are "almost  nested". 

Lemma 5. I / E  ~-- ~J  I j ,  where each Ij  is an interval o / A a / o r  some h between 
j = l  

he and n, then it is possible to / ind a subset {jr} such that E = ~J I]r and no point 
o / E  is in more than two el the intervals I j .  

This can be proved by  the same argument  used to give Lemma 1 of [21]. 
We proceed now to the construction of the covering. 
Given (~ ~ 0 choose h0 so tha t  2 -h~ ~ min((~/2, urn0), where u~ and m0 are as 

in Corollary 2. Choose m such tha t  Um ~ 2 -h~ Given n, let Mn be the largest 
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integer k such t h a t  u~ >-- 2 - n - l ;  n should be t aken  large enough so t h a t  n > he 
and  M n  >= 2 m .  I t  is not  difficult to check t h a t  for suitable posit ive constants  
ClS, c19 we have  M n  >= c l s n  c19 when n is sufficiently great.  

For  such a fixed n consider the intervals  I i ,  n = [(] - -  1)2 -n,  ]2-n).  We say 
t h a t  Ij ,  n is bad for the sample point  co if  (i) Q (co) meets  Ij ,  n and  (ii) there is no 

n 

in terval  [a, b) of  QJ  A~ such t h a t  [a, b) contains Ij ,  n (3 Q (o)) and  
h0 

A (b, co) --  A (a, e)) > d' /8 
(b--a) = ' 

d' as in L e m m a  3. All other  intervals  Ij ,  n are said to be good. I f  Ij ,  n is good then  
n 

either Q (3 Ij ,  n is void  or i t  can be covered b y  an in terval  [a, b) of ( . J  A h  with 
h0 

{A(b) - - A ( a ) } / q ) ( b -  a) >= d'/8. We complete  the covering of  Q by  taking I j ,  n 
i tself  to cover the  set  Q (3 I3. , n when the  in terval  is bad.  Then all in tervals  of  the  
covering have length less t han  d. 

We now show t h a t  the  contr ibut ion to the covering f rom bad  intervals  is 
small. I f  Q (3 I j ,  n is not  void, let sj be the least  point  of  Q not  less t han  (j - -  1)/2 n. 
Le t  B~,j  be the event  t h a t  { A ( s j  + u~) - -  A(s j ) } /c f (u~)  < d'/2,  for k = m, 
m + 1, . . . ,  M n .  B y  L e m m a  3 and the  s t rong M a r k e r  p rope r ty  we know t h a t  
Mn 
~ B k , j  has a probabi l i ty  a t  most  e x p ( - -  clTM~ 1~) =< e x p ( - -  c2on~1). The 

/ c = m  

length u~ of the in terval  [sj, sj + uk) is a nu mber  in the in terval  [2 -n - l ,  2-I~~ 
n 

Hence  [s 1, s I + u~) can be covered b y  an in terval  [a, b) of  ~ J  A~ such t h a t  
b - -  a _--< 4u~. he 

M s  

Suppose t h a t  co is in the  complement  of  the  set  f ~  B~, j. Then there is a t  least  

one k with 
A (sj + u~) --  A (ss) > d' /2 

9 (uD = " 

Covering t h a t  in terval  [sj, sj ~- u~) as jus t  indicated we have  

A (b) - -  A (a) > A (sj + utc) - -  A (sj) > d' /8 
eft (b--a) = ~ (4u~) = 

since ~0(4h) < 4~(h)  when h is small. Thus  the  in terval  I j ,  n is good. Therefore 

P { I i ,  n is bad} g P { Q  meets  Ij ,  n} exp ( - -  c20n TM) < c~.2 ] ~ - l e x p (  - c2on TM) 

on using L e m m a  1. 
Now let T n  denote the  number  of  bad  intervals  Ij ,  n with 1 < ] =< 2 n. I t  

follows t h a t  
n 

= x " c n ~ , ~ l ~ j ~ - i  = 2 n ~ e x p ( _  c2on~) E { T n }  < c22[e p ( - -  20 jJ < c2a 
1 

The covering of bad  intervals  mus t  make  a contr ibut ion 

,,Y,~ = T n  2 -nt~ [log (nlog 2)]l-fl ,  

whose expecta t ion  is major ized b y  an expression of the  fo rm 

gn = c~4 (log n) l -~  exp ( - -  c20 n~*~) �9 
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For any s > 0 we have then P { X :  > s} < Zn/8. Set e = 1In and allow n to vary;  
applying the Borel-Cantelli lemma we deduce tha t  with probabili ty 1 there exists 
an integer no such that ,  for n > no 

(lO) z ~  < 1/n ,  

so the contribution of the bad intervals is negligible. 
For each good interval which contains a point of Q we choose an interval 

[a, b) in 0 Aa such tha t  {A (b) - - A  (a ) } /~ (b -  a) ~ d'/8. This gives a finite 
ho 

collection of intervals to which Lemma 5 can be applied. We obtain a set of the 
form w [a~, b~) which still covers the good intervals I1, n but  covers none of them 
more than twice. For this covering 

(A (b~) - -  A (a~)) < 2 (A (e) - -  A (0)) 

where e is sup b, < 1 + 2 -h~ 

Hence 

(11) ~ " ~ ( b ,  - -  ai) ~ c25A(1 + 2-h~ c25 = 16/d', 

where ~ "  denotes the resultant covering of the good intervals. Thus, combining 
(10) and (11) we obtain a finite covering of Q n [0, 1] for each n > no such tha t  

1 
~cf(d(J t ) )  ~ c25A (1 g - 2  -h~ -F n . 

Letting ~ -~ 0, h0 tends to infinity; using the continuity of A we obtain 

9~ -- m(Q n [0, 1]) ~ c~sA (1) 

with probabil i ty 1. Since A (1) is finite almost surely, the proof is complete. 

7. Proof of Theorem 1 

The results of the preceding two sections show tha t  with probabili ty one the 
~-measure of Q n [0, T(1)] is positive, while tha t  of Q n [0, 1] is finite. The same 
arguments evidently apply with [0, T(1)] replaced by  [0, z(1/N)], or with [0, 1] 
replaced by  [0, N], where N is any positive integer. Then it follows tha t  almost 
surely the random function 

/ ( t )  = ~ - m ( Q  n [0, ~(t)]) 

is finite and positive for all t ~ 0. I t  is clear tha t  the process / (t) has the following 
properties: i t  has stat ionary independent increments; i t  has continuous paths 
almost surely; it is monotonic. The first two imply ([13], Theorem V2.3) tha t  for 
suitable/t ,  ~ we may  write/( t)  -~ fit ~ aw(t), where w(t) is a Wiener process with 
mean zero and variance t. Monotonicity then shows tha t  a --~ 0. Positivity of ] 
implies tha t  /t ---- cl ~ 0. Thus with probabil i ty 1, ~ - -  m(Q n [0, ~(t)]) - -  clt 
for all t ~ 0. Replacing t by  A (t) we obtain the desired conclusion. All of this has, 
of course, been carried through under the assumption b ---- 1. But,  as mentioned 
at  the end of section 3, the general case is obtained on replacing cl by  b cl. 

I t  follows, by  a further application of the strong Marker  property,  tha t  if 

z ~  = {t: i ( t )  = x} 
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is t he  o c c u p a t i o n  t i m e  se t  o f  t h e  p o i n t  (x} for t he  "process X (t) t h e n  for each 
f ixed x we h a v e  

(12) qJ - -  m(Zx  n [0, t]) ~- b c l L ( x , t )  for all  t ~ 0 

a l m o s t  sure ly .  I t  becomes  of  some in t e r e s t  to  ask  whe the r  (12) is a lmos t  su re ly  t rue  
s i m u l t a n e o u s l y  for all  x a n d  all  t ~ 0. W e  have  n o t  b e e n  ab le  to  se t t le  th i s  ques t ion .  

I t  wou ld  also be  of  i n t e r e s t  to  e x t e n d  our  resu l t s  to  more  genera l  processes w i th  

i n d e p e n d e n t  i n c r e m e n t s  - -  see [2]. 
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