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I. INTRODUCTION

The problem of leakage of oils in reciprocating pumps is essen-
tially a problem of flow between two coaxial cylinders due to a pressure
difference with one cylinder moving relative to the other. Since the
clearance between the two cylinders is usually much smaller than the
radii of the cylinders, the cylinders can be treated as two parallel
plates with no end effects.

The flow between two parallel plates and between two coaxial
cylinders has been under investigation for some time. In most of these
investigutions the viscosity of the flowing fluid as well as its tem-
perature, has been assumed constant. This approach produced satisfactory
results only in those cases in which the isothermal assumption (constant
viscosity and temperature) was appropriate.

Becker2 investigated the flow of water, air and steam through
thin annular slits between coaxial cylinders using small clearances.

His results, on the flow of water, show that the laws of laminar flow
hold satisfactorily up to a Reynolds number of 1000, with the clearance
taken as the characteristic length.

Davies and White6 investigated the flow of water between
stationary parallel plates using clearances as small as 0.0154 cm. The
Reynolds number varied from 60 to 4600, the clearance being taken as
the characteristic length. They concluded that:

1. The transition from laminar to turbulent flow occurred at a
Reynolds number of about 1000. This number becomes 2000 when

the criteria of the hydraulic radius is used.
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2. Below this number, the distance along the plates in which a
disturbance can survive, after it has been created, is a func-
tion of the Reynolds number only.

5. There exists a lower limit of 140 for the Reynolds number below
which this distance is zero. This means that below this number
(highly laminar flow), a disturbance cannot travel at all and
must die out as soon as it is created.

4. Surface roughness up to 2 percent of the clearance (distance
between plates) has no measurable effect on laminar flow.

In the problem of leakage in reciprocating pumps, the oil
leaks from the pressure chamber through the annular clearance between
the piston and the cylinder. The face of the piston acts as a source
of disturbances. According to the conclusions of reference 6, these
disturbances cannot travel in the annulus and must die out immediately,
if the flow in the annulus is highly laminar, i.e., the Reynolds number
is less than 140. This makes the shape of the face of the piston com-
pletely unimportant in such cases.

The surface roughness is another source of disturbances. In
laminar flow through pipes, ordinary surface roughness produces dis-
turbances which ultimately die out and the overall problem is not af-
fected.eo However, if the height of the roughness compared to the dia-
meter of the pipe is so large that it obstructs the flow, then the flow
problem is affected.7 For laminar flow between parallel plates, the
size of the surface roughness below which the flow problem is not af-
fected is, according to reference 6, 2 percent of the clearance. While

larger roughness may decrease the flow, and hence the leakage in



reciprocating pumps, it may also reduce the lubricating quality of the
surfaces necessary for high speed operation.

Piercy and Winn;y,l8 and Cornish5 showed mathematically that
the flow due to a pressure difference between two coaxal cylinders
having maximum eccentricity is two and one-half times that with no ec-
centricity at all (perfect concentricity).

The above investigators assumed isothermal conditions (con-
stant viscosity and temperature) and neglected the energy dissipated by
friction.

19

Teichmann suggested the calculation of the rise in the tem-
perature of the fluid assuming that the flow takes place adiabatically.
Then from this and the initial temperature of the fluid, the average
viscosity may be determined and used in Poisseuille's equation for the
flow between two parallel plates to yield a refined result over that
using the viscosity at the initial temperature.

Wilson and Mitchell21 mathematically investigated the flow
between parallel plates due to a pressure difference with one plate
moving at constant velocity relative to the other plate, taking into
consideration the energy dissipated by friction and the subsequent
change in viscosity. Adiabatic flow was assumed. No experimental work

was reported.



IT. VISCOUS FLOW THROUGH SMALL CLEARANCES WITH RELATIVE
MOTION OF THE BOUNDARY

A. Tdealization of the Problem

The following mathematical analysis is carried out in con-
formity with the technique used in the experimental work. A constant
pressure difference exists across a piston throughout each cycle of
reciprocation while the piston reverses its motion in each cycle. The
following assumptions are introduced in order to simplify the mathe-
maticual work:

1. The problem of the flow through small annuli is mathematically
equivalent to that of the flow between two parallel plates
with no end effects. Hence only the latter will be analyzed.

2. The motion of the piston is caused by the rotation of a crank.
In Appendix A, an expression is derived for the velocity of
the piston. It consists of several harmonics. Since the ratio
of the length of the crank to the length of the connecting rod
in the experimental set-up was made 1/15, and this ratio is
fairly small, it will be assumed that the motion of the piston
is simple harmonic.

5. It will be assumed that the axes of the piston and the cylinder
remain parallel during operation.

Furthermore, in the operating range of temperature and pres-
sure, it will be assumed that

L., The fluid is incompressible and its density does not change

with temperature. Hyde12

found that at a pressure of 2000 psi
the densities of some lubricating oils changed only by 1 percent.

The specific gravity of the oils used in this work change very

.



little with temperature, as can be seen from the properties
of these oils given in Appendix D.

5. The viscosity of the fluid depends on the temperature only.
It does not change with pressure. Hersey and Snyderll report
that at 3600 psi, the viscosity of castor oil increases by
about 45 percent. Hyde,12 and Hersey and Shorelo found that
at 2000 psi the viscosities of some lubricating oils changed
from about 30 to 40 percent.

The eccentricity of the piston with respect to the cylinder
must be accounted for in the equivalent problem of parallel plates.
This means that one plate must be flat while the other should have a
cylindrical form with its elements parallel to the flat plate and in
the direction of the flow. Hence the clearance, or the distance be-
tween the plates, is constant in the direction of the flow but variable
in the other direction, which is perpendicular to the first.

The idealized problem then consists of an incompressible vis-
cous vluid flowing between two plates under the influence of a pressure
difference. One plate is flat and stationary and the other is cylindri-
cal in form and has a simple harmonic motion.

B. Mathematical Analysis

Figure 1 shows the coordinate system chosen. Uy is the velo-

city distribution at any instance in the fluid due to the motion of the

cylindrical plate alone, while u_ is that due to the pressure difference

2

alone. From Lamb,15 the momentum equation in the x direction gives

v
u =+ 3 Vg (2'1)
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and
up = o (v - v (2-2)
The combined velocity distribution u is the sum of ul and U, -
Hence,
u=t§y-§—u%(3’d—yg)- (2-5)

The average flow rate Q during each cycle is due to the pres-
sure difference only since the velocity distribution ul increases the
flow rate during one-half of the cycle and decreases it by the same

amount during the other half of the cycle. Hence,

2n d
' 2
Q=—£9§/f(yd-y)dydé
2p dx
00
21
R dej
= - — = a“d . 2-4
o ax 3 (2-4)

The relationship between d and ¢ is developed in Appendix B.
d =A(L-ncos¢g) . (2-5)
Substituting in Equation (2-4) and integrating, gives

5
= - _—JTRA Q é 2 -—
Q o (L+20%) . (2-6)

If the viscosity and temperature are assumed constant, then

it is customary to let the pressure be a linear function of the length

X, so that
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Also,

b=y

Hence, the flow rate based on the assumption of constant vis-
cosity will be designated as QO and is given as
: 5 2
RACP) (L + 3/2 n%)

QO = 6“1 i b (2'7)

and will be referred to as the isothermal flow rate.

If the temperature is not assumed constant but allowed to vary,
then the viscosity would vary too. The temperature change results from
the dissipation of energy into heat by the action of the viscous forces.
A portion of the energy required to move the cylindrical plate would be
dissipated in this manner. 1In other words, the cylindrical plate does
some work on the fluid in the annulus. The result is to raise the tem-
perature of the fluid. This rise in temperature would in turn initiate
some heat transfer from the fluid to the plates, provided that these
plates are heat conductors and are at a lower temperature. There are
cases in which the fluid in the annulus does work on the cylindrical
plate and consequently, the temperature of the fluid decreases. However,
such cases fall in limited ranges of velocities and pressures which are
not practically significant, and hence will not be taken up here.

In Figure 2, the element ABCD of thickness dx is taken as a
free body. The element is enlarged in Figure % with all the quantities
that contribute to a heat balance shown on it. 1In steady state opera-
tion, the temperature of the cylindrical plate (piston) reaches a steady
state value and the heat transfer from the fluid in the annulus to this
plate becomes very small. For this reason, only the heat transfer to

the flat plate (cylinder wall) will be considered.
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Applying the steady state energy equation to the element in
Figure 3, gives
dH + dq = dw

On the bases of one pound of flowing fluid,

dh + da . (2-8)
e 7Q

The rate of heat transfer dq is given as

dq = 27RU (T - Ty) dx , (2-9)

where TL is the temperature of the surrounding outside the flat plate.
It will be assumed that this temperature is the same as the initial
temperature of the fluid before entering the annulus.

The enthalpy of an incompressible fluid is
dh = C,AT + = &P . (2-10)

Substituting Equations (2-9) and (2-10) in Equation (2-8), gives

27RU aw _ 1
C, 4T + (T -T,) a&x = =X - = dP . (2-11)
v 7Q 1) )y

Dividing through by CV and dx,

daT 2nRU 1 dw 1 dP
== + (T -7 ) = —_— e - = . (2-_L2)
dx = 7C.Q 1 7€, Q dx  7C, dx
Now
aw dF
& 2-1
dx v dx ( 2

where F is the shear force between the cylindrical plate and the fluid
in the element ABCD. The plus or minus signs are inserted to account

for both directions of motion of the cylindrical plate. Also,



2n
%=R/ng (2-14)
0
and
du
T=u(d—y)y=
Using Equation (2-3),
T=u(t§+2d—ug—i) : (2-15)
Substituting in Equation (2-14), gives
25
%=pr(t§+§—p% ag . (2-16)

4aF v A dP
— =2 r ( + + — —) . (2'17)
dx e A 2n &
Substituting in Equation (2-13),
aw A dP
— =2 + — — . 2-18
dx T[MRV ( ; - 2 d_X ( )

The velocity of the cylindrical plate varies with time during
each cycle. Hence dw/dx varies with time. In order to eliminate the
time dependency in Equation (2-12), the average value of dW/dx over the
whole cycle will be determined and used in Equation (2-12).

Now x

W L@

T ave.” ——pne : (2-19)




-12-

From Equation (2-18),

From Appendix A,
v =V sin (wt) ,

where

So that

2
aw
- TE sin® (wt) + 7wva Z st (ot).

Substituting in Equation (2-19) and integrating, gives

aw _ X V2

ax’ ave. AV1-n®

Substituting Equation (2-21) in Equation (2-12), gives

2
aT + QT[RU(T - T ) — T[Rp,v _ 1 d__P- .
dx 7CVQ L 7CVQA y/l-n2 7Cv dx
From Equation (2-6),
bQup

& 15

RA (1 + 3/2 n?)

(2-20)

(2-21)

(2-22)

(2-23)

Equation (2-22) is the energy equation, while Equation (2-23) is the

momentum equation. Both of these equations must hold in the present

problem.

The kinematic viscosity v is given as

(2-24)
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and
Y =p 8

Substituting Equation (2-23) in Equation (2-22), gives

2

%E QgRU (T - Tl) _ nRV" 2 o Q v (2-25)
708 gCVQA>Vl-n2 7CymRA” (1 + 3/2 n<)
and
dap
== 6p Q —v (2-26)
7R (1 + 3/2 n°)
At this point, it is convenient to introduce dimensionless
variables.
Let
P=pP (2-27)
T=t% Tl
x =17 L
v.=0v,
Also let
P RA (1 + 3/2 n°)
1
(2-28)
2
7 = 7RV vy L + 6 oQv1L
T,8C,Q0 V1-02  T1yCnRA (L + 3/2 1)
and
A = STRUL
7€y
(2-29)
\ =&
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Substituting in Equations (2-25) and (2-26), gives

&yl (v-1)=20, (2-20)
an A
and
Loy . (2-31)
dn

It is significant to point out that the term
A
- (t -1
= (v - 1)

in Equation (2-30) represents the contribution of the heat conductivity
of the flat plate (cylinder wall) If A/X\ is very large, then the prob-
lem approaches essentially an isothermal case with the temperature and
viscosity of the fluid being constant. If A/x is very small, then the
problem approaches the adiabatic case with little or no heat conducted
through the flat plate.

Rearranging Equation (2-30) gives

dt

2o -2 (s - D) =dn . (2-32)
PN

If a suitable viscosity-temperature relationship is intro-
duced, and ¢ is eliminated in terms of t, then equation (2-32) becomes
ready for integration. After trying a few practical relationships
and consulting various tables of integrals, this writer was unsuccess-
ful in proceeding with the integration. The reason for this difficulty
is that Equation (2-30) is a first order, nonlinear diff-rential equa-
tion, and the resulting integral of Equation (2-32) is not an elementary
integral. Hence, the work will be carried on for the adiabatic case

only. This means that A/A = 0. Equation (2-30) becomes
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dt

E; =Z 0 . (2-33)

Eliminating ¢ from Equations (2-31) and (2-33), yields

dt 7 dp |
— = - = —= =954
dn Y dn (2-24)
Integrating
t p
J[dt E\jfd
_.—Y p
1 1
Hence
Z
t-l=-32(p-1). (2-35)
Applying the boundary condition that when
To
n =1, to =7, and b, = o ,
1
Equation (2-35) becomes
T,-T =207 (2-36)
271 "y 1 o B

Equation (2-36) is a general equation which holds true regardless of
the viscosity-temperature relationship. However, this equation alone
is not sufficient to predict the adiabatic rate of flow.

Equation (2-33) can be written as

dt .
a— =2 . (2_57)

al+
=

This equation can be integrated if a viscosity-temperature
relationship is introduced.

There are several types of viscosity-temperature relationships
for various hydraulic fluids and oils. The following are three such

relationships:
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-AT

1. v =De

2. v=gTF
i7" Y

5. v =¢e

If the operating range of temperature is small, then it is
possible to use any one of the above relationships without introducing
large errors. The analysis will be carried out using each one of the
above relationships.

FIRST CASE:

The relationship

(2-38)

gives a straight line when plotted on semi-log paper. The temperature

T is in degrees absolute. Using Equations (2-27), Equation (2-38)

becomes
-AT, (t-1
= TH(E-D) (2-39)
Substituting in Equation (2—57) and integrating, gives
t 1
AT, (t-1) )
Jf e + dt = Z\j[dq
1 0
or
1 [eATl(t-l) -1] =2 N . (2_40)
AT
1
Applying the boundary condition that when
T2
n:l,t:—) (2—1"1)
Ty

Equation (2-40) becomes
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A(T, - T,)
e 2 L1 arz
1
or
T, - T == 1In (L + AT.Z) (2-42)
2 17 A 1 )
Let
__8
@ = Rva
2v_VLA
1 ' )
O =7 9 T
gl A& 1+3/2n
AP, |
Vo= —= (2-43)
7C
v
® = a8 , ®' =o'
2
N = 1+ 3/2n
1 - n2

Combining Eguations (2-28) and (2-43) gives

39 ]
Y = =—— 2-44
" (
and
29 N
7 o= (1 + =) . -}
AT, (L+275) (2-45)
Using Equations (2-43), the isothermal result, Equation (2-7),
becomes
; ¥ )
P, = 3 (2-46)
where
(P'=a e'



-18-

and
Q
o = —
0  nRVA
Substituting Equation (2-46) in Equation (2-L4L4) gives
y = &
o
Now
}\.:Q—=—CP—=SL: 2-14-7
QO (PO (PO ( )
Hence
Y= A . (2-48)

Substituting Equations (2-44) and (2-45) in Equations (2-36)

and (2-42) gives

T, - Ty = % (1 + gg?) (2-49)
and
T -T =1n[1 v+ 2
o~ Ty =7 In] +5@(+?@)] : (2-50)
Let
N
B=v (1+—7), (2-51)
[Ser

and using Equations (2-L44) and (2-51), Equations (2-49) and (2-50)

become

1, -1, - (2-52)

and

1 ]
T,-Ty =7 1n (L + ) . (2-53)
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Eliminating (T2 - T.) from Equations (2-52) and (2-53) and

1)
rearranging gives

r== (P -1) . (2-5k)

L
B

For particular values of the pressure number {, the velocity
number © and the attitude n, the adiabatic temperature rise can be
determined from Equation (2-52) and the flow number ¢ can be determined
from Equation (2-54).

These two equations can be reduced to the isothermal case
under certain conditions. If g is very small, then according to Equa-
tion (2-52), T, X T). If Equution (2-54) is expanded in a power series,

then

1]
(=
+
e
+
[
+
)
!
1
1

Assuming B very small, gives

AR L.
According to Equation (2-47), this means

QR Q
It may be concluded then, that the isothermal assumption is
adequate if B is very small. This means, according to Equation (2-51),
that whenever the pressure difference and the velocity are very small,
and the rate of flow is relal .vely large, the isothermal results are
good, a conclusion that could have been arrived at intuitively.
The temperature variation along the plates can be determined

from Equation (2-40). Substituting Equations (2-45), (2-51), and (2-54)

in Equation (2-40) and rearranging gives
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A(T-T) =1nl1+n(P-1] . (259

Figure 4 is a plot of Equation (2-55) for B = 2.
The pressure variation along the plates can be determined by

combining Equations (2-35), (2-4k4), (2-45) and (2-55), which gives

p=i-1-Lanp1+q (P -1 (2-56)

Figure 5 is a plot of Equation (2-56) for B = 2.

The viscosity change along the plates can be determined in a
similar manner. Combining Equations (2-39), (2-L40), (2-45) and (2-5k4)
gives
v 1

= . 2-5
Vi 1+1q (P - 1) (250

o =

Figure 6 is a plot of Equation (2-57) for B = 2.
Again these equations can be reduced to the isothermal case.

If B is very small, then Equation (2-55) can be written as

A(T -T)) =1n [l+nq (P -1)] ~ln (1 +n8B) =0,

which means that the temperature T along the plates would be constant
and equal to Tl’
Similarly, Equation (2-56) can be written as

1
p=£—=l-—hﬂl+n(£—lﬂ% l—im(l+nB)%l-n
P, B B

which is the equation for the linear pressure variation in isothermal
flow.

Finally, Equation (2—57) can be written as
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14 n(eP-1) 1+q8
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showing that the kinematic viscosity would be constant, which is true
in isothermal flow.

The average viscosity over the length of the plates can be
obtained from Equation (2-57). Now

1

u/ gdn

0
g =
ave 1

Substituting for ¢ from Equation (2-57) and integrating gives

=B (2-58)

g
ave eB -1

Combining Equations (2-54) and (2-58) gives
o . =2V 1. _QE : (2-59)

Eliminating Q  from Eyuations (2-7) and (2-59) gives

AP, (1 + 3/2 n°)
Q = L . (2-60)
6 Hgye L

The comparison between Equation (2-7), for the isothermal
flow rate Qo’ and Equation (2-60), for the adiabatic flow rate, is
remarkable. The only difference between them is in the viscosity.
Whereas the initial viscosity Hy is used in Equation (2-7) to deter-
mine the isothermal flow rate, the average viscosity Hoye along the
plates must be used in Equation (2-60) to determine the adiabatic flow

rate. This confirms what has been speculated by earlier investigators.
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However, the fact that the average viscosity is usually unknown makes
this conclusion useful only after the above analysis has been taken into
consideration. In fact it is more convenient to determine the adiabatic
rate of flow from Equations (2-43), (2-51) and (2-54) rather than from
Equation (2-60).
SECOND CASE:

In the relationship

v=cTF s

T is the temperature in degrees Fahrenheit. This equation gives a

straight line when plotted on log-log paper. It is more convenient to

modify the form of this equation as follows:

y-orT® (2-61)

Using Eyuations (2-27) gives

o=t . (2-62)

Substituting in Equation (2-37) and integrating

t y
/}tB'l dt = Z/dn
1 0
Hence
t=(1+B2Z q)l/B ) (2-65)

Applying the boundary condition that when
n=1,t="T,/T, |,

Equation (2-63) becomes

T,/Tp = (1 + BZ)l/B
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or
1/B

T, -T) =T, [(L+ B 2) -17 . (2-64)
Let
q = 9
nRVA
2VlVL ' o
0 =——— , o'-= =
gC, A T, 1+ 3/2n
P
- 1
70Ty
(2-65)
P =Qe, o' =o'
N = 1+ 5{2 n2
) V1 - 1’1‘2
N
B=v (1+—)
60
Aol -2 e
Q P V¥
Combining Equations (2-28) and (2-65) yields
y =2y (2-66)
v
and
Z=5cp'(l+$)=xa : (2-67)

Substituting in Equations (2-36) and (2-64) gives
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and

noren (a1 (269)

Eliminating (T2 - T,) from Equations (2-68) and (2-69) and

rearranging

-+ B _ -
x~BB[(l+B) 1] . (2-70)

Equations (2-68) and (2-70) are sufficient to calculate the
adiabatic temperature rise (T, - T;) and the flow number ¢ for parti-
cular values of the pressure number {, the velocity number © and the
attitude n.

As in the First Case, Equations (2-68) and (2-70) reduce to
the isothermal case, if B is very small.

The temperature variation along the plates can be determined
from Equation (2-63). Combining Equations (2-63), (2-67) and (2-70)
gives

- 1/

= {1+q [@+p)® -1} (2-71)

I
T

1
The pressure variation along the plates, from Equations

(2‘55)) (2_66)J (2'67) and (2‘71> is
p:;;l:l——;— {1+ [(1+r3)B-1])l/B-l}. (2-72)

And similarly, the viscosity change along the plates, from

Equations (2-62) and (2-T1) is

c-Le fian t@se)® - f (2-73)

1
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THIRD CASE:

The relation .

i7"
v =e

holds fairly accurately, specifically for petroleum oils, but it is
more complicated than the first two relationships. It gives a straight
line when plotted on log log vs. log paper. The temperature here is in
degrees absolute.

To make the results more convenient, this equation is put in

the following form:

L ame

(2-74)
Combining Eguations (2-27) and (2-74)
-1/c
t 1ln v
o= e 1 (2-75)
v
1
Substituting in Equation (2-57) and integrating
t
AT ’
J/ Vl e 1 dt = Z\/r dn . (2-73)
1 0
Let
1in vl c
t = . 2-
(—=) (2-77)
Hence N
(1n vl)
dt = - ¢ ————— dm
c+1l
m

Substituting in Equation (2-76) and rearranging
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Substituting in Equation (2-78) gives

1n v

ZTl
Jf e ™ n=C-1 gn = - n.

fcvl

1n vl

(2-78)

(2-79)

The left-hand side of Equation (2-79) is an incomplete gamma

function, so that

Z Tl
M(-c, 1 v) - (-c, Inv)) = - 1
fey
1
Applying the boundary condition that when
n=1, v = Vo o
then
Z Tl
7 (-c, 1n v2) - [ (-c,1n vl) = - fcvl

Combining Eguations (2-36), (2-74) and (2 81) gives

[ (-2, 1In vl) -, 1+ Z/Y)-l/c in v

(2-80)
(2-81)
Z T
- fcvi (2-82)



Let
a = —Q_
7RVA
2leL o
6 = 5 o' = 5
gCy AT 1+ 3/2n
¥ = !
7'chl
¢p=a6,. @' =0a6'
1+ 3/2 0
N = =
1l -n
B N
B=v (L+ ——5)
T T
N 1 o

—— —3 T
fov) @ TV ¢f

Combining Equations (2-28) and (2-83) gives

fev
Y = L A
Ty
fey
1
Z = AR
Tl

Substituting in Equations (2-36) and (2-82)

and

x=1/8 { [ (-c, 1n vl) - [ [-c, (1+ B)-l/c 1n vl]} .

(2-83)

(2-Ch)

(2-85)

(2-86)

(2-87)
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Equations (2-86) and (2-87) are sufficient to determine the
adiabatic temperature rise (T2 - Tl) and the flow number o.

The viscosity variation alone the plates, from Equations

(2-80), (2-83) and (2-87) is
M (-c, Inv) =" (-c, 1n vq) - n {M (-c, 1n v;)
- (e, (1 + B)-l/c n v 1} . (2-88)

The temperature variation along the plates, from Equations

(2-74) and (2-88) is

[ [-c, (f/T)l/C] = [ (-c, Invy) -1 { [ (-c, In vl)

- [T [-c, (1 + B)-l/c 1n vl]} . (2-89)

Similarly, the pressure variation along the plates, from
Equations (2-27), (2-35), (2-84) and (2-85) is
T - Tl

P
p=2=1-—" . (2-90)
Pl B Tl

where T is determined from Eguation (2-89).

It is evident that the results of the third case are much
more complicated than those of the first two cases. It also involves
trial and error solutions, and the use of tables of Gamma functions.
Also there is always the possibility that the desired functions corres-
ponding to the particular parameters of the problem are not listed in
the literature.

The results of the second case present an inconvenience.
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Since the pressure number ¥ is most advantageously used as a
parameter in plotting ¢ vs. ©, it would be more convenient to have ¥ a
function of the pressure difference Pl’ and independent of the tempera-
ture‘Tl. The definition of ¥ in the first case has this advantage, but
not in the second case where § is a function of Pl and Tl.

For these reasons, the first case is recommended over the

other two, and will be used in the remainder of this work.



IITI. EXPERIMENTAL METHOD AND PROCEDURE

The experimental set-up is shown schematically in Figure 7.
A1l hp, 1725 rpm, 5 phase electric motor drives a 3/4 hp variable speed
hydraulic transmission unit (speed reducer). The speed reducer is con-
nected to the piston-rod assembly, which i1s inside the test cylinder,
through a connecting rod and an eccentric plate. A storage tank feeds
the oil side of a 3000 psi,5 gallon accumulator. Two oil filters are
installed in this line to remove contaminants in the oils. Three 2000
psi nitrogen cylinders are connected to the other (gas) side of the
accumulator to raise the pressure of the oil to the desired value. In
order to maintain the pressure on the oil constant while leakage takes
place, a pressure regulating valve was installed in the line connecting
the nitrogen cylinders to the accumulator.

The test cylinder and the piston-rod assembly are shown in
Figure 8. They are made of the same material, namely 4615 steel. The
pistons and the bore of the cylinder are case hardened. The two outer
pistons A-A are slightly larger in diameter than the inner ones B-B.
With this arrangement, the outer pistons act as guides, suffer any
possible wear and limit the maximum probable eccentricity of the inner
pistons. The oil flows under constant pressure from the accumulator
through the openings C-C into the pressure chambers. During recipro-
cation of the piston-rod assembly, the openings C-C remain open to
the pressure chambers. This eliminates fluctuations of the pressure
in the pressure chambers. Indeed, this was the case during operation.

Leakage can take place from the pressure chambers either past the

-33-
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pistons A-A to the outside, which is uncontrolled leakage, or past the
pistons B-B to the chamber D, which is the controlled leakage. The oil
in the chamber D proceeds then through the radial holes of the rod to
the axial hole of the rod and then out. It is then collected and mea-
sured. Two layers of spaghetti-type insulation were inserted snugly
in the axial hole of the rod to minimize heat transfer from the oil
after leaking to the fresh oil in the pressure chambers.

In this arrangement, the pressure of the oil in the pressure
chambers, which is causing the controlled leakage, remains constant
while the piston-rod assembly reciprocates. No compression of the oil
is done bty the pistons. This has the advantage of decreasing the size
of the necessary motor. Drawings of the test cylinder and the piston-
rod assembly are given in Appendix C.

Two Iron-Constantan thermocouples from an Iron-Constantan
type G Speedomax were installed. One Jjust ahead of the openings C-C to
measure the temperature of the oil going in, and the other was installed
at the bottom of the axial hole in the piston-rod assembly to measure
the temperature of the oil after it has leaked.

The radius of the crank (eccentric) is 0.5 inch while the
length of the connecting rod is 6.5 inches. Hence the length ratio
of crank to connecting rod is 1:13 which is small enough to Jjustify
the assumption that the motion of the piston-rod assembly is a simple
harmonic one. Photographs of the experimental set-up are shown in
Figures 9, 10, and 11.

Tests were run on three oils. They are:

1. Gulfpride Motor 0il No. 50

2. Gulfpride Motor 0il No. 30
3. Univis J-43 put out by the Esso Standard 0il Co.
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Figure 9. Part of the Experimental Set-up Showing the Motor, the
Speed Reducer and the Test Cylinder



Figure 10. The Gas Side of the Experimental Set-up Showing the Nitrugen
Cylinders, the Pressure Regulating Velve, the Accumulator
and the Storage Tank
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Figure 11. A Close-up Photograph of the Test Cylinder
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The properties of these oils are given in Appendix D. In each
run, the speed was set at a particular value, with the use of the speed
reducer and a General Radio Strobotac, type 631-BL, which has a range of
60 to 14,500 rpm. The temperatures of the oil before and after leaking
were recorded by the Speedomax. Leakage was measured over a reasonable
period of time. The duration of each run was varied according to the
rate of leakage, from one hour for the No. 50 oil, low pressure runs,
to ten minutes for the Univis J-43, high pressure runs. The capacity
of the accumulator was the reason for cutting down the duration of the
runs, when high rate of leakage occurred.

By far, the most critical measurement was that of the clear-
ances between the pistons and the cylinder. According to the isothermal
results, the flow rate (leakage) is proportional to the cube of the
clearance. Hence any error in its measurement would affect the pre-
dicted flow rate appreciably. The average size of the clearance A is
one-half the difference between the diameter of the bore of the cylin-
der and the diameter of the piston.

The diameters of the four pistons were measured on a 438"

Pratt and Whitney Universal Measuring Machine which reads to the hun-
dred thousandth of an inch. For each piston, several readings were
taken along two perpendicular planes to check for roundness and taper.
Their average was taken as the diameter. The diameter of the bore of
the cylinder was measured, before starting the tests, by the Sheffield
Corporation of Dayton, Ohio, with their air gauges. These measurements
were also taken along two perpendicular planes at half inch intervals
along the length of the cylinder. The diameter of the bore was taken

as the average of these readings over the operating length of the

cylinder.
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After the conclusion of the experimental work, the above mea-
surements were repeated at the Gauging Laboratory of the Production
Engineering Department of the University of Michigan, using the same
type of equipment used earlier. All these measurements are given in
Appendix C.

From these measurements, it is clear that although the dia-
meters of the inner pistons and the cylinder bore were not the same
before and after the experimental work, the average clearance remained
essentially the same. The change in the diameters is expected, since
the two sets of measurements were done at different temperatures. On
the other hand, since the material of the pistons and the cylinder is
the same, and hence the thermal coefficient of expansion is the same,
it is to be expected that the average clearance would remain constant.

Since the first measurement of the bore diameter was made by
Sheffieid Corporation, and this is believed to be more accurate, the
first set of measurements, which was taken before the start of the ex-
perimental work, was used in the calculation of the experimental
results.

From this set of measurements, the maximum possible value
for the attitude n was calculated to be 0.657.

The nitrogen cylinders used in this work limited the maxi-
mum pressure obtainable to about 1700 psi, while the maximum speed

used was 1000 rpm for all oils.



IV. RESULTS

Equations (2-52) and (2-54) relate the temperature rise,

(T, - T1), and the function X to the function f. Equation (2-51)
relates B to ¥ and @, and from Equations (2-43), B can be related to
¥, ¢ and ©.

Figures 12 through 15, for ¢ vs. ©, and Figures 16 through
19, for (T2 - Tl) vs. ©, were constructed for the Gulfpride No. 50
and No. 30 oils, using the above equations. In each figure, two adia-
batic curves are shown. One curve is plotted for n = o (no eccentricity)
and the other for n = 0.657, which is the maximum possible value for n
that can take place in the experimental set-up. The horizontal line
in each figure represents the isothermal relationship between ¢ and ©
for n = o as given by Equation (2-46). The flow rate obtained from
the latter is the minimum rate of flow that is possible. The flow
rate predicted from the adiabatic, n = 0.657, curve represents the
maximum that can take place. These curves were plotted for one pas-
sage, that is for the flow past one piston,

The actual conditions during the experimental work were
neither isothermal nor adiabatic, but a combination of the two, due to
the fact that the cylinder wall was neither perfectly conducting for
heat, nor insulated. Hence the experimental flow rate, and the corres-
ponding flow number @, as well as the temperature rise (T2 - Tl) should
be expected to fall somewhere between the isothermal and the adiabatic
curves.

The experimental data and results for all three oils are

shown in Appendix E. The results of the Gulfpride No. 50 and No. 30

~Lo-
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oils were also plotted in Figures 12 through 19. It is apparent from
these figures, that all the experimental results of these two oils lie
between the isothermal, n = 0, curve and the adiabatic, n = 0, curve.
This suggests that the piston remains concentric with respect to the
cylinder during operation. Actually, the test cylinder and the piston-
rod assembly were machined in such a manner as to facilitate concen-
tricity of the pistons. The four pistons and the rod were made out of
the same piece of material, and they were machined in one set-up. The
test cylinder was bored through from one side. Hence, from the construc-
tion point of view, the possibility for eccentricity has been minimized.
During operation, the oil flows between the pistons and the cylinder.
When a piston is concentric, a continuous film of oil exists around it.
The effect of eccentricity is to squeeze some of the oil out and this
disturbs the balance of pressure forces around the piston, and the piston
returns to a concentric position, 8o that the conclusion that the
pistons remain concentric during operation seems reasonable. This con-
clusion will be incorporated in the analysis of the rate of leakage in
reciprocating pumps discussed in Chapter V.

It is also apparent that the experimental results of the No.
50 and No. 30 oils dn not follow a single trend. In fact, in most
cases, the flow number and the temperature rise of the No. 50 oil are
closer to the isothermal line than those of the No. 30 oil. This may
be explained by referring back to Equation (2-30). From the expression
of Z given in Equation (2-45), and using Equation (2-51), Equation (2-30)
can be approximately written as

&2 p-1)=28 5
an AT,
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Here A and Tl are practically the same for both oils. Also,
for particular values of ¥ and 6, the theoretical values of X\ and p are

also the same. Hence the coefficient

A

Tl

is the same for both oils, for the same ¥ and ©. However, the quantity
A, from Equation (2-29) is

_ 2nRUL
70VQ'O

A

The quantities on the right hand side, with the exception of
Qo’ are approximately the same for both oils. But, for the same ¥ and
e, QO for the No. 50 oil is less than that for the No. 30 oil, because
its viscosity is higher. Hence the coefficient.A/x for the No. 50 oil
is greater than that for the No. 30 oil. Since larger values of A/k
means greater heat transfer across the cylinder wall, it should be ex-
pected that the results of the No. 50 oil be closer to the isothermal
line than those of the No. 30 oil.

Another way of explaining this is in terms of the length of
time it takes the o0il particles in moving through the clearance. Due
to the higher viscosity of the No. 50 oil, its particles spend a longer
time in the clearance. This means more heat transfer from the oil to
the cylinder wall, and hence its results are closer to the isothermal
line than those of the No. 30 oil.

This trend in the results agrees with the observations of
Mahood and Littlefieldl6 who investigated the flow through small capil-
lary tubes. They found that when the flow was relatively small, greater

heat loss through the tube wall occurred.
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Another interesting observation is that the experimental re-
sults for the two oils moved closer to the adiabatic, n = O, curve, as
the pressure number ¥ was increased. Again, increasing Y, and hence
the pressure, means greater velocities of flow and less time spent in
the clearance. This decreases the heat transfer from the oils, thereby
approaching the adiabatic condition.

The mathematical and experimental results of the Univis J-43
0il are plotted in Figures 20 through 25. They generally show the
same trends as in the case of the first two olls. Here the © values
are quite small, and the adiabatic¢ and the isothermal curves are al-
most parallel. The experimental points in Figures 20, 21, and 22 fell
outside the adiabatic, n = 0, curve but within the adiabatic, n = 0.657,
curve. However, this may be attributed to the fact that the flow rate
obtained with this oil was much larger than in the case of the other
two oils. Since the accumulator was not too large, the time allowed
for reaching steady state as well as the length of each run had to be
shortened. This may be responsible for the smaii discrepancy of the
results from the adiabatic, n = 0, curve.

The values of the Reynolds number in these tests were gener-
ally low. To get an approximate ildea about it, the maximum velocity
of the flow must be détermined first.

From Equation (2-3)

L
2u

For isothermal flow with n =0, and v =V,

v +
u ="
A N
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In terms of the dimensionless variables of Equation (2-43),

B_y L ¥ Y (e
st o @)
and
AWV oy ¥ -2 20
d(y/n) 4
or
J_1,89
A 20 2y

The 1000 rpm and 1625 psi run on the J-43 oil gives the maxi-
mum Reynolds number.
The values of © and ¥ for the various runs are given in Ap-

rendix E. For this particular run

e = 0.0487, Vv = 0.15

Hence

L = 0.662

A
and

u

= = 0.80

(V)max 5
and

_ 1000 1 _
W = 0.805 x %5 X 21 x 5= 3.51 ft/sec
Now
by
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where

NR = Reynolds number

u = velocity (maximum)

v = kinematic viscosity (initial)
. . A

Ry = the hydraulic radius = 3

Hence
2 upgy
= :2
NR vy A
The Reynolds number, with the clearance as the characteristic

length, is

v =1
NR

For all other runs, the approximate Reynolds number would be
smaller. This means that in all the runs, the flow was highly laminar.

6

According to Davies and White,>~ no disturbances survived in the clear-
ance during the tests.

The experimental data and results are given in Appendix E.
Since there were two controlled leakage passages in the experimental
set-up (two pistons), and the mathematical results were plotted for one
passage, the flow rate Q given in Appendix E is one-half the measured
flow rate.

The values of A for the three oils were determined as follows:

For each oil, the kinematic viscosity was plotted against the
absolute temperature on semi-log paper covering the operating range
only. A fair straight line was passed through the plotted points. The
value of A was determined as the slope of this straight line. These

values are also given in Appendix E.
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The specific heat at constant pressure, Cp, given in Appendix
D, was assumed equal to the specific heat at constant volume, C,, used

in the expressions for the pressure and velocity numbers.



V. APPLICATION TO THE PROBLEM OF LEAKAGE IN
RECIPROCATING PUMPS

The mathematical analysis based on the assumption of adia-
batic flow, used in Chapter II, will be employed here in order to
predict the maximum rate of leakage that may be expected in the oper-
ation of a reciprocating pump. The present problem differs from that
of Chapter II in that the pressure difference here exists during one-
half of the cycle only. The assumptions made in Chapter II regarding
the properties of the fluid flowing will be repeated here. In addi-
tion, a few more assumptions will be introduced in order to simplify
the mathematical analysis.

A. TIdealization of the Problem

In the actual operation of a reciprocating pump, the fluid
is admitted at a low pressure during the first half of each cycle.
Compression of the fluid starts after the piston passes bottom-dead-
center, and continues for a few degrees of crank rotation. During
this period, the pressure of the fluid is increased to the desired
maximum. After this maximum pressure has been reached, the discharge
valve opens and the fluid is discharged during the remainder of the
half cycle, at a constant pressure essentially equal to the maximum.

The motion of the piston is caused by the rotation of the
crank. If the length ratio of the crank to the connecting rod is
very small, then the motion of the piston would be close to a simple
harmonic motion. If this ratio is fairly large, then the motion of
the piston would consist of a simple harmonic one plus some higher

harmonics.
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The following assumptions are introduced to simplify the mathe-

metical analysis for the above cycle of operation:

1.

During the compression period, the pressure of the fluid
changes, while during the discharge period, it is near maxi-
mum and constant. Since the compression period is much shorter
than the discharge period, it will be assumed that the pres-
sure of the fluid is constant and equal to the discharge
pressure throughout the second half of the cycle.

Since in practice, the length ratio of the crank to the con-
necting rod is fairly small, it will be assumed that the motion
of the piston is a simple harmonic one.

Since in all reciprocating pumps, the clearance between the
piston and the cylinder is much smaller than the radii, it

will be assumed that the problem is mathematically equivalent
to that of the flow between two parallel plates, with nc end
effects.

In view of the conclusions of Chapter IV, it will be assumed
that the piston remains concentric with the cylinder during
operation. This means that n = O.

It will be assumed that the axes of the piston and the cylinder
coincide during operation.

According to the results of isothermal flow between two par-

allel plates, the rate of flow is proportional to the cube of the dis-

tance between the plates (the clearance in the present problem). Since

the clearance is very small, any error in its determination would affect

the predicted rate of flow considerably. This gives additional justifi-

cation to neglect small changes (of the order of a few percent) in the
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properties of the fluid while leaking. Hence, in the operating range
of temperature and pressure, it will be also assumed that:
6. The density of the leaking fluid does not change with teﬁpera—
ture and pressure.
7. The viscosity of the leaking fluid depends on the temperature
only. It does not change with the pressure.

Since eccentricity is being neglected here, the adoption of
two parallel flat plates will be sufficient for the mathematical
analysis.

The idealized problem then consists of an incompressible vis-
cous fluid flowing between two parallel flat plates under the influence
of a pressure difference. One plate is stationary and the other has a
simple harmonic motion. The problem has two phases. The first phase
consists of one-half of the cycle when the pressure difference exists
and one plate is moving in the direction of decreasing pressure (dis—
charge stroke). The second phase consists of the other half of the
cycle when the plate is moving in the opposite direction with zero
pressure difference (intake stroke). In a reciprocating pump, the
flow in the first phase represents leakage, since it proceeds from the
pressure chamber of the pump to the outside. In the second phase, the
flow may be considered as 'recovered leakage", since it proceeds from
the outside to the pressure chamber of the pump. The net leakage per
cycle then is equal to the flow in the first phase minus the flow in

the second phase.

B. Mathematical Analysis

Referring to Figure 1, and employing the notation used there,

the velocity distributions for n = 0 is
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v
ul =t Z Yy (5'1)
and
1 arp 2
U, = - — == A - . -2
) Zn ax (y y ) (5 )

The combined velocity distribution for the first phase is

dap 2

o -, (5-3)
and for the second phase

y - (5-4)

The instantaneous rate of flow is

2n A
Q = R\j[ b/’ u dy dg . (5-5)
0 0

For the first phase,

2 A

Ty 1l dp 2
R -y - = = (yA - dy d
d/‘ J[[ AY 2u dx ¥ v dy ae
0O O

@

2n
_ vA _ N @
0
ﬂRﬁé dpP
=g RvVvA- 6oy dx (5-6)

Its average during the first phase is

I
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J[ Q d(wt)
_0

Q - (5-7)
ave
The velocity of the piston, from Appendix A, is
v =V sin (wt) , (5-8)
where
V =wr . (5_9)

Substituting Equations (5-6) and (5-8) in Equation (5-7) and integrating

gives
KRA? dp
Q =2RVA—6 o (5-10)
ave Vv
The instantaneous flow rate in the second phase is
2n A
_ vy
Q2 =R K/F \/[ = dy de
0 0
=g RV A . (5-11)
Its average during the second phase is
Qo =2RV A. (5-12)
ave
The average net rate of flow over the whole cycle is
Q - Q
Q _ lave 2ave
ave 2
ﬂRA? dap :
- &£, (5-13)

120V dx
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For isothermal flow v = v, and it is usually assumed that

jav,

ap 1

dx T

)

substituting in Equation (5-13), the net isothermal rate of flow Qo is

3 P
TRA 1
= — = -1h4
Q 1257, T (5-14)
Let
Q
% = ZRVA
2v
lVLA
=2
gC A
(5-15)
@O = Qg ]
APl
v o= —
7Cy
Equation (5-14), in terms of these dimensionless variables,
becomes

% = ¢ (5-16)

When the flow is assumed to be adiabatic, the energy balance

is represented by Equation (2-12) without the heat conduction term.

Hence

& T W@ T Ry ax (5-11)

At this point, the analysis for the two phases of the prob-

lem must be continued separately.
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FIRST PHASE:
Here
dw dF
N -y = -18
= -V = (5-18)
and 21
%XE=R deg . (5-19)
0

The shear stress T in Equation (5-19) is that between the
fluid and the flat plate (piston). Hence

)

-2
.o (5-20)

= pn(
Substituting Equations (5-3) and (5-20) in Equation (5-19) and
integrating gives

dF _ v A 4P _
ax 2n pR [ 2% o J (5-21)

Substituting Equation (5-21) in Equation (5-18), and making

use of
v=§ , (5-22)
gives
%Z{:EnpvRv[’E-g—é%i—i] (5-23)
The average value of %g during the first phase is
1S
w d(wt
dw d/’ x )
(az)ave B i (5-24)
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Substituting from Equation (5-23) and using Equation (5-8)

and integrating gives

2
dw _ mpVRV dp
(5; ave = A - 2RV A‘EE . (5-25)

Substituting in Equation (5-17) gives

2
dT VRV 2RVA 1l dp
— Iy =SV 41 —_ = 5-26
dx  gC QA ( Q ) 7C, dx ( )
From Equation (5-10)
600, ( 2RVA 1)

ap ! Qr ~

—_— = Vv ‘2

dx 1 R A? (5-217)

. dP
Eliminating T— between Equations (5-26) and (5-27) gives

dP ARV 6Q) SRVA .2
= - -1 . -28
dx gchlA ;-[RgCVA5 [ Q.]. ) ]} 14 (5 )
Let
P=0p Pl
T=1tT
(5-29)
x=m7nL
vV =0 Vl

In terms of the dimensionless variables of Equations (5-29),

Eguations (5-27) and (5-28) become

ap  GeviIq ( VA
dn' B Q

PlnRA
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and o ¢
RVY L 6v 5
L G S ———lEgl—g LS L1} 6. (5231)
dn T18C,Q14A Ty nReC A Q)
Let
v - Sov 1R (A
PlnRA§ Q)
(5-32)
and :%
) RVYV, L ) 6vlLQl [(ERVA)2 0
T T gCQr A 35V Q
T7 804k T RECyA 1
Equations (5-30) and (5-31) become
L _yge (5-33)
an
and
dt
-2 (5-34)
Eliminating ¢ from Equations (5-33) and (5-34) and integrating
gives

\
&
]
=N

1Y
fdp)
1

or

t -1

=N

(p-1) . (5-35)

Applying the boundary condition that when

z
T,-T, =-37T . (5-36)
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Equation (5-36) is a general equation relating the temperature

rise (T2 - Tl) to the various parameters of the problem.

Equation (5-34) can be written as

=7 . (5-37)

al+
£l&

To integrate this equation, the viscosity-temperature relation-
ship must be introduced. In Chapter II, it was decided to use the ex-

ponential form

v =D e AT (5-38)

where T is in degrees absolute. In terms of the dimensionless variables

of Equations (5-39), Equation (5-38) becomes
o = o AT (t-1) (5-39)

Substituting in Equation (5-37) and integrating gives

t n
J[ AT1(t-1) ¢ _ Z ‘j[ dn ,
1 0
or
HATL(E-1) g AT Z7 . (5-40)

Applying the boundary condition that when

Equation (5-40), after rearranging, becomes

T, - T, =%

5 ;=3 1n (L + AT Z) . (5-41)
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Let
Q, = Ql
1 2RVA
uleLA
°© = 2
nngA
. - APl
7C,,
P = al e

5ch£-l
y=--21212
¥ Qy
and
) 2
11 2 e
Z=gg-—plo - @Q-3)]
1o

1
and
T, -1 =Y ——TE;__T ?- (- EE)]
Let
2
¥ 2 T
= —_— Q. - l - —

Equations (5-45) and (5-46) then become

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)

(5-48)
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and
T, - T, = % . (5-49)

SECOND PHASE:

In this phase, the average rate of flow is

Q =2RVA , (5-50)
so that
S
i (5-51)
NET FLOW:
The average net rate of flow is
Q=3 (q - @) (5-52)
5§ - &) -
Let
a=-—
2RVA
uleLA
o= 5 (5-53)
ngC,A
o =0Q80

l:&—i—@

QR 9 V¥

Then from Equations (5-42), (5-51), (5-52) and (5-53)

;- 1) (5-54)

and

@]
@=a9=§(al'l)=§'q' (5-55)
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Substituting Equations (5-16), (5-53) and (5-55) in Equation

(5-48) gives

1
T,- T, =3 1n (1+28) . (5-56)

Eliminating (T2 - T1) from Equations (5-49) and (5-56) and
rearranging gives

(P -1) (5-57)

- =B -58
T, -1 =B (5-58)

Equations (5-57) and (5-58) are similar to those developed in
Chapter II, but the definitions of the parameters in these equations
are different. They also reduce to the isothermal case when B is very
small.

The term B was given in terms of «

1
can be expressed in terms of @ by combining Equations (5-47) and (5-54)

in Equation (5-47). It

which gives

B__ 1 2 _ 41 )
v~ ZateanD) [(2x + 1) (1 =] - (5-59)

Equations (5-57), (5-58) and (5-59) are sufficient to plot
the leakage number ¢ and the temperature rise A(T2 - Tl) against the
velocity number 6.

Figure 26 is a plot of Equation (5-59) for % vs. @. Figure
27 is a plot of ¢ vs. 6, while Figure 28 is a plot of A(T, - Ty) vs. 6.
The procedure used in plotting Figures 27 and 28 is as follows:

For ¥y = 0.8 and B = 2,

B .o,
v 5
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From Figure 26, = 0.19.

From Equation (5-57)

L 2
}\=§(e—l):52
Since
v
then
¥ -0
P ¢ A = 0.426.

The corresponding value of © is

©
I

P - o0k,
(04

And, from Equation (5-58),

A(T T))= 2 when © = 2.2k,

2

The rate of leakage and the temperature rise, under adiabatic
conditions, can be determined from these results. The heat conduction
through the cylinder wall has a cooling effect on the leakage, thereby
decreasing its rate. Hence it would be desirable in practice to choose
a material for the cylinder which has a high thermal conductivity.

As was stated once before, the clearance plays a major role
in predicting the rate of leakage. Its initial value is equal to one-
half the difference between the diameter of the cylinder bore and that
of the piston. However, it may change during operation.

The pressure inside the cylinder has the effect of increasing
the bore diameter. If the pressure is high and the material of the

cylinder has a low modulus of elasticity, this increase in bore diameter



may become significant and its consideration becomes necessary. The
effect of this pressure on the diameter of the piston is smaller and
may be neglected without affecting the accuracy of the results too much.
Another factor is the effect of the rise in temperature on
the clearance. During steady state operation, the temperatures of the
piston and that of the cylinder rise. If the thermal coefficients of
expansion of the piston, ap’ and that of the cylinder, Q,, are equal,
then this temperature rise would have little effect, if any, on the
clearance. On the other hand, if ¢, is different from ap, then the
clearance would change. It is clear, that in this case, @, would
have to be larger than ap’ if the risk of having interference between
the piston and the cylinder is to be avoided. Hence, the temperature
rise during operation would increase the clearance. It would be more
appropriate then to base the leakage number ¢ and the velocity number
©.on the actual clearance during operation rather than the initial

clearance before operation.



VI. CONCLUDING REMARKS AND RECOMMENDATIONS FOR FURTHER WORK

The experimental results of this investigation give sufficient
Justification, within the investigated ranges of speed and pressure, for
the various assumptions introduced in the analysis. Further work is
necessary to cover larger ranges. Pressures of the order of 5000 psi
are not uncommon, and speeds of 5000 rpm and more are being considered
for reciprocating pumps.

The change of viscosity with pressure has been neglected.

At high pressures, this change may become significant, and its consider-
ation may improve the results presented here.

The heat transfer through the cylinder wall has a cooling
effect on the leakage, thereby decreasing its rate. Investigation of
this effect may shed some light on the advisability of outside cooling
of pumps, such as water jacketing.

The eccentricity of the piston plays an important role in
the prediction of the rate of leakage. Comparison of the mathematical
and the experimental results show that, during operation, the pistons
must have remained concentric. It is suspected that there exists some
hydrodynamic forces which maintain the piston in a concentric position.

One such force may be due to the expansion of the fluid. If
the piston is assumed eccentric, high rates of shear would prevail in
the fluid on one side of the piston. These high rates of shear would
increase the temperature of the fluid and cause it to expand. This
expansion may then produce a centering force on the piston and restore

it to its concentric position. Such a centering force would increase

-81-
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with the viscosity of the fluid. Accordingly, the piston operates more

concentrically with high viscosity fluids. This may well be the reason

why the experimental results of the Gulfpride oils (high viscosity) fell
below, while those of the J-43 oil (low viscosity) fell above the adia-

batic, n = 0, curves.

Another centering force may prevail from the pressure varia-
tion along the piston. In adiabatic flow, this variation is not linear,
as shown in Figure 5, and depends, among other things, on the clearance.
If the piston is assumed eccentric, the clearance would not be uniform
around it. Now, if the pressure is integrated along and around the
piston, a net force may result, which would help to restore the piston
to its concentric position.

Mathematical and experimental work, to prove or disprove
these arguments, is needed.

The effect of the temperature rise during operation on the
clearance is another factor to be considered. If the thermal coeffi-
cients of expansion of the materials of the piston and the cylinder are
the same, the change in the clearance would be small. However, if these
coefficients are different, the change in the clearance may become sig-
nificant. The extent of this change depends on the manner in which the
piston and the cylinder are free to expand. This may differ from one

pump to another.



APPENDIX A. VELOCITY OF THE PISTON

Referring to Figure 29, the position of the piston at any
time is given by

x=fcosk -1 cose . _ (A-1)

Since

£ sin X =r sin e (A-2)
hence

1/2

cos X= [1 - (-%)2 sin® €]

Figure 29. Coordinate System for the Motien of the Piston

Expanding this expression in a power series, gives

Cosx=l'%(%)25in2€-%(%)4sin4e--__

r
If 7 is small compared to one, then

cos X1 . (A-3)
Substituting in Equation (A-1) gives

x=4 (1 - % cos €) . (A-4)
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Differentiating

Now

and

Hence

where

-8l

with respect to time

. . de
X =1 sin € —

de
dt

I

at

wt,

wr sin €

V sin (wt)

)

(A-5)

(a-6)



APPENDIX B. VARIATION OF THE CLEARANCE AROUND THE PISTON

Referring to Figure 30,

2
RS =e + (Rl + d)2 + 2e (Rl + d) cos ¢ (B-1)

or

2e (Ry +4d) cos ¢ = (R, - R, - d)(R2 + R+ a) - = (B-2)

1

Figure 30. Variation of the Clearance Around the Piston

Let

Hence

2

2e (Rl+d) cos £ = (A-d)(2R, +A+4d) -e (B-3)

_85_
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Since d, A and e are small compared to R., Equation (B-3) can be written

l)
as
2 eRy cos ¢t =2R) (a-4a)
or
e
d:z_\.(l-zcos £) . (B-4)
Let
e
n=z P

Equation (B-4) becomes

d=A(1-ncost ) . (B-5)



'APPENDIX C. CRITICAL DIMENSIONS

Drawings of the piston-rod assembly and the test cylinder are
given in Figures 31 and 32. TablesI and II show the diameters of the
pistons and the cylinder bore. For each piston, several measurements
were taken at each end. The diameter of the cylinder bore was measured
along two perpendicular planes at one-half inch intervals. These parts

were machined by Vickers, Inc. of Detroit, Michigan.

_87_



-88-

ATquessy poy¥-uo}std " T¢ 2anSTd

S3HONI NI 34V SNOISN3WIQ 1V

(2104

8 .2, ¢ 8
4 o
ol -
I*||II

aN b2- 2

M|

8
S30HP ¢ d33a
TMiyaT

Ti¥af
..m¢x.m_|_mmn_z<:o



_89_

tTL_HI

ISPUTTAD 383 oYL °g¢ 2anITg

S3HONI NI 34V SNOISN3IWIQ 1V

z_.*l

| ..

ﬁ _

Nm

t—

\\\\\\\\\\\\\v\

A

ava¥HL 3did §
dv.L® 17140




TABLE I.
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DIAMETERS OF PISTONS

Starting from the threaded end of the piston-rod assembly.

Before Experimental Work

After Experimental Work

Temperature = 75°F Temperature = 85°F

1-  0.74960 0.74955 0.74965 0.74960
0.74960 0.74954 0.74968 0.74956
0.74957 0.74955 0.74960 0.74958
0.74957 0.74951 0.74964 0.74964

Ave. = 0.74956 Ave. = 0.74962
2-  0.74938 0.74940 0.74946 0.7hok2
0.74938 0.74937 0.74947 0.74938
0.T74940 0.74938 0.74943 0.74940
0.74938 0.74936 0.7494k 0.74942

Ave. = 0.74938 Ave. = 0.74943
3-  0.74932 0.74934 0.7k942 0.74941
0.74932 0.74931 0.74938 0.74940
0.74932 0.7493k4 0.74937 0.74938
0.74932 0.74932 0.74941 0.74942

Ave. = 0.74932 Ave. = 0.7494%0
h- 0.7hok7 0.74953 0.74957 0.74960
0.74942 0.74950 0.74956 0.74960
0.7494k9 0.74953 0.74958 0.74962
0.74943 0.74950 0.74956 0.74962

Ave. = 0.74948 Ave. = 0.74959




TABIE II.
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DIAMETER OF THE BORE OF THE TEST CYLINDER

The
the

diameter was measured at half inch intervals startiug from

end that is closer to the crank.

Before Experimental Work
Temperature = 75°F

After Experimental Work
Temperature = 85°F

10-
11-

12-

1h-

0.75026
0.7502k
0.75031
0.75052
0.75068
0.75068
0.75054
0.750k45
0.75040
0.75035
0.75025
0.75016
0.75018

0.75025

0]

0

0.

.75028
75025
75029
.T5046
.75058
75057
LT5044
75039
.75038
75027
.75016
. 7501k
.75016

.75020

0.75026
0.75025
0.75036
0.75050
0.75070
0.75067
0.75054
0.75045
0.75042
0.75038
0.75020
0.75014
0.75015

0.75021

0.

0.

0]

75026
75024

.75028
75048
.75056
.75058
. T50hT
75029
. 75034
. 7502k
.75018
L7501k
.75016

.75020




APPENDIX D. PROPERTIES OF THE OILS

The oil properties which entered the analysis are:
1. The specific heat
2. »The density or specific gravity
3. The kinematic viscosity
These properties are reported here in Figures 33, 34, and 35,
as furnished by the manufacturers. The specific heat and the specific
gravity were assumed constant in the mathematical analysis. The kine-
matic viscosity was allowed to vary with temperature only. The en-
circled points in Figure 35 were determined experimentally to check

the accuracy of the viscosity curves.
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APPENDIX E. EXPERIMENTAL DATA

The experimental data are given in Tables IIIL, IV, and V.
The experimental values of ¥, © and @ were calculated from these data
and shown in the same tables. Since there were two controlled leakage
passages in the experimental set-up, the rate of flow Q reported in
these tables is one-half the actual measured rate of flow. The values
of @ in these tables are also for one leakage passage. The pressure
difference is the same as the initial pressure Pl’ since the final pres-

sure P2 was atmospheric.
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TABLE III. EXPERIMENTAL DATA FOR GULFPRIDE MOTOR OIL NO. 50

A = 0.0333/°F R = 0.375 inch
A= 5.6x 107* inch r = 0.500 inch
L = 0.750 inch
P I T Q x 10° v o o
PSI RPM °F °F cu ft/sec
4hs 0 83 82 0.187 0.105 0 0.0338
Lho 170 82 87 0.206 0.103 0.612 0.0372
430 340 83 98 0.255 0.101 1.224 0.0460
428 500 80 108 0.373 0.100 2.010 0.0751
428 750 85 125 0.588 0.100 ‘2.460 0.0970
430 1000 87 131 0.823 0.101 3.150 0.1300
860 0 83 82 0.353 0.201 0 0.0638
860 170 83 89 0.442 0.201 0.612 0.0800
865 340 83 98 0.568 0.202 1.224 0.1025
850 500 80 107 0.755 0.199 2.010 0.1520
8k45 750 85 125 1.19 0.198 2.460 0.1960
855 1000 86 132 1.55 0.200 3.150  0.24ko
1280 0 83 82 0.545 0.300 0 0.0985
1305 170 83 89 0.755 0.305 0.612 0.1365
1320 340 83 98 0.943 0.309  1.224  0.1700
1285 500 8 106 1.13 0.301 2.010  0.228
1320 750 85 123 1.81 0.309 2.460 0.2980

1310 1000 86 131 2.43 0 307 3.150 0.384




TABLE III (CONT 'D)
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Py T, Ty Q x 10° v o 0
PSI RPM °F °F cu ft/sec

1725 o 83 82 0.767 Lok 0 0.1385
1720 170 83 90 1.11 .ho2 0.612 0.2015
1700 340 84 96 1.175 .398 1.170 0.2020
1712 500 80 104 1.52 koo 2.010 0.3055
1715 750 85 121 2.19 ko1 2.460 0.3605
1685 1000 & 120 3.005 .395 3.150 0.4750
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TABLE IV. EXPERIMENTAL DATA FOR GULFPRIDE MOTOR OIL NO. 30

A = 0.0333/°F R = 0.375 inch
A= 5.6x 10™% inch r = 0.500 inch
L = 0.750 inch
Py T, T, Q x 10° °
PSI RPM °F °F cu ft/sec ! ?
k2o 0 86 8L 0.555 0.102 0 0.0381
430 200 83 86 0.428 0.104 0.297 0.0319
425 500 78 95 0.4p2 0.103 0.900 0.0416
430 750 85 112 0.883 0.104 1.0k40 0.0611
Lo 1000 86 122 1.150 0.106  1.335 0.0767
860 0 8L 85 0.965 0.208 © 0.0720
845 200 85 89 0.915 0.205 0.285 0.0652
860 500 78 97 1.130 0.208 0.900 0.102
880 750 85 112 1.88 0.213 1.040 0.130
875 1000 86 121 2.38 0.212 1.335 0.159
1235 0 84 85 1.36 0.299 0 0.101
1250 200 85 88  1.k2 0.303  0.285 0.101
1245 500 78 98 1.76 0.301 0.900 0.159
1290 750 85 111 2.92 0.312 1.04%0 0.202
1320 1000 86 120 3.57 0.319 1.335 0.238
1680 0 8l 85 1.8k 0.406 0 0.137
1625 200 85 88 1.8k 0.393  0.290  0.131
1630 500 78 99 2;59 0.394 0.900 0.234
1650 750 85 110 3.68 0.399 1.04%0 0.255

1660 1000 86 119 4 .63 0.401 1.335 0.309




-100-

TABLE V. EXPERIMENTAL DATA FOR THE UNIVIS J-43 OIL

A = 0.0124/°F R = 0.375 inch
A= 5.6x 107 inch r = 0.500 inch
L = 0.750 inch
Py o1, ax ¥ 0 o
PSI REM °F °F cu ft/sec
555 0 90 91 9.95 .0512 0 .0208
555 500 91 93 8.80 .0512  0.024k .0185
545 1000 91 oh 9.25 .0503  0.0487 L0194
1080 0 91 9k 21.6 .100 0 .0hsh
1085 500 91 95 20 .100 0.024k4 .0k20
1095 1000 91 97 21.2 .101 0.0487 .olLs
1615 0 91 98 38 .150 0 .0798
1585 500 91 98 33.95 1465 0.0244 .0713
1625 1000 92 101 36.25 .15 0.0487 .0760
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