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CHAPTER I

INTRODUCTION

1.1 Outline of the Problem

A review of the research and work which has been done, and is
being done, in the area of gas-fired forced-air controlled comfort heat-
ing systems reveals little documented effort expended to study the heat-
ing system from a control system point of view, Furthermore practically
no effort has been expended in trying to optimize these systems using the
techniques of modern control system theory,

By performing a library research and a study of the pertinent
literature in the heating systems area, it is found that two approaches

to this problem are available,

a) One approach is to use full Sacale experiments and utilize
a testing procedure designed to indicate the effect of a given system
modification, These experiments are practicable in principle, but they
are exceedingly difficult to realize except under controlled laboratory
conditions. In addition, they are very time consuming and present a very
lengthy and expensive program, This appréach has been used for many years
and has provided many useful results for the warm air heating system de-
signer, It is especially useful when the objective is to investigate de-
sign improvements for particular components of the heating system, Ex-
amples of this type of endeavor are found in research bulletins issued
by the Engineering Experiment Station of the University of Illinois and

by the National Warm Air Heating and Air Conditioning Association,

-1-
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b) The second approach is to utilize an analytical model to re-
present the system. The advantages of the analytical approach are rela-
tive inexpense, ease of duplication, and the relat.ve ease of evaluating
results, Furthermore, the analytical approach often provides valuable
insight which leads to more complete understanding of the actual system,
It must be emphasized, of course, that the accuracy of the results ob-
tained utilizing the mathematical model is entirely dependent on the de-
gree to which the model represents the actual system, In the past few
years other researchers have performed analytical studies of the domestic
heating process. However, these studies were primarily limited to open
loop, steady state situations,(4’5) and were not concerned with the dynamic

response of the system,

Incentive was thus provided to study the problem which is de-

fined as follows:

1, To describe the dynamic behavior of the domestic room system
using the knowledge of principles of thermodynamics and air flow dynamics.,
Previous experimental results will also be used where applicable to assist
in describing the behavior of the room system,

2, To formulate an appropriate mathematical model using the
results in (1) to describe the dynamic operation of the room system. This
will be an approximate distributed parameter forced-air room model or a
lumped parameter model, (1) and (2) are treated in Chapter II,

3, To simulate the mathematical model of the room so derived
on an electronic differential analyzer and to compare the results ob-

tained with experimental data since a thorough evaluation of the



-3-

applicability of the model would require a parallel comparison between a
real installation and thevroom model, This experimental check is presented
in Chapter IIT.

L. From a knowledge of the physics of the various elements that
compose the rest of a typical heating system, mathematical models are to
be determined that would adequately define the dynamic behavior of each
of the elements in their pertinent operating ranges, The mathematical
models of the elements thus derived together with the room's mathematical
model are then to be simulated on an electronic differential analyser,

5. Typical heating system parameter variations are to be
studied and analyzed, Results are then to be related to experimental ob-
servations in the heafing systems industry., Results of analyses are to
be used also for the purpose of comparison with other systems. (4) and
(5) are treated in Chapter IV.

6.' To apply modern control theory methods of analysis to the
gas-fired forced-air heating system model with the purpose of providing
optimum comfort and cost. The control problem is as follows: Given a
fixed plant which consists of a furnace, a duct system, a domestic space
and the walls, it 1s required to find the optimum controlling unit that
best controls the heating process according to a specified criterion,

" This is presented in Chapter V,

7. To simulate the optimum heating system developed on the
electronic analog computer for the purpose of comparison with the con-
ventional heating system and other systems., Such analysis is shown in

Chapter VI,
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8. To study‘the optimum controller from the practical point of
view and if necessary devise a sub-optimum controller using properties of
both the optimum controller and the conventional controller,

9. To simulate the sub-optimum heating system on the electronic
analog computer in order to compare it with the optimum and conventional
heating systems,

10. Knowing the dynamic characteristics of the sub~-optimum con-
troller, a component possessing these characteristics, and the method of
implementing it practically is presented. (8), (9), and (10) are presented

in Chapter VII.

1.2 Work Relating to the Problem

In work currently being carried out by the University of Illinois,
sponsored by the American Boiler Manufacturers, a model house is being
tested, The main objective of the test is to observe temperature patterns
in the house, The walls and air space of the model house are instrumented
with 200 thermocouples, 125 of which are used to record temperature manual-
ly using a type K-1 potentiometer as the measuring instrument. Once the
data is recorded, correlation routines are used to determine variances,
means, etc. and thus establish temperature patterns, Temperatures are
recorded at approximately 90", 60", 30", and 3" intervals from ceiling
to floor, Readings are taken at 8 a.m., 11 a.m., 4 p.m., and 10 p.m, every
day. The data has recently been put on IBM cards for processing. In
another project at the University of Illinois which is sponsored by the
National Warm Air Heating Association)work is being done on proper duct
sizing for heating and cooling systems., The objective of the project is

to assess the effect of joints, bends, elbows, etc. in order to properly
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size the ducts and furnaces for residential structures, 1In addition)studies
are also being conducted in order to determine the effects of air filters,
humidity, air velocity, sound of air passing through ducts, and how the

air is introduced to the room. In order to conduct these tests a room

18" x 13" x 15'in size is avialable whose outside temperatures can be con-
trolled.

The Maxitrol Company in Detroit is currently doing experimental
research work on modulation systems, (i.e. systems in which the heat out-
put of the furnace is controlled in a continuous fashion) and in determin-
ing the factors of major importance involved in the design of these systems.
It has been found that most domestic gas-fired furnaces are oversized and
that design specification should be modified, For this reason a thermo-
statically controlled enclosure 12' x 12' x 8' in size has been constructed.
It is designed to give uniform air temperature distribution throughout the
structure,

At the University of Wisconsin their studies to date are in the
industrial systems area, Their research work has been sponsored by ASHRAE,
The objective of their work is to introduce automatic control concepts
into the ASHRAE literature in order to familiarize the membership with these
more theoretical concepts.(h’5’8) They are also studying the éffects of
thermostats on the control of comfort in home heating systems)using a
simulator, Provision was made to vary thermostat delay, thermostat dif-
ferential, and outdoor temperature, They are also studying the heating anti-
cipation problem for their out-of-door-in-door thermostat system of control.

At the University of California in Los Angeles, the thermal be-

havior of a one room house subject to daily variations was studied., This
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work 1s the result of research sponsored by the American Society of Heat-
ing and Air Conditioning Engineers Inc..<9’lo’ll) The thermal-electrical
analogy was used, Input devices were developed to represent diurnal var-
iations in air temperature; solar energy absorbed, and net long wave radia- »
tion exchange.,

In parallel with this study, research work on the optimal control
of gas-fired warm air heating systems sponsored by the American Gas Associla-
tioﬁ is being conducted at the Electrical Engineering Departﬁent, University
of Michigan.(lg) The main objective of the research is to apply modern con-
trol theory methods of analysis to gas-fired home comfort-producing equip-
ment with the purpose of providing superior comfort, and better system in-
tegration of components, The objective also is to define one or more typ-
ical gas-fired, controlled comfort systems, which can be used as guide-
lines in the analysis and design of most residential heating and or cool-
ing systems, Finally to simulate typical design conditions on an electron-

ic differential analyser in order to determine the optimum design para-

meters,

1.3 Comfort

The main objective of the gas-fired forced air domestic heating
industry is to produce a heating system which provides the best human com-
fort for the consumer while operating within such constraints as economy,
safety, and reliability, It is evident that any attempts towards a real-
ization of this goal requires a consideration of many factors, one of the
most important being the determination and definition of the highly sub-

jective quantity.known as human comfort,
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As difficult as this problem is, however, some reasonable con-
clusions may be reached, with regard to human comfort, by investigating
those factors which affect the heat balance of the human body. Heat ex-
change between the human body and its environment occurs in three ways:
conduction, convection, and radiation., For this reason the most important
enﬁironmental factors affecting the human body heat balance relation con-
sist of: air temperature, floor surface temperature, air-water content,
air velocity in the vicinity of the human body, and temperatures of mate-
rial objects in contact with the human body. The latter factor, namely
contact heat loss, can generally be neglected since uncomfortable contact
is normally avoided.

Investigations(6) have indicated that the following relation-

ships generally exist between the major environmental factors and human

comfort,

1. Air Temperature

Air temperature is the most important and most commonly recog-
nized factor which contributes to comfort, An acceptable range is 70° to
T7°F at any point within the occupied zone and at any time.(6)

2. TFloor Surface Temperatures

Floor surface temperatures which are either too high or too low
have a great effect on comfort, A heating system may be considered to
have excellent performance with regard to floor surface temperatures if
temperatures no lower than 65°F are maintained on the exposed areas of the
floor surface. Furthermore floor surface temperatures should not exceed

approximately 80°F at any time,



3. Air Motion

Air motion is an important factor affecting human comfort. Al-
though small values of air velocity will be tolerated, large values will
not be because of the general physical discomfort and excessive convection
heat loss.(7)

4, Humidity

For health considerations high values of relative humidity are

(7)

not tolerated., It should not exceed 60 percent, at any part of the oc-

cupied zone,
5. Filtered Air
For health considerations it is necessary to keep the air clean

at all times,

In practice the motion of the air is controlled by the speed of
the blower, the humidity in the system limited by using a humidifier, and
the air is filtered by the addition of an air-filter to the system. With
this in mind, it is evident that the room temperature has perhaps the
greatest influence on human comfort, and consequently is considered to be
the primary criterion for judging systems improvement. Of course through-
out the study other factors such as systems cost, and power limitations

will also be considered,

1.4 Components of the Domestic Heating System

In order to study the control problems associated with a forced-
air gas-fired domestic heating system it is necessary to investigate the
various elements which constitute the present heating system, Any suit-

able listing of these elements must include the following basic group:



1. Domestic Space

The region to be comfort controlled.

2. Room Boundaries

It includes walls, ceiling, and floor,

3. Furnace

The system component which supplies the thermal energy.

4, Controller (Room Thermostat)

The logic unit which supplies signals to the furnace to regulate
the amount of thermal energy supplied to the domestic space.

5. Hot Air Duct

The system component which transfers the heated air from the
furnace to the domestic space.

6. Cold Air Duct,

The system component which transfers the air from the domestic
space to the furnace,

7. Supply and Return Air Outlets

The system components through which the air is introduced into
and out of the domestic space respectively.

8. Blower

The component which circulates the air throughout the system.

9. Humidifier

The component which regulates the percentage of moisture in the
circulating air,

10. Gas Control Valve

The system component which releases combustable gas to the

furnace heat exchanger on signal from the controller unit,
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11. Air Filter

The component which removes lint and dust particlas from the air

circulated throughout the heating system,

In general all of the above elements affect the dynamic per-
fromance of the system; effects of some of the components as will be seen,
however, are negligable, It should also be noted at this time that in the
present day heating systems the controller (listed above) generally con-
sists of a simple bimetallic element thermostat, As indicated, however,
one of the objectives of this thesis is to determine if other possible
and better controllers exist,

The above listed components may be integrated into a schematic
block diagram indicating their relationship to the overall system, Such

a diagram is shown in Figure 1.1,
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CHAPTER II

THE MATHEMATICAL MODEL OF THE ROOM

The microscopic room model as discussed herein refers to the
study of the physics of a domestic room space under the conditions of
thermal forced air convection in which the room space is not assumed to
be at one uniform temperature, Realizing that the room is a complex dis-
tributed parameter system, the object of this chapter is to develop a
lumped parameter mathematical model which possesses the predominate fea-
tures of the distributed parameter system but which is amendable to
computer simulation studies,

In the following section a physical model for the room is as-
sumed which will be used to derive the system mathematical model, Then
the room is divided into two main parts: the room space and the walls,
ceiling and floor. From a knowledge of the physics of the various ele-
ments that compose the room system, the mathematical model of each element
is determined and then combined together to give the total model. The
total mathematical model is developed such that it would adequately define

the dynamic behavior in the pertinent operating range.

2.1 The Physical Model

The first problem that arises in this mathematical modeling is
to choose a physical model and then analyze the model using the principles
of thermodynamics and air flow dynamics,

Let us consider a room with height H, width W, and length L.

Let the room have three inside walls and one outside wall, An outside

wall is a wall which possesses an exterior exposure to the climatic

-12-
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elements. ILet the rest of the house be at a temperature range which is
equal to the temperature range of this room, This means that there will
be no heat transfer through the three inside walls or the floor or the
ceiling, Heat will transfer to the outside only through the outside wall,
Let the air inlet to the room be a rectangular opening and let the jet
discharge parallel to the inside wall with one edge of the outlet coincid-
ing with the inside wall, See Figures 2.1 and 2.2 . To simplify the
analysis of the system, no windows or doors are assumed, It will be seen,
however, in the next chapters that this does not change the concepts ob-
tained from analysis, since this is essentially equivalent to changing

the system parameters; conductance and capacitance.

2.2 The Room Space

The usual approach in the study of distributed parameter systems
is to replace the continuous space variables by a set of discrete space
variables., The accuracy required determines the number of discrete steps
needed. TFor high accuracy the number of steps will be small, while for

lower accuracy fewer steps are required.

In the approach developed herein uses thermodynamic principles
and the air flow pattern in a confined space. The space is divided into

regions each having

(a) a uniform temperature over-all or

(b) having a temperature which varies only in one dimension.

In the analysis, one of the regions will be used as a reference region

and is also used to control the comfort of space, This will be called

the third region,
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2.2.1 Aif and Heat Distribution in the Room Space

Before going into the details of mathematical modeling, a quali-
tative description of the air and heat distribution in the room is neces-
sary.

The heat transfer involved with the room is by thermal conduc-
tion, thermal convection, or thermal radiation, Heat transfer by thermal
conduction results due to having molecules of high kinetic energy and
molecules of lower kinetic energy., The molecules of the high kinetic
energy will transmit part of their energy to the ones with lower kinetic
energy, But since the temperature is proportional to the average kinetic
energy, thermal transfer will be in the direction of decreasing temperature,
In the wall the significant mechanism of heat transfer will be always
thermal conduction,

If, in addition to conduction, energy transfer occurs by eddy
mixing and diffusion it is called thermal convection. In Figure 2.3, in
the laminar layer adjacent to the wall, heat transfer occurs by conduction,
In the transition region, eddy mixing and conduction effects are signifi-
cant, In the eddy region heat transfer occurs mainly by eddy mixing,

When the air currents are produced by sources external to the heat transfer
region, it is called forced convection, If the air currents are generated
internally, as a result of non-homogenuous densities arising from the tem-
perature variations, it is called free convection, Both kinds of convec-
tion are occurring in the room,

In heat transfer by radiation, the internal energy of the source
isvtransferred to electromagnetic energy for transmission, then back to

internal energy at the receiver,
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Heat transfer by radiation will be neglected with respect to the
quantities transferred by conduction and convection, This is quite justi-
fied since no radiating objects are assumed in the room and the quantity
of heat radiated from the sun will be included in an outside generator,
Figure 2.4 shows how the heat is transferred.

Since the jet is adjacent to the wall when it expands into the
room, its form will be a semi cone shapé. The temperature of an element
volume of air coming out from the register will decrease gradually ac-
cording to a certain variation mainly due to the cooler air already
present in the room, At a certain height (a character of the jet and
the height of the room which will be specified later), the semi-conical
form of the jet disappears and air circulation in the room starts. Based
on some experiments done before on the air distribution in the room,(l)
the following regions (shown in Figure 2.5) will be used to establish
the mathematical model., The choice of the three regions as seen is based
on the way the air distributes itself in the room, In the following sec-

tions each of the three regions will be studied in detail,

2.2.2 Region 1 or the Jet Region Model

In practical room air distribution the airstream is not free
since it is influeced by walls, ceilings, floors, and obstruction. How-
ever, tests have shown that(g) in cases where the outlet area itself is
small compared to the dimensions of the space normal to the jet, the jet

may be considered free as long as:

x < 1.5 JK;
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where

X Distance from face of outlet in feet

Cross sectional area of the confined space in square feet,

As

We shall assume that this inequality is true for any x in the Jet region;
because of its location adjacent to a wall, the free jet analysis applies
without any appreciable error. From the theory of conservation of momen-
tum, the average value of the angle of expansion is 22 degrees.(g) It is
known also from jet studies(z) that jets discharged from a round opening
form expanding cones, while jets from rectangular outlets (which is the
case studied here) rapidly pass from a rectangular to an elliptical cross
sectional shape at a short distance from the outlet face, and then to a
circular shape, at a rate depending primarily on the jet dimension, 1In
other words, there are three characteristic stages measured along the
axis of the jet: a short preliminary stage during which the core of
primary air is dissolved by mixing with room air, a second short stage
during which the stream becomes circular in cross section and a third
stage common to all streams whatever the shape of the air inlet is in
which mixing and expansion occurs as a cone shaped stream, The first

and second’ stages are also short in comparison with the third stage. For
engineering purposes it can be assumed that there is only one region, a
semi-cone shaped stream region, Figure 2,6 shows the three phases, The
velocity profile at any cross section of a free jet can be approximated

by a normal probability distribution curve of the type shown in Figure

2.7,
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2.7,



-01-

where

average velocity of the jet at a cross section distance
x from the inlet in ft./min,

<
]

I

v center velocity of jet at a distance x in ft./min.

Xmax

However, due to the existence of the wall beside the air register, the
velocity profile for the stream will not be exactly half a normal proba-
bility curve, The velocity of the air at the surface of the wall will
be practically zero as shown in Figure 2.8; but for engineering purposes,
the normal probability curve can be used in order to calculate average

temperatures over the jet cross section without an appreciable error,

Experimentally it was found that:(g)
v
Xnax .. O VNAp
Vo _ X
and
< pax <
ok S XS 30
Vx
v 2.8
where
v, = average velocity of jet at inlet ft./min.
Ao . a2 .
= = area of inlet in £t (see Figure 2.7).
a = discharge factor and its practical range is from 5 to 7

Define now the following:

Ti(t) = average temperature of air at inlet of Jjet region
Tx(t) = average temperature of air at a distance x
Tl(t) = average temperature of air when leaving the jet region

to region 2
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T;(t) = average temperature of air in region 3 and the room
initially

QO = volume flow of air in ft?/min. at inlet of the jet
region

Qy = volume flow of air in ft?/min. at a distance x

Q = volume flow of air in ft?/min. when leaving the jet
region to region 2

o = density of air in lbs./ft?

Cp = specific heat of air at constant pressure in BTU/(1b)
(F)

T = time taken by a unit volume of air to travel from the

X . . . .
inlet for a distance x 1in minutes

T1 = time taken by a unit volume of air to travel through

the whole jet region in minutes

The total rate of flow of air in the stream in relation to the primary
air flow issuing from the inlet can be deduced from the principle of
conservation of momentum that is: VOEAO = VXEAX where the zero sub-
scripts refer to the conditions at the nozzle and subscript x to any
point measured along the axis,

Since the air flow Q (volume/time) is equal to Av , one may

write:

where EX is called the entrainment ratio, It is the ratio of air flow

at a distance x to the air flow at the inlet., Therefore:

2.8 x
B, = °
a Vi,

-If an average value of 6 for « 1is used, then:
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E - 2.8x
X .6\/;\.;

As a first step here, the average temperature at a distance x will be
calculated as a function of x . If it is assumed that the air is com-
ing in the room with a temperature T; , the average temperature at a
distance x 1is Ty » and that there are no.losses through the inside
wall then a heat balance equation can be written for the corresponding
control volume to distance x . The control volume in thermodynamics
is defined as a volume in space through which matter flows, and it is
bounded by a control surface, The control volume here corresponds to
an open system (there is matter flowing in and out of the thermodynamic
system), Consider now the control volume corresponding to a distance
X 1in the jet regidn shown in Figure 2.9 below. From the application
of the basic first law of thermodynamics to a thermodynamic open system
knowing that there is no work done in the process and neglecting the
kinetic and potential energies associated with the moving air, the fol-
lowing heat balance equation can be written in general for any control
volume in this space: Rate of change of internal energy of the control
volumev= Rate of change of energy associated with the ma:ss of air flow-
ing in - Rate of change of energy associated with the mass of air flow-
ing out - Rate of heat transfer. For the control volume shown above in

Figure 2.10, the following equation can now be written:

pC L (t)a = pC Ty (b -7 )Q + L (Q - Q)T5(8)  (2.1)

The first term on the right hand side of Equation (2.1) represents the

enthalpy flowing in from the inlet duct. The second term represents
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enthalpy flowing in the.control volume due to the air existing in the room
at temperature TB . The term on the left hand side of Equation (2.1)
represents the enthalpy flowing out of the control volume, There will be
no heat transfer to the outside since the jet stream is facing an inside
wall, and consequently there will be no appreciable rate of internal energy

of this open system. Equation (2.1) can be written in the following form:

QTy(t) = QT (t-7y) + (Qe-Qg) T3(t)
p (0 - 0T L1y g
Ey Ex
or
\/—L
T (%) = 31'*30 (75 (8-7,) - T3(t)] §l<'+ Ty (t)

Now taking the whole jet region as one control volume we have:

QT (t) = QTi(t-my) + (- )T5(t) (2.2)

or

T,(t) = 51,u [T, (t-7,) -T5(t)];c]§+T3(t)

It is to be noted that the density of air and its specific heat
are functions of the absolute temperature, Therefore, due to the small
range of the expected variations of the absolute temperature, the air
density and its specific heat are taken to be constants all over the
space of the room, The average temperature of air in the jet region is
seen to vary hyperbolically with the distance x as shown in Figure

2.11 below., Since the time delay in the jet region is very small compared



26-

Average Air Temperature Ty

- ——

|
|
L
x

Distance along the Axis of the Jet.

Figure 2,11. Variation of T, with x,



-27-

with the rest of the system (which is shown in Appendix A), the equation

of this region takes the following form:
QlTl(t) = Q’OTi(t) + (Q’l-Q‘O) Tj(t) (2'2)

The state variable diagram for the jet region follows directly as shown

in Figure 2,12,

2.2.3 Region 2 Model

The whole volume of region 2 will be assumed to be at a state
of complete mixing.(l) This allows a uniform temperature assumption in
this region, Call this temperature Tp . From the study of air movement
in jets,(g) the effect of the ceiling will not be significant until the
jet approaches the ceiling to within half a jet diameter, At height H ,
the diameter of the jet will be 2H tan 11° or O.4H , Half a diameter
will be O0.2H . Therefore, X will equal O0.8H .

Where

X = length of the jet region in ft,

Applying now the first law of thermodynamics to the control
volume of region 2, and taking into consideration that there will be a
rate of change of internal energy in this case due to the heat transfer

to the outside wall we get:

dTs(t)
QPC T (t-15) - QPCT,(t) -k, [T,(t) - T (t) 1 = eCyU, —
(2.3)
where:
T, (t) = average temperature in region 2 F°
T. (t) = average temperature of the inside surface of the part

W
e of the outside wall facing region 2 F°
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T, = time taken by a unit volume of air to travel through
region 2 minutes
k, = average proportionality constant (or surface coefficient)
defining the heat transfer by convection from the air in
region 2 to the inside surface of the outside wall facing
region 2

Vs = volume of air in region 2

= (wL) (0.2H) = 0.2 wIH £t

The first term in the left hand side of Equation (2.3) represents
the energy associated with the mass of the air flowing in region 2, The
second term represents the energy associated with the mass flowing out of
region 2, The third term represents the energy transferred to the inside
surface of the outside wall, The right hand side of the equation represents
the rate of change of internal energy of the air in region 2, Again the
time delay To of region two can be neglected with respect to the rest

of the system, a result which is proved in Appendix A, Therefore:

dTo(t)
QPC,T(t) - QgeC To(t) - ky [Ty(t) - T, (£) 1 = eCp¥p —
or
To(t) = oqTi(t) - B1Ta(t) + 71Ty, (t) (2.4)

where

Ofl = -Q.,,];.

V2
k2 + Ql<pcp _ k2
By = —/——= y 1= T

" The state variable diagram for the second region follows directly from

Equation (2.4).
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2.2.4 Region 3 Model

Again complete mixing is expected in this region, 1) The heat
input to this region will be from region 2 by convection, The heat out-
put will be to the inside surface of the outside wall by convection, and
to the cold air duct. Applying now the first law of thermodynamics to

region 3 as we did for region 2 we get:

de(t)
Q.pC T (t-1,) = Q. pC T(t) - k T(t) - T t) ] = pCV, -
P67 (0T5) = Gt T(e) g (8 - 1, () p3 Tat
(2.5)
where:
TB (t) = average temperature in region 3 F°
V3 = volume of air in region 3 ft5
T3 = time taken by a unit volume of air to travel through
region 3 in minutes
where:
Ty (t) = average temperature of the inside surface of the
5 outside wall facing the third region
k5 = average proportionality constant defining the heat

transfer by convection to the inside surface of the
outside wall facing the third region

The first term in the left hand side of Equation (2.5) represents the
energy assoclated with the mass of air flowing into region 3. The second
term represents the energy associated with the mass of air flowing out

of the room, The third term represents the heat transferred to the in-
side surface of the part of the outside wall facing region 3. The right
hand side represents the rate of change of internal energy of the air in

region 3,
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By using Taylor's series expansion of Te(t-Tj) , and taking
only the first order approximation, therefore, the state variable Equa-

tion (2.5) of the third region takes the following form:

T(t) = o1y (t) + BT, (t) - 7, T5(t) - 52Tw2(t) " e, (t)
(2.6)

where

(o4
n
]
e
u—\
(o4
’_l

9PCh

The state variable diagram for the third region follows di-

rectly in Figure 2.16,

2.3 The Wall Model

In constructing the wall model, the thermal circuit techniques
described in Appendix B is used. Assuming that heat flows only in one

direction through the wall, the wall behaves as a distributed parameter
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RC transmission line, As in transmission lines, it can be shown that
the errors in representing the wall under the same boundary conditions
varies inversely with the square of the number of T circuits used.(B)

The accuracy of this model depends on the accuracy of the data
of thermal conductivity and specific heat for building materials, There
is some uncertainty in these data because of the porosity of the materials
and uncertainty of their water content, It is apparent that the more T
circuits used in describing this dynamic behavior of the wall, the higher
the order of the system will be, 1In Chapter 5 it is shown that the order
of the whole system does not affect the nature of the optimal control
law but rather increases the complexity of the resulting differential
equations which must be solved, It can be shown that,(33) the number of
the nonlinear differential equations to define the optimal controllers
paremeters is 1 + 2N + (N!)/(2!(N-2)!) where N is the order of the
heating system, This means that a system of order three requires the
solution of 10 nonlinear equations, and another of order five requires
the solution of 21 nonlinear differential equations which need a large
memory digital computer, With this in mind, and the fact that the state
variables of the control system must be easily observed, and inexpensive
to measure, it was decided to represent the wall by only one T-network,
This means that a comﬁromise between the degree of approximation and
overall cost of the optimum controller is made, since this assumption
puts a preliminary bound on the cost of the optimum controller, The de-
rivation for the wall model follows: it is divided into two parts;

(a) facing region 2

and
(b) facing region 3.
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Consider now'Figure 2,17, which represents the thermal circuit
of a one T network wall., The outside end of the wall which is exposed
to the sun and wind is equivalent to a known temperature source T, (the
effective air temperature) and is a function of time, RO represents
the resistance whose conductaﬁce represents the heat flow between the
outside surface of the wall and the surrounding atmosphere, It is a func-
tion of the surface air coefficient, The inside of the wall is facing the
room heat capacity. Ri is the resistance whose conductance represents
heat transfer between the air in thé domestic space and the inside sur-
face of the wall, It is also a function éf the air surface coefficient.

R and C are the equivalent resistance to heat transfer and heat capac-
ity of the wall respectively. They are functions of the properties of
the material of the wall,

This wall system has two degrees of freedom., Usually 1i; , 1o
(defined in the circuit of Figure 2,17) are chosen as the state variables
for such circuit, However, since 1, and i2 correspond to rate of
heat flowing in and out of the wall and are not easily measurable in
practice, another set of measurable state variables should be chosen,

Let V be the temperature of the air inside the room; Vl be
the temperature of the inside surface of the wall; Vé be the temperature
of the outside surface of the wall, . It can easily be shown that V and
vy constitute one set of state variable for this system.(27)

Writing the equations for this system gives:
Vo= iR+ 7V (2.7)

iR+ V, (2.8)

L
I
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V. = LR +7, (2.9)
V, = iR, +E, (2.10)
t
- é [ (ip - 1)at = v, (2.11)

viiminating i, , i, , and V_, between Equations(2.7), (2.8), (2.9),

sod (2.10) yields:

R R. + R R R : ( )
Vie=—V+— E4 2.12
Ri Ro

Again from Equations (2.7), (2.8), (2.9) and (2.11), i, , i, , and V,

are eliminated to yield:

Q-
o™
[
[}
o
o
| S—
Q
p
~
o
&5
N

v, = &

1 7 (Vv -vp) +

Differentiating Equation (2.13) with respect to time gives:

av M N T

R+ Ry . 4V
Ri Ri Ri Ro

By substituting V2 expressed by Equation (2.12) into Equation (2.1%),

transposing and rearranging terms in the resulting equation gives:

av |
- CR(R+R,) %% + G(Ry+R) (ReRo) == - (2R4RO)V + (2R#Ro#Ri)VY - Ry = O

(2.15)
Using Equation (2.15), the state variable equations for parts of the
wall facing regions two and three are stated in the following, where

subscripts 2 and 3 refer to regions two and three respectively.



For region 2:

In this case T2 corresponds to V and ng corresponds to

Vl . Therefore:

ar T
2 ~2 - (2R, + R,)
- CoRo(Ry + Ryp) e CQ(Rig + Ry) e (2R, + Ryp) Ty
+ (2R, + Ryp + Ryp) T, = RioTy = O (2.16)

2

From this differential equation, the state variable diagram for the part

of the wall facing region 2 follows as shown in the next section,

For region 3:

Again T5 corresponds to V and TM3 corresponds to Vjp :

- CBRB(RB + RO3) i 05(R15 + RB) el (2R3 + RO5) T3
+ (QR5 + Rz + RiB) 1%3 - BT = 0 (2.17)
where:
Cr = equivalent heat capacity of the part of the wall facing
region 2
P2 = equivalent resistance of the part of the wall facing
region 2

= equivalent outside air to surface resistance of the
part of the wall facing region 2

R, = equivalent inside air to surface resistance of the
part of the wall facing region 2

T = outside equivalent temperature

= equivalent heat capacity of the part of the wall facing
region 3

= equivalent resistance of the part of the wall facing
region 3
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R03 = equivalent outside air to surface resistance of the part
of the wall facing region 3
R, = equivalent inside air to surface resistance of the part
i3 of the wall facing region 3

The state variable diagram for the part of the wall facing region 3 follows

and is shown in the next section,

In Sections (2.1.3), (2.1.4), and (2.1.5) it was shown that:

T(t) %slzwim + (1 %) 15 (4) (2.2)
ﬁé(t) = a Ty(t) - BT, (t) + lew2 (t) (2.4)

By substituting fé in FEquation (2.4) into Equation (2.16), transposing
and rearranging gives:

ng = - a3Tw2 - B3T) - 73Ty + 83T, (2.18)

Similarly for TW by using Equations (2.6) and (2.17), therefore:
3

. C T
W3 L

Vs T e chTwe + T, (2.19)

where :

1
O = = [71CoRo(Ro+ Ryp) + 2Ry + Ryp + Ryp)
3 ;2(312+325 1CoRo (Bt Ry (0} i



M,

a,C R (R2 + Roe)

17272
02(3i2 + R2)
—_2 [BlCQRE(R2+ Rog) + (2R2+ ROE)]
Co(R;p-Ro)
Ri2

1

—————— [t,CzRz(Rz+ R z) + (2Rz+R_z+R;z)]
R 3(Bs+ Rog) + (2Rg+Roz+R;5)

QéC3R3(R5+R03)

,05(Ri5 + R3)

1
—————— [B,C3R5(Rz+ R3)]
03(R15+R5)

1
— = [7.C.R (R, + R ) + (2R,+ R ;)]
CB(R15+R3) 2373V 3 03 3 T03

1
e [SECBRB(R3+ R03)]
C3(Ry3+Rs)

Ri}
C5(R;5+R5)

2.4 The Room System Model

Summarizing the set of equations representing the room space

and walls is:

T, = == T+ (1--=2)T (2.2)
1 1 3
Q Q
Te = Ty - BT, + 7T, (2.4)
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Figure 2,19, State Variable Diagram for Part of the Wall Facing
Region 3.
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3'33 = - a7 + BT, - 7Ty - a1y, + gETW3 (2.6)
ng = -l - BTy - 3Ty + BT (2.18)
fooo= - o&uTWB + BT = T, - 8T - guTWQ + T (2.19)

This is a set of linear first order differential equations with constant
coefficients, This set represents the room system, T; 1s the input and
1 T2 or T3 may be considered as the output of the system, Using
these differential equations the state variable diagram for the room

T

system follows as shown in Figure 2,20,

This mathematical representation of the room is the outstanding
problem in the theoretical treatment of the operation of a warmed air
domestic space heating. The adequacy of the model will be checked ex-
perimentally in Chapter III, The next chapters will also describe the
incorporation of this model in an analog computer model of the complete
heating system, to investigate the dependance of the performance of the

heating system on the system parameters,
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CHAPTER III

THE EXPERIMENTAL CHECK OF THE ROOM MODEL

This chapter is devoted to the description of the complete ex-
perimental work done towards checking the validity of the mathematical
model of the domestic space, A thorough evaluation of the applicability
of the mathematical model of the room requires a parallel comparison be-
tween a physical installation and the mathematical model., To determine
the validity of the mathematical model predictions, measurements of the
thermal environment, and the response of a test room were made during
February, 1966. The analoge computer results compare favorably with the

observed data, Graphical comparisons of results are included.

3.1 System Investigated

3.1.1 General Description

The experimental room model consisted of a test room located in
the warehouse portion of the Maxitrol Company, Southfield, Michigan., In-
struments and controls for obtaining data, electric heaters and air con-
ditioner for the room air was an integral part of the installations,

A view of the interior of the test room looking south, is shown
in Figure 3.1, The room was 12 ft. wide and 12 ft, deep and had a 10 ft,
height, These were all outside dimensions, The north wall, not shown,
was a duplicate of the south wall with the exception of a door of 3 ft,
width and 6.5 ft, height centered in that wall. Of course, neglecting
any leakage of air through this door, the south and north walls can be
‘considered identical since the door construction is the same as the wall

construction, all walls are of similar details, and as seen in Figure 3,1
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the south wall contains neither windows nor doors., The west wall (to the
right in Figure 3.1) had only a control window 1' x 1' which connects
between inside sensing equipment and the outside recording equipment,
This window is also of the same construction as the walls, with the ex-
ception of holes through which cables can be run, This window opens and
closes like a door, Of course, it was kept closed all the time during
the test., The east wall (to the left in Figure 3.1) had two small glass
windows each 1/2' x 1/2' to permit observation of the interior from the
outside, This room was designed for the Maxitrol purposes to have a spe-
cial ceiling with holes in it, For the purpose of this test, this ceil-
ing was removed, and the east air duct entrance was closed by a plate of
metal so that only one jet form of air would be studied., This room was
designed also to have the air return through the walls as shown in Figure
5.1, In otherwords the air constituted a layer in the construction de-
sign of the walls,

The air which was introduced into the room was conditioned by
equipment which consisted of electric heating coils for heating the air
and a two ton refrigerating unit, utilizing chilled water coils, for cool-
ing the air., A variable speed fan capable of delivering flow rates of
about 3000 ft?/m., returned the room air from a return intake through duct-
work to the conditioner, After the air passed through the conditioner the
fan returned the air to the room through supply ductwork and the outlet
arrangement, The electric heaters and the air conditioner system was
located outside beside the south wall, The control and recording equip-

ments were placed outside the west wall,
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3,1.2 Construction Details

All the walls and the door were made of: 3/8" exterior plywood,
1" fiber glass, 0.025" sheet of aluminum, 1-1/4" air space, 0.032" sheet
of aluminum, and 1/8" tempered hardboard (tempered masonite), The ceiling
consisted of: 5/8” exterior plywood, 1" fiberglass, 0,032" aluminum sheet,
3" rolled fiber glass insulation, 0,032" aluminum sheet, and 1/8" tempered
hardboard, The floor was made of: 1-1/2" exterior plywood, 4" air, and

3-5/8" wood. These construction details are summarized in Figure 3.3.

3,1,3 Instrumentation

The test room was provided with instrumentation for measuring
the physical variables of the system that have an important influence on

the thermal behavior, Measurements were made of the following variables:

1. Inside and outside temperatures

2. Inside and outside air velocities
Measurements were recorded continuously during the test period.

3.1.3.1 Temperature Measurements

Thermistors of the type RL25J1T were used to measure the
temperature, The thermistors were used in series with a 3 x lO5 ohms
linear resistance in order to avoid selfheating., The electronic recorders
were calibrated to read the voltage drop across the thermistor, and from
the calibration chart of the thermistor the corresponding values of tem-
peratures were determined., Figure 3.4 shows the setup used to measure

the temperature,
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3.1.3.2 Velocity and Rate of Flow Measurements

A velometer of the type Alnor was used to measure the

velocity and rate of flow of air at different points in the room,

3.2 Calculation of System Parameters

3.2.1 Specific Heat of Air (cp)

The specific heat of air in the region from 20°F to 120°F re-

mains constant at 0,24 Btu/1b°F,

Therefore:

Cp = 0.24 Btu/1p°F ,

3.2.2 Density of Air (p)

It varies slightly with temperature in the range between 20°F

and 120°F,

An average value over this range is taken and is equal to

0.0749 1b./ft?

3.2.3 Volume Calculations

According to the mathematical model described in Chapter II
the test room is drawn schematically in Figure 3.5 below, showing the
corresponding regions and their dimensions.

Using these dimensions the volumes of the different regions

are calculated, Details are in Appendix D.

V, = Volume of region 1 =  30.7 £t
V, = Volume of region 2 = 270 £
V., = Volume of region 3 = 1049,3 ftJ
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(Dimension indicated are all in-
ternal),
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3.2.4 Thermal Conductivities

Details of calculations are in Appendix D, where it is found

that:
k,; = equivalent thermal conductivity of the wall
= 0.0238 Btu/(ft. °F. hr.)
ke = equivalent thermal conductivity of the ceiling
0.0267 Btu/(ft. °F. hr.)
ke = equivalent thermal coﬁductivity of the floor

= 0,0338 Btu/(ft. °F. hr.)

3.2.5 Thermal Resistances

The following parameters were calculated in Appendix D:

R, = 1975  °F/(Btu/min.),
R, = 17.8 °w/(Btu/min. ),
Ri2 = 17.8 °F/(Btu/min. ),
Ry = 0.66 °F/(Btu/min. ),
R03 = 8,2 °F/(Btu/min, ),
R, = 8.2 °F/(Btu/min. ).

3,2.6 Equivalent Capacity of the Room Boundaries

As explained in Chapter II an equivalenf capacity for the walls
and the ceiling and the floor has to be estinated by some means. Like
the electrical capacity, the heat capacity for a small piece of material
is defined as the ratio of the quantity of heat stored in this material
over an interval of time to its temperature rise during that period of
time. This definition is used here to obtain experimentally an estimate

for the capacitance of the room boundaries,
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The quantity of heat added over an interval of time = heat added
to the room through inlet duct - heat leaving the room outlet duct - heat
stored in the room due to its capacity - heat lost to the outside during

that time, The average temperature rise of the mass of the walls, celling
and floor will be estimated by taking the average rise of temperature of

the inside and outside surface temperatures,

A test was made on the room model to determine an estimate for
the equivalent capacity of the building, It consisted of the following:
Heated air was pumped in at the rate of 125 ftj/min. . Measurements were
taken for: the input temperature to the room Ty » the average inside
surface temperature and the average outside surface temperature and the
average outside surface temperature of the walls, Plots of these meas-
urements are shown in Figures 3.6, 3.7, 3.8, and 3.9. The outside air

temperature was held constant at T3°F.

To calculate the heat input to the system, consider the interval
of time starting from the time 20 minutes to 40 minutes, The heat input
starting from the time 20 minutes to 40 minutes corresponds to the area

under the input temperature curve shown in Figure 3.6,

Heat input during 20 minutes pCpQO X Area under the T; curve

0.0749 x 024 x 125 x 1600

I

3590 Btu

The heat carried out in the return duct which is placed in
region 3 corresponds to the area under the curve of Figure 3.7 between

the time 20 minutes and 40 minutes,
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Heat leaving the room during 20 minutes pCpQO X Area under the T3 curve
= 0.0749 x 0.2k x 125 x 1400

= 3142 Btu

Heat stored in region = pC V, AT

: gion 3 **p'3 p)
= 0,0749 x 0.24 x 1049.3 x 6.5
= 123 Btu

where

AT, = increase of average temperature T3 of the third region
over the 20 minutes interval,

Heat stored in region 2 pCpV2 AT2

0.0749 x 0.2k x 270 x 6

29 Btu

where

AT, = average increase of temperature T, of the second region
over the 20 minutes interval,

4,33 Btu

Similarly heat stored in region 1

Heat transfered to the outside ko (Toutsige - T,) x time

surrlace

t kg (Toutsige = To) X time

surface

3,93 Btu

where

T3°F

T, = outside air temperature

Heat stored in the room boundaries (capacitor)

3590 - 31k2 - 123 - 29
- 4,33 - 3.9

288 Btu
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Average temperature rise of the equivalent capacitor = 8°F
As defined before the room boundaries equivalent capacity is:
268 - 36.2 Bu
8 F.
This equivalent capacity is divided in proportion to the areas

facing region 2 and region 3 to give Cp and C3 respectively. There-

fore:
205 Btu
C = m— 6.2 = ll.  r———
2 723 x 3 ? °F,
05 = BDx362 = 20,8 B0
723 °F,

This estimate of the capacity is checked using another experi-
mental set-up in Appendix C, The system parameters are calculated using
the proporties of the individual layers., An electrical analog is built

and the equivalent capacity is estimated,

3,3 The Experimental Test

The main purpose of the test is to check the validity of the
mathematical model of the room developed in Chapter II, The room model
developed was shown to be linear and time invariant in the range of
domestic air temperatures, This followed from the fact that the air
parameters are practically constant over this range of operating tem-
peratures, They are independent of time or temperature throughout the
range of domestic air temperatures., It also followed from the lumped
. pafameter approximation of the room boundaries, and the assumption that

these parameters are independent of time and temperature, To check
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the validity of this model over the operating range of temperatures an
input of temperature in this operating range 1is applied to the system
and the output temperature response is observed. Since it is desirable
to use a level of temperature thét is used in actual heating systems
a 40-110°F temperature range input was used in the test. A comparison
then is made between the output of the system observed experimentally
and the output from the corresponding analytical model. In Section 3.4
the results of a computer simulation is given for the corresponding
analytical model, In this section the description of the test and its
results are presented.

The input temperature T; Wwas obtained by turning the heater
on  and the refrigerator off at the same time, The temperatures at the
input, in region 1, in region 2, in region 3 and out side the domestic
space were connected to the recording equipments. Figure 3.10 shows
the location of the points where temperatures were measured,

The state of the system was initially at:

Ty = 53.8°F
T3 = 54L.1°F
Tpo = °TF
Tzo = 2 F

and was in steady state, This state was created by having the refrigerat-
ing unit on, the heaters off, and ajusting the blower to give a constant
rate of air flow of about 1340 ft5/min. Starting with these initial con-
ditions, the heaters were turned on and the refrigerator off, The air

fiow was kept constant at 1340 ft5/min. Recordings for temperatures in
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the different regions were continuously taken, Three points in every
region were observed: TA s TB , and TC in region 1: TD s TE , and
TF in region 2; To» Ty, and T; in region 3. The input temperature
T; was also taken, The time delays in the different regions were re-

corded, The outside air temperature T, was essentially kept constant

o)
at 73°F, The outside wind speed was basically zero, since the machine
shop was closed at all times, The test ran for about 120 minutes, at

which steady state conditions were established, Plots of these record-

ings are shown in Appendix D.

3.4 Computer Simulation

The purpose of this section is to simulate the same conditions
of the experiment on the analog computer set up for the mathematical
model of the domestic room developed in Chapter II, and compare the
experimental results versus the analytical results in the transient
and steady state conditions,

Before the electronic analog computer simulation, it is
necessary first to calculate the parameters of the Maxitrol room model
i.e. the parameters in Equations (2.2), (2.4), (2.6), (2.18), and (2.19)
which corrésponds to the particular experimental model, The calculations
of these parameters are straightforward, and they follow directly from

the results of Section 3.2,

o = 2.25 Bo = 0.769 0z = 0,0112 o, = 0,0107
By = 2,26 7o = 0,584 Bs = 0.225 By = 0,0142
7; = 0.0116 8, = 0.00098 75 = 0.251 7, = 0.0518
a, = 0,191 o = 0,00646 85 = 0,00452 8, = 0,0435



| %
6, = O § - O
Q
m, = 0.0047 1--2 = 0,61

Y
Therefore Equations (2.2), (2.4), (2.6), (2.18), and (2.19)

take the following form for this experimental model:

T, = 0.39 Ty+0.61T;

?, = 2.25T -2.26 T, + 0.0116 T,

T3 = 0,760 T, - 0,191 T, - 0.58k4 T, - 0.00098 T_, + 0.00646 T, 5

t o, = =0,225 T - 0.231 T, - 0,0112 T, - 0.00452 T,

ij = -0.0518 T, + 0;01u2 T, - 0.0435 T3 - 0.0107 T 5 + 0.0047 T

@

The unit used for time in the equation above is the minute, i.e,
if these equations were to be simulated on the analog computer then every
second on the computer represents one minute of real time., However, a
suitable scale for this problem is 1:240 i.e, 1 second of the computer
time corresponds to 4 minutes of the real time, The scale for the tem-
perature is 0.5 volts corresponds 1°F, This is accomplished in this set-
. up by scaling only all inputs and initial conditions, The system equa-

tions can be written after scaling in the following form:

T, 0.39 T3 + 0.61 Ty (3.1)

’ 9 T - 9.0k T, + 0,046k T, (3.2)

m»a
i
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Figure 3.11, ILocation of Points on
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corded During the Test,
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T3 = 3,076 T, - 0,76k T - 2.336 T5 - 0,00392 T+ 0.02584 Tw3

(3.3)
ng = -0.9T -0,926 T, - 0,0450k T -+ 0,01808 T (3.5)
Tw5 = - 0.2072 T, + 0.0568 T, - o.17h15- 0.043 T3 + 0,0189 T,

(5.6)

To simulate the same experimental conditions on the analog com-
puter, the generation of the input function Ti similar to that applied
in the experiment is necessary in order to compare the outputs. The
actual input obtained experimentally is shown in Figure 3,13, Using this
plot a piecewise linearization is obtained and shown in Figure 5.12, A
computer diode function generator is then used to generate such a piecewise
linearization of the input function Ti . The computer set-up for this
purpose is shown in Figure 3.14, and the function generated by this set-

up is shown in Figure 3.13.

Ty FY

83|

75.5
66.5

L46.25

Real time
in minutes
S N

|
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|
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| |
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| I
i |
L | |
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Figure 3.12., Piecewise Linearization of the Input Function.
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Using now the Equations (3.1), (3.2), (3.3), (3.4), and (3.5)
the analog computer set-up for the experimental room model is constructed
and shown in Figure 3.15. The description of the computer set-up here is

unnecessary, since it follows standard practice,

TABLE 3.1

COMPUTER POTENTIOMETER SETTINGS OF FIGURE 3,16

A6 0.9 BS  0.23h 6 0.265 | @l 0.27

AT 0.046 B6  0.026 DL 0,017 é G2 . 0.926
Bl 0.90k B  0.00k D2 0,043 f G3 0.900
B2 0.269 c1 0.057 F1  0.25 ; Gk 0.007
B5 0308 | c2 0,207 | F2  0.231 ; G5  0.045
B4 0.76k g c3  0.007 ? F6 0.0k 5 66 0.265

Computer runs were made on the Applied Dynémics analog com-
puter for the generated input function T, . The outputs of the system

T, , T and T, were recorded using electronic recorders., Plots of

1 2’ 3
these recordings are shown in Figures 3,17, 3.18, and 3.19 by the dotted

" curves,

3.5 Evaluation of Model

Examination of Figure 3.16 indicates that the average tempera-
ture response Tl in region 1 experimentally and analytically shows the
steady state error to be M.OQ% and the maximum error during the transient
period to be 3.53% . Figure 3,17 which also.shows the average temperature
in the second region, indicates a steady state error of 4 .07% and a max-

imum transient error of 7.46% . Similarly, from Figure 3.18, the average
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temperature in the third region has a steady state error of l.h8% and
a maximum transient error of 3.1% . Figures 3.19 and 3.20 display the

corresponding graphs for the wall surface temperatures ng , I&B .

The steady state errors are 3.9% and 4,66% respectively, The maximum

error during the transient period is 5% for TW2

The analytical temperature response when compared to the

and 4,23% for Turs

observed temperature response of the test proves, to within a reason-
able average error, the validity of the mathematical model, for each
individual temperature response, Due to unavoidable errors, such as
instrumention errors, and errors resulting from the difficulty in ob-
taining the exact characteristics of the building material. there is a
deviation of results from the physical situation to the analytical model.
It is estimated (work done by Buchberg at UCLA)(9’10) that all these errors
pt together can easily result in errors of the order of five percent in
any temperature quantity computed, These results, however, in most tem-
perature responses, indicate a percentage error lower than 5%, with the
exception of one transient case, where the error reached 7.46% at one in-
stant, The steady state responses were well below 5%. The results also
make apparent that for each analytical case as well as for the experimen-

~ tal case, T, 1is greater than T, , Tp is greater than T5 , and T3

1
is higher than both TW and TW5 . However, the differences between
Ty , Tp , and T3 are comparable within 5%. In addition, the difference
between TW and T is also comparable within 5%.
2

One objective of this dissertation, however, is to study the
room temperature variations of the conventional heating system, and com-

pare it with that of the optimal heating system. The jet region, due to
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its small volume is of no practical importance here. As a matter of fact,
region 3 occupies the greater portion of the room area, and is the region
of practical interest. For this type of study, the mathematical model
seems to be satisfactory, since in these situations differentiation be-
tween T2 and T5 is not of major importance, However, it appears that
the overall mathematical model of the heating system is greatly simplified
if the temperatures T, , T, , and TB are considered to be one uniform
temperature, TR , and if the temperatures TW2 and Tw5 are considered
to be one temperature, T, This approximation, a result of the experi-
mental data, is of great engineering significance, as it reduces the
number of nonlinear equations representing the parameters of the optimal
law from twenty-one to ten, It also reduces the number of state vraiables
to be measured. In other words, such approximation also represents a
preliminary bound on the cost of the optimum heating system. Having this
in mind, as well as results of the experimental data, it is decided to
combine Tl s Ib , and T3 , and were treated as one uniform temperature,
TR , and treat T, and TW5 as one uniform temperature, T, -
The approximate mathematical model of the room now assumes the

following form:
oCV T = (pCLQ Ty - 0CLQ Tp) - k(T - T) (3.1)

- CR(R + RO) TR + c(Ri + R) T, - (2R + RO) T + (2R + R, + Ri) T, - RyT =0
(3.2)
where

volume of the room

<
i

rate of flow of air

O
I



-71-

k = average proportionality constant defining the heat transfer
by convection to the inside surface of the outside wall

C = equivalent heat capacity of the outside wall

R = equivalent resistance of the outside wall

R, = equivalent outside air to surface resistance of the out-
side wall

Ri = equivalent inside air to surface resistance of the out-
side wall

Equation (3.1) represents the simplified heat balance of the room space
when Ty =T, =Ty = Tp . Equation (3.2) represents the mathematical

model of the wall when TW2 =T = TW as derived in Section 2.3.

w3



CHAPTER IV

THE CONVENTIONAL HEATING SYSTEM ANALYSIS

In this chapter the analytical model of the room together with
the mathematical model of the components of a conventional heating system
is used to analyze the conventional heating system, The purpose of this
analysis is to study the performance of the conventional heating system
using the analytical model, and also to be able to compare it with any
optimal or sub-optimal system to be devised later on,

Mathematical models for the components of the heating system
are developed. The models of the elements thus derived together with
the room mathematical model are then to be simulated on an electronic
differential analyzer, Typical heating system parameter variations are

studied and analyzed using the validated domestic room model,

4,1 The Mathematical Model of the Controller

The controller's function is to maintain the enclosure air
temperature at a desired level by controlling the heat energy input
to the heating system from the heat exchanger in an on-off fashion,

The class of controllers used in most present day domestic
heating systems consists of thermostats which are of the bimetallic
element type with and without compensation., These thermostats yield a
mechanical output variable which is used as the primary feedback element
in many warm air heating systems currently in existence,

Since the rate of change of temperature of the bimetallic
element is proportional to the heat flowing into it (follows from the
first law of thermodynamics), it can be stated that the rate of change

-72-
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of heat of the bimetallic element is proportional to the difference in
temperature between the thermostat element temperature and the temperature

of the surroundings, Therefore:

me Qgggﬁl = A [Tg(t) - Ty(t)] (4.1)
where
m = mass of thermostat element
¢ = specific heat of thermostat element
A = Dboundary area normal to heat flow
U = overall heat transfer coefficient
T, = thermostat element temperature
T. = average temperature surrounding the thermostat element,

Since a linear relationship exists between the mechanical move-

ment of the thermostat element and its temperature Tm(t) , then:

x,(t) = kg T(t) (k.2)
where
k] = proportionality constant
Xl(t) = representé the mechanical displacement of the thermo-

stat element from some suitable position

Similarly if a linear relation exists between the set point
temperature and contact position then the contact position as determined
by the set point temperature may also be expressed in a form similar to

Equation (k,2), above, In other words

XE(t) = kg TI(t) (J+-5)



where
x5(t) = contact position
ko = constant of proportionality
TI(t) = set point temperature.

This relationship may be visualized by assuming that the set point posi-
tions the contact by means of a screw-type adjustment as illustrated in
Figure 4,1,

Combining Equations (4.2), and (4.3) the mechanical output

x(t) = x5(t) - x1(t) is given by
x(t) = ko Tr(t) = k1 Tp(t) (4. k)

Using Equations (4.1), (4.2), (4.3), and (L.L4), the state
variable diagram for the thermostat is derived and is shown in Figure 4,2,

Tp in the diagram is the thermostat time constant and is defined by:

T, = Q1€
T UA

Included in this diagram is the correction signal produced by the on-off
contactor which is +1 if the furnace is on and O if it is off, This
is shown in greater detail in Figure 4.3 where h represents the hystersis
range, This means the furnace will be on (+1) until the room temperature
exceeds a certain value, then the furnace turns off (0) until temperature

drops to a certain value at which time the cycle repeats itself,

4,2 The Mathematical Model of the Heat Exchanger

There are different kinds of gas furnaces in practice, A typi-

cal gas furnace that is most commonly used would be the vertical tube



Voltage Supply, V

s Gas
L < Valve
!
2
7/ S S S/ 77T 77 7
Reference
Figure 4,1, A Bimetallic Thermostat,
- L/?P
p Ty +1 1
ko
r;}
Figure 4,2, State Variable Diagram of the Thermostat.
de(t)
+1
e
h
P—— O i —
o x(t)

Figure 4,3, Hysteresis Function.
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combustion chamber shown in Figure 4.4, Figure 4.5 shows a heat transfer
schematic for this type of furnace,
Considering now the thermodyqamic control volumes to be the
material of the heat exchanger as one and the air circulating around the
exchanger as another, the following set of equationscan be written for

the system by the help of the first law of thermodynamics:

If(t) = hf D Y(Tf(t) - Te(t)) (4.5)
I (t) = h aD, ¥(Tg(t) - Ty(t)) (4.6)
Io(t) = PCpRLTR(E) (4.7)
L(t) = pgCaQoTy(t) (4.8)
Ie(t) = Io(t) + wece 2 Te(t) (4.9)
- - at

a Ta(t) 1

—_— = [Ie(t) - Id(t) + Ic(t)] (4,10)
dt Vala

where: De = Diameter of the heat exchanger

Y = length of the heat exchanger

Tf(t) = average temperature of flame
Te(t) = average temperature of the heat exchanger wall
Ta(t) = average temperature of the cold air
If(t) = heat transferred from flue gas to exchanger wall
Ie(t) = heat transferred from exchangef wall to air
I.(t) = heat coming in with the cold air
Ig(t) = heat carried away to the hot air duct
p, = average air density in the heat exchanger
hf = heat exchanger coefficient between flame and heat exchanger
material ‘
hg, = heat transfer coefficient between heat exchanger material

and circulating air,
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c average specific heat of air in the exchanger

a

1

average flow rate of air in furnace,

QO

This set of Equation (4.5) to (4.10) may be summarized by the

following two differential equations:

d Te(t)
hp M Y[Te(t)-T (t)] = hy mDY[T(t)-Ty(t)] + wecqo — (k.11)
d T (t
W, Cy “T;%ﬁ"z = By mY[Te(t)-Tg(t)] = pgCaRT, (%) + paCpQuTR(t)

(k. 12)
Transposing and rearranging these equations may be expressed

in the following form:

T,(t) = a) T (t) + a, T,(t) + ag To(t) (4.13)
Ta(t) = a) Te(t) + 2 Ta(t) t ag TR(t) (4, 14)

For more details regarding the furnace model the reader is re-
ferred to work done by: L.F, Kazda, Graham Casserly, Adel Eltimsahy, and
Ronald Spooner.(lg)

In practice, however, it was found that the heat capacity of
the air flowing around the exchanger wall is very small compared with
the capacity of the heat exchanger.(le) It is a fact that the time
constant of the heat exchanger (which is defined as the time necessary
for the air in the heat exchanger to rise to 63.2% of its final value
when the flame temperature changes abruptly)is proportional to its ca-
pacity, Therefore the heat exchanger material capacity contributes to

most of the exchanger time constant., It is then justified from the

engineering point of view to use the heat exchanger material capacity
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only for the purpose of studying the effect of varying the time constant
of the furnace., Therefore the state variable equations for the simpli-

fied model take the form:

Te(t) = a, T (t) + 8, Ta(t) + 8 Tf(t) (4,15)
0 = ay To(t) + T, (t) + agTg(t) (4,16)
where:
1
a. = =s— [h, ®D.Y + h_ #D_Y]
1 WeCe T e a e
h, DY
- WeCe
o hemD Y
5 w.e
ee
hy mDY
a_ = =
Il 05CgQp + Ny MDY
, cQ
ag = - = PO

Pty * h, DY

From these equations the heat exchanger state variable diagram

shown in Figure 4.6 below is obtained,

L,3 The Mathematical Model of the Hot Air Duct

The warm air heating and air conditioning systems ducts are the
vehicle by which air is directed from a primary source to the various
parts of the house and, where desired, returned to the primary source.

In accomplishing this job the ducts need only to contain and direct the

air with minimum heat loss.
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Figure 4,7. Schematic of an Air Duct,

If the temperature in the remainder of the house is assumed to be at Tg »
the following imperical formula(36) (ASHRAE 1963) which represents the

duct mathematically can be written as:

T, (t)(r+1) - 2TR(t)

i
T, (t) =
(r-1)
where
28.8 A3 v,
r = s«=—— for rectangular ducts
Ups
7.2 dOVp
[ = = for round ducts
Ul
Ad = cross sectional area of duct ft2
o = density of air  1lbs./ft’
do = Diameter of round duct, ft
U = overall coefficient of heat transfer for the duct wall
Btu per (hr) (ft2)(F°)
£ = length of duct, ft
Ta(t) = average temperature of air when leaving the heat ex-

changer,

p = perimeter of the duct
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Therefore the state variable diagram for the hot air duct

follows as shown in Figure 4,8,

4,4 The Mathematical Model of the Gas Control Valve

The control valve which releases the gas to the heat exchanger
will in general be operated by a voltage eq(t) . It will possess a coil
containing resistance R and inductance L ., The valve will contain
mass M , viscous damping @ and a restoring spring K . The valve gas
line pressure p 1s exposed to a surface area Ag . Applying Lagrange's
equations to the system yields a set of nonlinear differential equations.
When linearized about a set point operating value, the following dif-

ferential equations are obtained:

. ai ax
eq(t) = Ri+L — - Ky =
1(t) it at
d2x ax
p(t)ag = MZE + a2+ (K-K;) x + K1
dte dt

It is true however, that the dynamics of the gas control valve

can be neglected when placed in the conventional heating system,

4,5 Analog Computer Model

Having the system all formulated in the state variable form
the next step is to construct a suitable analog computer setup in order
to analyze the heating system, Provision is made in order to study the
dependence of the performance of the heating system on the system main
parameters: thermostat time constant, thermostat hysteresis, and heat
exchanger time constant, The procedure of building an analog computer

for each component follows standard rules, Figure 4,9 represents an
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analog computer diagram for an on-off thermostat, The hysteresis is varied
by potentiometer E2, The time constant is controlled by using potentio-

meter D3 and D4, Potentiometer El controlls the gain of the thermostat,

For a typical heat éxchanger:

he = 0.0667 Btu/(min) (£t2) (°F)
h, = 0,111  Btw/(min) (£t°) (°F)
c. = 0.24  Btu/(1b) (°F)

g = 0.06k  1lbs/ftd

density of heat = 475 1bs/£t7
exchanger material
4 o ghige = 0,11 . Btu/1b/°F

Using these parameters, an analog computer diagram for the
heat exchanger is constructed as shown in Figure 4,10, Provision is

made to vary the time constant of the furnace.

For the hot air duct, choose the following:

Ay = 1ft3, p = Lft, o = 0,06k lbs/ft’
4 = 20 ft, v = 1340 ft /min., U = 0.49 Btu/(hr) (ft) (°F)
r = 63

The computer set up for the hot air duct follows as shown in Figure 4,10

with the heat exchanger.

The analog computer set up for the simplified room is shown in

Figure 4.11,

4,6 The Heating System Analysis

In Chapter II and III the mathematical model of the room was

developed and validated using an experimental room model. In this chapter
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the remainder of the heating systemvmainly the heat exchanger, the thermo-
stat, the air duct and the gas valve have been modeled mathematically,

An analog computer setup was also constructed for each component, In the
next sections the mathematical and computer models developed previously
are utilized to study the interactions and dynamic behavior of these
elements., A series of measurements were made with the computer model

to determine the affect of thermostat hysteresis, thermostat time con-
stant and furnace time constant on the cycling amplitude and period,

The cycling amplitude is defined here as the difference between the
maximum and minimum room temperatures when the system is operating.
Similarly the cycling period is the time necessary for the room temper-
ature to return to an original Qalue while the heating system is in opera=-
tion, For this definition, the system is assumed to be under constant
outside environmental conditions. The tests and their results are des-
cribed in the following sections,

4,6.1 Effect of Thermostat Hysteresis on Cycling Amplitude
and Cycling Period

In analyzing the effect of thermostat hysterisis, the outside
temperature TO is set at 20°F, and the furnace heat output is adjusted
to give room temperature swings around 70°F. A sudden change in outside
temperature is then applied.

Simulating these conditions on the analog computer model for
the heating system, recordings of the room temperature were obtained for
a set of thermostat time constants and a set of furnace time constants,
Samples of these recordings are shown in Figures 4,12 and 4,13, From the
information gained by these samples, Figures k4,14 through 4,17 were ob-

tained,
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Inspectibn of these curves reveal the cycling amplitude and

period increase with an increase of hysteresis,

4,6.2 Effect of Thermostat Time Constant on Cycling Amplitude
and Period

In order to investigateﬁthe effect of thermostat time constant,
the heat output of the furnace is adjusted to give temperature room swings
around T0°F, The furnace time constant is held fixed, The outside tem-
perature is at 20°F and then is given a sudden change,

From computer results it is seen that as the thermostat time
constant decreases, the cycling amplitude decreases, for all values of
hysteresis, It is also observed that with an iﬁcrease in thermostat time
constant, the cycling period increases, for all values of hysteresis,
These are illustrated in Figures 4,18 and 4,19.

4.6.3 Effect of Furnace Time Constant on Cycling Amplitude and
Cycling Period

In studying the effects of varying the heat exchanger time con-
stant, the thermostat time constant is held fixed, The furnace output is
adjusted to give room temperature swings around 7O°F, The outside tem-
perature is set ao 20°F initially, and then given a sudden change,

By simulating the model developed and validated in Chapters
II, and III of a typical heating system on an analog computer, room tem-
perature was determined and the response was recorded, Samples of these
recording are shown in Figures 4,20, 4,21 and 4,22, In all the following
cases a particular value of the furnace time constant and hysteresis were
choosen, and the resulting values of the cycling period and amplitude

were observed, The furnace time constant took on values from 1 to 5
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minutes and the hysteresis from O to 0,.3°F, From these results the cycling
amplitude and the cycling period were plotted as a function of the furnace
time constant. These curves are shown in Figures 4,23, and k4, 2L,

From Figure 4,23 with ﬁhe exception of the zero hysteresis case,
it is seen that the cycling amplitude increases as the furnace time con-
stant increases, As the hysteresis and the furnace time constant take on
larger values, the rate of change of the cycling amplitude increases, 1In
the case of zero hysteresis, the cycling amplitude increases until ob-
taining a maximum value, and then starts to decrease,

From Figure 4,24 it is seen that the cycling period and its
rate of change increases as the furnace time constant increases for all

values of hysteresis.,

L7 BEvaluation of Results

The studies described above are the first phase in the applica-
tion of the microscopic mathematical modeling of the heating system to
the determination of space heating characteristics and requirements, The
importance of the separate influeces on the system are seen at once by
utilizing the model,

The test performed with the computer model which was described
in previous sections reveals what sort of information the model can best
be expected to give, From Section 4.6.1, it is concluded that the room
temperature cycling period and amplitude decrease with a decrease in the
thermostat hysteresis, In addition it is shown in Section 4.6.2 that for
a small cycling amplitude a thermostat with a small time constant is re-

quired, From Section 4.6.3, it is apparent,that, for a given value of
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hysteresis, the smallést cycling amplitude is achieved by selecting a
furnace with the lowest possible time constant, with the exception of
zero, hysteresis, The zero hysteresis is of no practical importance
because such a control is not physically realizable, If in a given system,
the hysteresis is relatively small, the furnace time constant plays a
minor part in determining the cyclic amplitude., As a consequence of
selecting a small cycling amplitude, the cycling period is small, In
practice, a very small cycling period is not recommended since this will
cause excessive deterioration of the gas valve, Therefore, a compromise
between the cycling period and amplitude should be achieved,

The results obtained in this chapter by studying the effect of
parameter changes on the heating system do agree to a great extent with
many experimental observations in the industrial field of heating systems.
For example, a designer always attempts to devise a thermostat with the
lowest possible hysteresis and time constant. He always tries to design
a thermostat with a large UA product, and a small product of mc , Ef=-
forts in the industrial field are presently being expended to replace the
bimetallic thermostat with a solid state substitute because of its small
hysteresis and time constant,

The results in this chapter indicate what modifications can be
expected from a change in heat exchanger time constant with a various
combinations of thermostat time constant and thermostat hysteresis. That
is to say, the mathematical model deriﬁed for the heating system can pro-
vide information about the relative effect of the three system parameters
on the system performance., It can,moreover give this data, when additional

variables such as a change in outdoor doncitions, or addition of a new
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thermostat is introduced. These results are also in general agreement

with many of the industrial heating system's experimental observations,



CHAPTER V

OPTIMIZATION OF THE HEATING SYSTEM

In the preceding chaptefs an adequate model has been developed
to represent the forced-air gas heating system, In this chapter, the
mathematical model developed previously is used to formulate a method
for optimally controlling the‘heating system in accordance with a pre-
scribed performance criterion, The optimal problem is one of reducing
the room temperature deviation from a prescribed reference value to
zero, while at the same time minimzing the value of some predetermined
performance or cost funetional J . The development of the optimal con-
trol law proceeds in essentially four steps. The first step consists
of a reformulation of the matheﬁatical model in a form which is more
suitable for the application of optimization techniques., In the second
step, an optimization criterion is defined which incorporates the main
objective of minimizing room temperature variations with respect to a
a piéscribed reference temperature. In the third step, the particular
optimization technique best suited for the optimization problem is
chosen, Finally, in the fourth step, this optimization technique is

utilized to construct the optimal control system,

5.1 Reformulation of the Mathematical Model,

It is convenient to begin by reformulating the equations re-
presenting the fixed portions of the domestic heating system in the
state variable formulation; i.e., in terms of a set of first order dif-

ferential equations,



-100=

First, consider the equations describing the dynamics of the
simplified gas-fired furnace as given in Chapter IV by(k4,15) and (4. 16),

These equations may be expressed as follows:
0 = a7Te + T, + aglp
Te = 8T, + a,Tp + aij

where a; , ao , and 83 are constants of the particular furnace. The
state variable diagram for the furnace is shown in Figure 4,6 . It
should be noted that a number of assumptions have been made which render
these constants independent of temperature and therefore, independent

of time, Of course, this leads to a time invariant system,

For the simplified hot air duct it was shown in Chapter IV:

Tl = ¢1Ta + ®2T5
where

o = (r-1)/(r+1)
and

o, = 2/(r+l)

A state variable diagram corresponding to these equations is shown in

Figure 4,8,
We now turn to the modified room model presented in Chapter

III which includes the domestic space and the walls, and is described

by the following dynamic equations:
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It}

QCLT; = (k+QpCp)TR + KT, PCpVTR

1
o

-CR(R+Rg)TR + C(Ri+R)Ty, - (2R +Ro)TR + (2R+Ro+Ri)Ty - RiTo

Rearranging the equations representing the fixed components
(i.e., room, air duct and heat exchanger) of the heating system, results

in:

P = a T ’+ a. T +a_ T 1
R 1R w13 (5.1)
TW = angR + 8.22Tw + 8.25Te + m2 ( 5. 2)
Te = aBlTR + aBBTe + U.5 (5.3)

where the &;4 are constants which may be expressed in terms of @p ,

(Dg;Qyp)Cp;k:V,R:Ro;R‘

; » and C . From the assumptions

made in Chapters II and IV it follows that these 8y values are time
invariant. In eddition, the variables uz and m, appearing in Equa-

tions (5.2) and (5.3) above are defined by:

u3 = a3Tf
m2 = ...Ej;_ TO
C(R{+R)

The set of linear time invariant differential equations ex-
pressed in Equations (5.1) through (5.3) may be expressed in the fol-

lowing single vector differential equation:

X = AX+u+m (5.4)
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where :

— -
T 0 0

X = TW s u = 0 , m = Iy
T ' u 0
e e L

The vector u’ in Equation (5,4) is called the controlled input, the
vector m is called the uncontrolled input, and A is the square
matrix which specifies the linear time invariant system., The matrix

A 1is given by:

11 12 13

2l 22 23
8.5 l 853 2 8.33—J

where
332 = 0

The vector Equation (5.4) represents the state variable formu-

lation of the dynamic equations describing the domestic heating system,

5.2 Formulation of the Variational System

In this section a variatibnal system is formulated to represent
the heating system as referred to some equilibrium position.

First, assume that the controlled input u and the uncontrolled
input m are such that the system is operating in an equilibrium condi-
tion, in other words ¥ = 0, In this case any disturbance which oc-
curs in the system, for example an opened door, entering people, ad-
ditional lighting, etc., causes a deviation in x from its nominal or

equilibrium value,
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To obtain the equilibrium values, set x = 0O , therefore:

Ax  +u +m =0 (5.5)

The zero subscript here refers to the equilibrium vectors,
In order to maintain a desirable room temperature which is a component
of the vector x , it is evident that wu the controllable input to the
system in the equilibrium state takes on some value Uy . To determine

the value of u. required, consider Equation (5.5):

(0}

a1 212 o3| [ Tm) o] 0
o1 e 83| |Ty| = - |0 |7 | ™
b.y 0 & T u 0
ECE - ] % L

By appropriate manipulations this equation becomes:

a2 813 O | T 11 0

app 823 Of |Te | = -|e21| Tr, = |m (5.6)
0 a 1 u a 0

L 35 1 _3% | 31 Mg

From Equation (5.6), it can be seen that knowledge of the de-
sired room temperature TRo and the outside temperature expressed by
m , determines the equilibrium values of the controllable variable Tfo )

and the various state temperatures, Let

[} r ’
X = X5 +08X, X = Xg+ X
and

uo + du

o
il

where 8x , du , and 8x represent deviations from the nominal values

of x, u, and X respectively,
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Since the equilibrium point satisfieg’ the matrix differential

Equation (5.4):
Xo = AXp + U +m (5.7)
Also for any deviation 8&x , du , and 8% :

+8%) = A(x, +8x) +uj +0du+m (5.8)

From Equations (5.7) and (5.8) the following matrix differen-

tial equation for the deviations can be expressed as:

8 = ASX + Bu
Now let
X =7 .
ou = Vv
then
¥y o= Ay +v. (5.9)

This latter equations is the conventional well-known linear
first order matrix differential equation. The components of the vectors
in this equation represent variations in the state of the system. It
is to be noted that in this case this new variational system (5.9) is
valid for large swings from equilibrium since the original dynamic
system is linear,

The optimization problem now reduces to one of starting from
some initial disturbance y, and driving the system (5.9) to the
equilibrium state and at the same time constraining the original system

to operate in such a way so as to minimize the value of some cost func-

tional J(y,v).
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5.3 The Optimization Criterion

For a given dynamic system, the optimization criterion may as-
sume a variety of forms depending on the requirements to be met, This
is an important step in the design of the heating system since it deter-
mines to a large degree the nature of the resulting optimum controller,
The main objective in the optimization of a gas-fired forced-air heat-
ing system is to reduce’and penalize room temperature variations due to
distrubances, and is primarily used here to define the optimization
criterion,

It is traditional in approximation problems arising in many
fields to use a quadratic criterion., The square penalizing here will
discriminate heavily against occasional large room temperature varia-
tions, This criterion expresses the philosophy that the only important
aspect of the control action is following the desired output temperature
and only imperfections iﬁ following are to be penalized. This philosophy
is well justified as long as the type of control used does not have any
significant physical limitations. In the case of a gas-fired heating
system, physical limitations are imposed by the heat exchanger.(ju)
There is a minimum amount of energy input that the heat exchanger can
~glve due to the characteristics of the gas burner,(Bu) There is also
a maximum amount of energy which a heat exchanger can give to the system,.
Therefore in order to avoid the saturation effect of the heat exchanger,
a term in the square error criterion is added that is proportional to the
square of the control signal, Having these two factors in mind, the op-

timization criterion for the forced-air heating system can be represented

as follows:
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T

I(y,v) = [ [d®(o) + v2(0)]ao (5.10)
[e] n n

B
] W
i,

where J(y,v) is the error criterion to be minimized, ¢ is a dummy
time variable, T 1is the period over which the minimization takes place,

and gq.(0) is defined as:

—;1(0) _i 0 E; —;1(;;
ale) = |g0)] = |0 0 O yp(o)
) B R R P

The first term in the integrand of the quadratic criterion
(5.10) represents the penality on the room temperature variations, and
the second term is introduced to avoid saturation of the control signal

and also for power limitation,

5.4 The Optimal Control ILaw

In recent years, many elegent mathematical techniques have
been presented evolving the theory of optimal control., Most of them
are based on the calculus of variations, the maximum principle and the
dynamic programming, Excellent contributions to the theory of optimiza-
tion can be found in the literature, Much of the work, however is of
a mathematical nature, since it was written by mathematicians,

In this section one of those optimization techniques men-
tioned above which is most suitable is used to solve for the optimal
controller of the optimization criterion defined in section (5.3).

In many of the cases treated by the calculus of variations and the
maximum principle techniques, a control law of an open loop nature re-

23,1k4)

sults.( This is not desirable in the heating system case, since
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unwanted distrubance signals at the output of the system (room tempera-
ture) will cause errors, Meanwhile, the method of dynamic programming
applied to this linear time invariant heating system 1s guaranteed to

(14,23)

provide a closed loop or feedback control law for a given set

of heating system parameters, which satisfies the optimization criterion
defined in section (5.3). The Euler-Lagrange equation resulting from
the application of the calculus of variations is always unstable and
poses some difficulties.(lu) This provides the dynamic programming
method with another advantage, since it does not provide such difficulty.
Also, if the optimization process is carried over a semi-infinite in-
terval (as T —w) , difficulties will arise in using the calculus of
variations, and the maximum principle methods.(lh) However, as will be
seen, the method of dynamic programming overcomes such difficulty. For
these reasons, the method of dynamic programming is thought to be the
most suitable method for the optimization of the heating system unaer
the optimization criterion represented by (5.10).

Bellman's Dynamic programming is basically an optimization
process that proceeds backward in time; that is, the solution is com-
puted over the last interval of the process and successive solutions
are computed for the remaining intervals of decreasing time until the
total solution is obtained for the entire process.

The optimization problem now at hand is one of starting from
some initial temperature disturbance Yy, , and driving the system
v = Ay + v to the equilibriﬁm state while constraining the original

_ system to perform in such a way as to minimize the value of the cost

functional J(y,v) . Here the period of optimization is allowed to be
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very large (i.e.,, T —) , since the heating system has to be optimized
over a long period of time,

In order to apply the functional equation technique of dynamic
programming, this optimization problem is embedded within the wider prob-
lem of minimizing:

fT [qi(c) + vi(o)]do
n=1t
subject to the heating system Equation (5.9) and the initial condition
y(to) =y, , with t ranging over the interval (t0,T). Let the minimum

of this cost functional be:

> T

B(y,t) = ®R L[ [g(0) + vE(o) lao (5.11)

Invoking the principle of optimality to Equation (5.11), the functional
equation becomes:

. 3 0t
E(y,t) = min { nz J e [q2(0)+vi(c)]dc+ E(y+ye , t+e) }

=1 % n
(5.12)

which is reduced to the following expression (by integration and Taylor

series expansion):

. 3 o 3. .
E(y,t) = "J° {n§1 [qn(0)+Vi(c)]e + B(y,t) + ﬁglyngf_r; ¢ + %‘E eh+a ()

Simplifying:
min { % [ 2(c)+v2(c)] + % y O9E §§_} +4a (e) = 0
v n=1 n n J T

. where
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Therefore

3 3
. ) 2 . OE OF
één {nél [ap(o) + vi(o)] +n§1 Tt % } =0 (513

The minimizing control signal vector v¥*(g) is obtained by minimizing
the sum of terms within brackets with respect to each signal of the con-
trol vector, Minimizing now with respect to v3(o) , the only non zero
component of the vector v(o) , and keeping in mind the relation between

the vectors q and y , therefore:

vy + gE— -0,
V3
where
v; = optimum control signal.

Consequently, the condition for minimum error is:

V%(' = = ]—_' %E— (5.1)-,-)
2
, YB
In order to determine the optimum signal v¥ , ~§E for minimum error
3

should be determined first, By substituting Equation (5.1L4) and the
value of ¢ 1in terms of y into the functional Equation (5.13), the

condition for minimum error becomes:

5 .
5’ QE_ + a._E.. = 0 (5-15)

1 (JE \@
y§-+z( )'+1’l=l nayn at

5
As seen from Equation (5.15), the condition for minimum erroris in a
partial differential form, To solve such an equation a power series
solution is assumed, then the coefficients in the series are found by

direct substitution.
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Since the integrand of the error criterion function is a quad-

ratic expression and the dynamic system is linear, the minimum error

function E(y,t) is also quadratic and can be written as:<53)
3 2 2
B(y,t) = k(8) + 2 o (t)yy(t) + L L B (8)3(8)w ()

(5.16)

where

where k(t) , k (t) , kp,(t) are the parameters to be determined from
Equations (5.15) and (5.16). By partial differentiations of Equation

(5.16), (3E(y,t))/(dy,) and (3E(y,t))/(dt) are written as follows:

3
OE(y,
%fﬂ = &y (6) +2 5k (8)y, () (5.17)
and
3 5 3
éEaZ’t> = kI(t) + L kﬁ(t>ym<t> * o (0 (%)

(5.18)

If these partial derivatives are substituted into Equation (5.15) the

condition for minimum error becomes:

; % % % .
2 1 ' '
y] + H»[k5 + 2 mZi knmy +k L k'y o+ IR Y Ty

(5.19)
P ki e25 b
+ k + 2 k = 0
n=1 : nyn yn m=1 nmym]

The condition for minimum error expressed by (5.19) is satis-
fied for all finite values of y,(t) , assuming the k-parameters are in-
dependent of yn(t) , only if each of the coefficients of the constant
term, yp(t), and yn(t)yp(t) in Equation (5.19) vanishes, where

n,m = 1,2,3 , Therefore by equating the coefficients of the constant
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term, y, and ypypy ‘each equal to zero, the following simultaneous

first order differential equations in the k-parameters result.

K,k ,k.,k ,k ) = k'

fl( 18 r Ky Kpp s ags Ky oKy 55K
£5(k Ky ke, Ky Ky Kop Ky Ky, Ky 35 Kp5) = g
£3(k, Xy, ko ks, k9, Kop Kz, Ky 0, K03, kp3) = kg (5.20)
f10(k, ky, ko, k3,k11, ko0, k33, k10, k13,k03) = Kbz
where: f1 , fo ,..... ;10 are in general nonlinear functions of the

k-parameters, The primed k's refer to the derivatives of the k-para-
meters with respect to time,

This method of assuming a soluticn leads to the reduction of
the problem of solving a partial differential equation to the problem
of solving a set of first order ordinary differential equations. The
boundary condition for the k-parameters are deduced directly from the
required boundary condition on the minimum error function, From the
expression for minimum error function for t = T , the boundary condi-

tion is

which means that

T) = 0 (5.21)

The problem becomes now one of finding the optimum control

system of a one-point boundary value problem, The parameters of the
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optimum control system k(t) , k (t) , kp,(t) where myn =1,2,3 can
be determined from the set of ten differential Equations (5.20) with
boundary conditions given by (5.21). It is to be noted that the number
of parameters are ten and the number of initial conditions expressed
by (5.21) are ten.

The solution of the set of differential Equations (5.20) as
T tends to « , must assume steady state, If the k-parameters assume
steady state values, then the differential equations given by (5.20)
reduces to a set of algebraic equations, Therefore, when the dynamic
system is time invariant, the error function is quadratic, and the
optimization process is carried over a semi-infinite time interval, the
parameters of the optimal gontrol law become time-invariant.

Since the heating system is to be optimized over a semi-in-
finite time interval for a quadratic optimization criterion, the minimum
value of the error functional becomes only a function of the state

variables and not a function of time and expression (5.11) becomes:

By) = TS [ (o) + v (o) lao (5.22)

v on=l n
Invoking now the principle of optimality to Equation (5.22), the functional

equation becomes:

. 3
Ey) = " {nzi {t+€ [Q§(c)+v§(o)]dc + E(y+he)}  (5.23)

which is reduced to the following expression by integration and Taylor

series expansion:

. 3 3
By) = ™M{% [@(0)+R(0)le + B(y) + & 7 B} +a (e)

\2 . n:l n n l’l=l n ayn
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Since A (€) -0 as ¢ —0 , therefore:

o 2 2
mn { T lay(0) + vy(0)] + g O SRICI D

Applying now the minimization process to Equation (5.24) simi-
lar to the minimization of the functional in Equation (5.13), and hav-
ing in mind that (JE)/(dt)= 0 for the semi-infinite time interval case,

therefore:

v¥ = - i ég_ (5,25)

which defines the optimum control vector, and the condition for minimum

error (5.15) becomes:

3
1 (OE ¢ OE
= = = 0 .26
= <5y3> f (5.26)

Expression (5.16) for the semi-infinite time interval case takes the

following form:

3 3 3
BE(y) = k+ mgl K (t) + §1 151 kel By (t)  (5.27)

where k, ky , and kp, where myn =1,2,5 are fixed constants, Dif-
. ferentiating Equation (5.27) now partially with respect to Yp o

n=12,3 gives:

B k42 ;l K (%) (5.28)

and

OE
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By substituting (BE)/(ByB) from (5.29) into (5,25) gives:

k
I - -
L A i L R P R A (5.20)

Therefore it is necessary to determine the parameters k5 3 k31 s k52 s
and k55 to define the optimum control signal,

Substituting now from Equations (5.28) and (5.29) into the con-
dition for minimum error (5.26), and also using the vector matrix dif-

ferential equation & = Ay + v , the following is obtained:

2 12 2 : 2L % (3 5
vy - E [k5 +4k3 mél km3ym+u( mél km5ym) ]+n§l (mél amnym)[kn+gsglksny81 =0
(5.31)

By equating the constant term in Equation (5.31) to zero, since this
equation is satisfied for all values of y,(t) , the following is ob-

tained:
ks = 0 (5.32)

Similarly for the coefficient of Yy ¢

!
(@)

3
Kk + nél a K

m = 1,2,3

and since this is true for all finite values of 8n therefore

For the coefficient of yi :

3

o
1 - kl5 + b ngl a, k=0 (5.33)
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For the coefficient of yg :

3
2
- i+ b L oeplpy = O (5.54)
For the coefficient of yg :
5 3
-k +4 Y a k =0 (5.35)
33 n=l 3n 3n
For the coefficient of V1Yo ¢
3
" kg ks + L (e Ky +ag k) o= 0 (5.36)

For the coefficient of yly5 :

3
- kli K3 + néﬁ (aln k}n T8z, kln) = 0 (5.37)

For the coefficient of NEVERE

3
% (a2n k5n++ aBn_kgn) == 0 (5.38)

- k25 k55 + 2
Equations (5.33) to (5.38) are in general nonlinear algebraic
equations the parameters kmn » myn =1,2,5 and requires a digital
computer for solution, In the next chapter a solution of these para=-
meters for a particular heating system on the digital computer will be
shown,

Equation (5.30) now becomes:

%* = = [k k k .
v} [ R 55y3] (5.39)

The control function v; , derived here is referred to as the optimum

control law,
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This optimal control scheme for the variational system may be
combined with the equilibrium system developed in Section (5.2) to obtain
an optimal feedback system for the heating process. In block diagram
form the system may be schematically represented as shown in Figure (5.1).
In this diagram a controller is provided which compares the values of
the environmental state and the desired state and commands the appropriate
equilibrium input. It should be noted that the number of feedback loops
is equal to the order of the heating system; it is noted also that the
feedback signals are the measurable state variables.

Thus, an optimal heating system for a defined quadratic cost
function has been developed which has the desirable property of providing
feedback loops to account for disturbances in the system, This optimum
law will be applied to a particular heating system in the next chapter
to develop an opbtimum controller, The optimal heating system is then

simulated on an anlog computer to study its behavior.,
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CHAPTER VI

THE ANALOG COMPUTER SIMULATION OF THE OPTIMAL HEATING SYSTEM

In Chapter V, an optimum controller based on a quadratic error
criterion was defined’for the heating system.mathematical model devel-
oped in this study. For optimization over a semi-infinite time interval,
the feedback loops of the optimal heating system were shown to be time-
invariant, and consistihg of time invariant gains multiplying the meas-
ured state-signals, However, the parameters that define the optimum
controller must be determined for each particular heating system by
solving the set of Equations (5.36) to (5.41) using either an analog or
a digital computer., 1In this chapter, the particular heating system com-
ponents (including: the room, the air duct, and the heat exchanger) con-
sidered in Chapter IV are combined to represent the fixed portion of
the dynamic system, With this as the given system, the optimum controller
is then determined according to a quadratic error criterion with the re-
sults developed in Chapter V, The parameters of the optimum controller
are determined through the use of the 7090 digital computer facility at
the University of Michigan, The resulting optimum heating system is then
simulated on the electronic analog computer in order to investigate its

performance,

6.1 The System Equations:
The following equations were obtained for the heating system

components (heat exchanger, air duct, and the room) studied in Chapter IV,

T = - 0.191 Tp + 0,04k22 T_ + 0,097 T (6.1)

-118-



-119-

0.2278 Tp - 0,0974 T, - 0.097 Tg + 0,0184 T, (6.2)

E:ii
]

0.25 Tg - 0.489 Te + 0.239 T¢ (6.3)

=
[¢)]
1]

These linear, time invariant, first order differential equations re-
present the dynamic process whose performance we wish to optimize, Equa-

tion (6.1), (6.2), and (6.3) may be written in the vector form to yield:

X = AX+u+m,
where
?11 a1 al; -0.191 0.0k22 0.097
A = an] ano 803 = 0.2278 -0,097k4 -0,097
a3) a3 a33 0.25 0 -0.482_
0 0
u = 0 Tf ’ m = 0.0l8l¥ TO
0.239 0

The variational vector matrix differential equation as derived in Chapter

V for this heating system now becomes:

Yy = Ay +v
where
KA B
v = 2 = 0 oT¢
v 0.239
"3 :
where

v, = Vo, = 0, and vs = 0.239 8T,
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and
- o
1 8TR
yo= |V = |B
I3 6Te
where
yl = STR
y2 = GTW
y5 = BTe

6.2 The Parameters kzj, k3o, and kss of the Optimum Controller

The square matrix A defined in Section 6.1 determines the
system under consideration, and therefore the k parameters df the
system as defined by Equations (5.36) to (5.L41) may be written as

follows:

1 - k2 + 0,388 Ky - 0.76% k) + 01688k, = 0 (6.4)

31 2
B} k%g - 0,388 kzp + 1112 kyp - 0.38%6 kpp = 0 (6.5)
- ko - 1.956 ks + K = 0 (6.6)
33 ) 33 31 - |

- kg ksp - 0.2884 kyp + 0.0422 kpp + 0,097 kzp + 0.2278 kyp - 0.097 k3p = O

(6.7)
- k51k35 - 0.68 kBl + 0.0l+22 k52 + 0,097 k55 + 0.25 kll = 0 (6,8)
- kzpkzz + 0.2278 sy +0.586k k3p = 0,097 kaz + 0.25 kjp = O (6.9)
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The University of Michigan Control System Algorithm Program
employing a 7090 digital computer was used to solve for the k-parameters.
This program was basically obtained from IBM, with some modifications
added. The modified program is entitled CSAP and is currently available
at the University of Michigan Computing Center Library. This program
appears as a subroutine on the system disc and may be entered simply
by calling CSAP, Once the program has been called, it will function
exactly as described in the user's manual.(55) The solution for this

particular system is:

0.2065 ,

kll 1, 4449 s k22 = 1,3273 , k35

6.36 .

1l

k

15 0.805 , kgy = 0. 4467 , Kz

From Equation (5.39) the optimal control signal becomes:

*
o= (0. L4h67 v, + 0.36 y, + 0.2065 y3) ,
or '
0.239 8T, = = (0.4467 8Ig + 0.36 8Ty + 0.2065 8T¢) (6.10)

Hence, the block diagram of the optimum heating system using this con-

trol law follows as shown in Figure 6.1,

6.3 Analog Computer Simulation of the Optimum System:

6.3.1 Fixed Part of the Heating System

By making the time scale such that every second on the elec-
tronic analog computer corresponds to four minutes of real time, the
differential Equations (6.1), (6.2), and (6.3) representing the optimal

heating system become:
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- 0,764 T +0,1688 T, + 0.388 T,

e =
T, = 0.9212 Tp - 0.3896 T - 0.388 Ty + 0,0736 T,
r‘I'e = TR - 1.956 Te + 0.956 Tf

The temperature scale is selected in such a way that one volt is equiv-
alent to 2°F, As a matter of fact, the model developed previously in

Chapter IV is used here,

6.3.2 The Simulation of the Optimum Controller

In Section 6,2, the optimum control law was shown to be:
0.239 8Tp = =~ (0.4467 8Ty + 0.36 8T, + 0.2065 8T, )

where an ’ 5TR s BTW , and aTe are the variations of temperatures

from equilibrium values, and are defined as follows:

BTf = T

8Ty = Ty =Ty 5, Ble = Tg - T .

Therefore, to generate &Tp , the variational control signal, it is

necessary to first generate the equilibrium values of the temperatures,

T T B TW , and Te .

fO ’ RO (o] o]

6.3.3 Equilibrium Values:

It was indicated in Chapter V that given a set room temperature
TRO , and an outside temperature T, , the equilibrium values of the con-
trol signal Tfo and the state signals TWo and Teo can be generated

by the following procedure:
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.

For equilibirum conditions: T = TW = ée = 0,

and therefore under equilibrium conditions (6.1), (6.2), and (6.3) become:

Tfo = - 1,045 TRO + 2,05 Teo (6.11)

Teo = -0,43 TWO +1.97 TRO (6.12)

T, = 237 Tq =-Tg +0.,19 T, (6.13)
o} O (0]

From these latter equations it follows that having TRo , and
T, as set inputs, the equilibirum values Tfo s Teo , and TWo may be
generated on the analog computer as shown in Figure 6.2.
Having established the equilibirum values generated as shown
in Figure 6.2, they may be now combined with the fixed portion of the

heating system and the optimum controller shown in Figure 6.3 to

provide the analog computer simulation for the optimum control system,

6.4 Analysis of the Optimum Heating System:

In this section, three runs on the optimum heating system
simulation are considered., These runs were made for the purpose of
analysis and present the results of selecting a gquadratic performance

criterion., The situations considered in the three runs were:

l. First Case:
The room temperature TR is set at TO°F, and the outside
temperature is initially set at 20°F, The system is therefore initially

in the equilibrium state of:
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W — r—' —
T 0
R, T
Xo = TWo = 52,9 F°,
Te,, 115
) Tfo = 163 ° 8°F

The outside temperature To 1is then suddenly changed from 20°F to O°F.
For these conditions the room temperature Tp , the surface wall tem-
perature T, , the heat exchanger wall temperature T, , and the control
signal temperature Tf were recorded, These temperature responses are
shown in Figures 6.4, 6.5, 6.6, and 6,7 respectively,

From Figure 6.L, it is evident that the room temperature Tp
decreases gradually from the time the disfurbance occurs until the time
when the variation 8TR becomes =0,15°F; a total of 16 minutes, After
this, it begins to increase at a slower rate back toward its original
value, In 40 minutes, the room temperature attains the value of 69,9°F,
This is expected, since the optimization criterion was considered over
a semi-infinite time interval, The optimum controlsignalv Tf as seen
in Figure 6,7 increases gradually from the time of the drop in the out-
side temperature, This effect occurs to compensate for the heat loss
caused by sudden distrubance, In Figure 6,5, it is noted that the sur-
face temperature of the wall initially falls rapidly to 45.3T7°F, then
it gradually begins increasing until it reaches L9°F, Figure 6.6 in-
dicates the effect of the disturbance on the heat exchanger temperature
Te . This temperature initially drops to about 109°F because of both
the decrease in room temperature and the decrease in surface wall tem-
perature, It then begins to gradually increase until it reaches within

2,4°F of its original vélue. This is caused by the increase in the flame

temperature,
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In the Graphs below:
All Variations are Measured from the Original Equilibrium Position.

0 8 16

Figure 6.7. Flame Temperature Variation Response for Case 1.

BTR
Figure 6.4, Room Temperature Variation Response for Case 1.
8T,
Figure 6.5. Surface Wall Temperature Variation Response for Case 1.
- 4
8Tg
Figure 6.6. Heat Exchanger Temperature Variation Response for Case 1.
- \
8Tp A
TIME IN MINUTES
) 1 ] ] 1 ] ] ] ] ] 1 ] 1
2k 32 Lo 48 56 64 T2 8o 88 9 10k 112
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2., Second Case:

For this case the room temperature is set at 70°F and the

outside temperature is initially at O°F, The equilibrium values are:

= e

VTR; 70

X, = TWO = L9 °F ,
| B
e = 182,8°F

The outside temperature then rises suddenly to 40°F, Figures 6.8 to 6,11
show the state variables and control signal responses to this disturbance,
The room temperature response is shown in Figure 6.8, This temperature
increases gradually to 70.15°F then falls to T0,05°F. The wall surface
temperature shown in Figure 6,9 rises as a result of the disturbance

and then it decreases until it reaches 63°F, The heat exchanger tem-
perature also rises by 6°F and then will decrease gradually to 110°F,
This result is illustrated in Figure 6,10, Figure 6,11 shows the op-
timal control signal, It is apparent that the flame temperature

changes gradually to 153,5°F, which implies that the disturbance caused
by an outside temperature rise from O°F to LO°F, decreases the flame

temperature by 29,3°F to keep the room temperature to within 0,1°F

of TO°F,

3, Third Case:
The room temperature is set at T7O°F, and the outside tem-

perature initially maintained at O°F, This makes the equilibrium values

of the state variable:
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In the Graphs below:
All Variations are Measured from the Original Equilibrium Position.
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Figure 6.8.

Room Temperature Variation Response for Case 2.
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Figure 6.9. Surface Wall Temperature Variation Response for Case 2.
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Figure 6,10, Heat Exchanger Temperature Variation Response for Case 2.
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[Tg, | 70 |
X, = TWO = ol °F,
Te, 117
- L. 1
Tfo = 182,8°F

Now the outside temperature T, 1is suddenly increased to 20°F, Figures
6.12 through 6,15, indicate the state variables, and control signal re-
sponses to such a disturbance, The maximum room temperature variation
observed, 8T , is 0.15°F, and the final value is less than 0,1°F,

The control signal variation is seen to be -19°F meaning that the heat
exchanger must supply a flame temperature i% which is 19°F less than
the original value to compensate for a 20°F outside temperature rise

from O°F.

6.5 Conclusion

The results of this chapter indicate that the design specifi-
cations for the heating system can be met, The electronic analog com-
puter simulation of the optimum heating system shows that successful
automatic feedback heating systems can be achieved utilizing the
quadratic error criterion, For the various outside environment con-
ditions and disturbances, the optimum system appears to drive the room
temperature TR to within 0,1°F of the equilibrium or set’value, The
control signal Tf is driven to a value in each'of the conditions
studied which agrees with practical requirements as far as the level of
. the signdl is concérned, In other words, the control signal does not
assume upper values which cannot be implemented practically, and also

does not take on lower values which a physical heat exchanger is unable

to supply.



°p

10

-10

20

10

=10

=20

-132-

In the Graphs below:

All Variations are Measured from the Original Equilibrium Position,

Figure 6.15. Flame Temperature Variation Response for Case 3.
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Figure 6.12. Room Temperature Variation Response for Case 3.
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I~ Figure 6.13. Surface Wall Temperature Variation Response for Case 3.
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B Figure 6.14. Heat Exchanger Temperature Variation Response for Case 3.
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If this system is to be implemented in practice, some practical
problems have to be solved, The implementation of this system requires
knowledge of the various system constants appearing in the matrix A and
elsewhere, Some of these parameters may be difficult to measure however,
an estimate can be reached by the knowledge of the construction details
of the system, The other problem might come in adding complex equipment
to measure the state variable T, which is the heat exchanger temperature,
However, the remainder of the state variables will be easy to measure,
Another practical problem arises from the fact that this system requires
a furnace which is able to be modulated in a continuous fashion, For-
tunately great effort is being expended at the present time in industry
in order to produce such systems, A modulation system has been designed
and tested at the Maxitrol Company in Detroit, Its superiority over an
on-off system was demonstrated when tested in a model house, however,
for economical reasons it cannot be used for domestic heating at least
at the present time,.

However, disregarding for a moment the practical problems which
arise, the system above does represent an optimum for the configuration
and cost function chosen from the theoretical point of view, Thus it
represents a bound or a standard with which conventional or sub-optimal
systems may be compared, Also, for some specialized installations with
rigid performance standards it may be feasible to utilize a system such
as this,

From an overall viewpoint, although the particular optimal
_system developed here may not be readily applied to current domestic

heating systems mainly because of economical reasons, it seems that
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valuable information might be gained by investigating sub-optimal adapta-
tions of this type of system., In the next chapter a sub-optimal controller
for the conventional forced-air domestic heating system is proposed based
on results from the optimal control law derived in this chapter., This
sub=-optimal controiler is simulated with the conventional heating system
on the analog computer to compare results with the conventional controller,

and the optimum controller,



CHAPTER VII

A SUB-OPTIMAL SYSTEM

In the preceding chapters the theory of optimal control has
been used to evaluate the form of the control signal and the structure
of the heating system for a quadratic error function. It was apparent
from the complexity of the equations resulting from the optimal-
feedback control system that a digital computer was needed to solve
the equations. Therefore, before one attempts to obtain optimal solu-
tions numerically one should first consider the possibility that a con-
ventional controller might do almost as well as the optimal one. In
addition, if the optimum system proves to be uneconomical, an investi-
gation should also be made for the use of a sub-optimal controller.

In a conventional heating system, the thermostat (system
controller) senses the room temperature Tp and sends a signal to the
furnace which turns it on if the room temperature is lower thdn a set
value, and turns it off if the room temperature is higher than this set
value. The optimum control system derived in the previous chapter calls
for sensing not only the room temperature Tp but also the wall surface
temperature Tw and the heat exchanger wall temperature Te . These
three signals are fed back to the heat exchanger through a set of feed-
back gains and thus continuously vary the output of the furnace. A
fourth sensor is also necessary for monitoring the outside environment
temperature T, which determines the equilibrium operating values.
~ Thus, to implement the optimum system in practice, four sensors and

their associated feedback gains are needed to sense the state variables,
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and continuous modulation must be added to the heat exchanger. In ad-
dition summing equipment is needed to produce the variations STR, 0T
0T, and 8Tg . Thus the optimum system is in general expensive unless
it is used for a specialized installation with rigid performance stand-
ards which are independent of cost. For domestic heating it would be
particularly costly due to the additional expenses attributable to a
continuously modulated furnace, four temperature sensors, and the asso-
ciated circuitry making the optimum system impractical. Therefore, it
is logical to attempt to devise a sub-optimum heating system, which

(1) can be implemented practically, (2) is acceptable economically, and
(3) yields improved performance compared to the conventional system.

In this chapter such a sub-optimal control system is proposed. It is
based on the properties of the optimal system developed in the previous
chapter. This sub-optimum system is simulated on the electronic analog
computer, and compared with a conventional control system and the optimum
system. The chapter is concluded by describing a method for implement-

ing the sub-optimal controller.

7.1 The Proposed Sub-Optimum Heating System

The principal properties of the optimum heating system developed

in Chapter 5 may be summarized as follows:

(a) Three state signals, the room temperature Tg , the sur-

face wall temperature T, , and the heat exchanger temperature T, are

W
combined to form the control signal.
(b) Three feedback gains are required to provide the proper

weighting of the state signals Tp , Ty , and T, .
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(¢) An eﬁternal sensor is necessary to sense the environmental
temperature T, , and generate the equilibrium values.

(d) Summing equipment is employed to generate the variations
8Tg , 8Ty , 8Tg , and OTp .

(e) A heat exchanger with the capacity for continuously modu-

lating flame temperature is required.

For a conventional heating system the main properties can be

summarized as follows:

(a) A single signal, the room temperature TR , 1s used for

control purposes,

(b) A heat exchanger with only an on-off capacity is used.

The characteristics of any practical sub-optimum heating sys-
tem which are proposed should draw heavily from the properties of the
optimum heating system., To develop a sub-optimum system incorporating
the properties of the optimum and conventional systems, the following

reasonings are used:

(i) In present day forced-air gas heating systems a heat ex-
changer with continuous modulation equipment is considerably more ex-
pensive than one without such equipment. The improvement in the system
due to adding such equipment versus the cost of the equipment is not
acceptable at the present time to the consumer. Therefore it is es-
sential that the sub-optimum system utilize an on-off heat exchanger.

(ii) 1In both conventional and opfimum heating systems room

temperature TR is sensed, and controlled. Therefore, it follows that
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room temperature Tp should be controlled in any sub-optimum system
which is proposed.

(iii) In‘the optimum heating system, the wall temperature T, ,
is sensed and utilized for control purposes. This means that the Ty
sensor attempts to predict environmental phenomena, by sensing the wall
surface temperature, and uses this prediction to send a signal to the
furnace to react before significant changes occur in the room tempera-
ture. TIntuitively this principle can be applied in a sub-optimum sys-
tem, Therefore, it is suggested here that the sub-optimum system in-
clude a sensor to monitor Tw and feedback a signal to improve varia-
tions in the room temperature. TWO the equilibrium temperature of the
wall surface is set at a value corresponding to a room temperature of
70°F and the average outside temperature under consideration.

(iv) The heat exchanger temperature Tg sénsed in the opti-
mum system should bot be sensed in the sub-optimum for economical rea-
sons.

For the reasons stated above the proposed sub-optimum system
has the following main characteristics.

(a) Heat is applied from a heat exchanger in an on-off fashion.

(b) The room temperature Tg 1is sensed and fed back for com-
parison with a reference signal.

(¢c) The surface wall temperature T, is sensed and fed back
with an appropriate gain factor.

This proposed sub-optimum heating system is shown schematical-

Ay in Figure 7.1.
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7.2 Analysis of the Sub-Optimum Heating System

The sub-optimum system described in Section 7.1 was simulated
on the electronic analog computer for the purpose of investigating and
analyzing its performance. The fixed portions of the heating system
used in Chapter 4 were used in order to compare the different control-
lers developed thus far, namely; conventional, optimum and sub-optimum
controllers. The analog computer simulation for the sub-optimum heat-
ing system is essentially the same as the one used for the conventional
heating system developed in Chapter 4, with the addition of a feedback
loop from TW . Thus it is not presented here,

In this investigation, the heat output of the furnace is ad-
justed so that the temperature of the air circulating in the heating
system is 120°F when it is leaving the furnace during the on-period.
During the off-period the temperature of the air is considered to be
70°F. The outside temperature TO is held fixed at 20°F, and then al-
lowed to drop suddenly to zero., Computer runs were made for the system
with room air temperature Ty feedback alone, and then with both room
alr temperature Tp and surface wall temperature T, feedback., Let
k; Dbe the feedback gain for Ty. In each run, the room air tempera-
ture response cycling amplitude and period were recorded., Computer runs
were made for different T, feedback gains. For each of these runs,
the thermostat time constant, heat exchanger time constant, and the
thermostat hysteresis were varied and plots of the cycling amplitude
and period versus the feedback gain of T, were obtained for various
sets of parameters, The plots and samples of recordings of these in-

vestigations are shown in Figures 7.2 through 7.9.
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In Figure 7.2 three curves are displayed. These curves indi-
cate the dependence of the cycling amplitude on the feedback gain of

T for three values of thermostat hysteresis, q , and for a thermostat

w

time constant, T , of 0.4t minutes and furnace time constant, 7p, of
1.6 minutes. An examination of the curves shows that for the range of
feedback gain considered, the cycling amplitude decreases as a function
of feedback gain and then begins to eithef increase slightly or become
constant, Thé case of a zero feedback gain for Ty represents the con-
ventional controller. For a hysteresis value of 0,18°F the cycling
amplitude decreased froﬁ 0.63°F to 0.33°F when the controller was changed
from a conventional form to a sub-optimal form with a unity feedback
factor. This indicates an improvement of about 50% in the room tempera-
ture deviation., Figure 7.3 displays the corresponding curves for the
cycling period. It reveals that by starting with a higher value of
thermostat hysteresis, the cycling period decreases with feedback gain,
and the rate of decrease of this period drops with the thermostat hys-
teresis. For the case of a-zero hysteresis the cycling amplitude tends
to increase slightly after it reaches a minimum,

Figure 7.& displays three curves showing the cycling amplitude
versus the feedback gain for different valuesbof heat exchanger time
constant. The thermostat ﬁime constant was kept at 0.4 minutes and its
hysteresis at 0.12°F, Examiﬁation of the curves indicates that for
heat exchangers of time constant 5 minutes, 2.5 minutes, and 1.6 minutes,
the cycling emplitude is a decreésing function of ﬁhe feedback gain of
TQ . For values of feedback gain k, > 0.9 the cycling amplitude be-
gins to be constant. Theréfore, when a’heat exchanger of a time con-

stant of 5 minutes is used with the heating system and a conventional



°F

CYCLING AMPLITUDE

CYCLING PERIOD MIN.

-143-

Figure T.L.

Cycling Amplitude-kw Plots with 74 as a Parameter.

T=04min, q=012 °F

B T =0.4min, q =0,12°F
~ Tp = 5 min
\ T = 2.5 min
i \ TR = 1.6 min

l | ] | ] ] >
0 2 b .6 .8 1 1.2 k,

Figure 7.5. Cycling Period-kw Plots with Tp as a Parameter.
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Temperature Scale: 0.5°F/cm
Time Scale: 1 min/mm

Room Temperature

Figure 7.8, A Sample of Recordings.

Room Temperature

Tp = 0.4 min, Tp=1.6min, q= 0°F

k, =0

Figure 7.9. A Sample of Recordings.
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controller, it shows a 0.657°F cycling amplitude and 0.55°F cycling
amplitude when used with the suggested sub-optimal controller with
0.725 gain, i.e. it shows an improvement of approximately 19% when
the sub-optimal controller is used. Figure 7.6 shows the correspond-
ing cycling period set of curves. At lower values of heat exchanger
time constant, the cycling period decreases gradually, and as the
heat exchanger time constant increases, the room temperature cycling
period decreases and subsequently begins to increase at a very small
rate,

Figure 7.6 displays a graph indicating the cycling amplitude
versus the feedback gain, when the thermostat time constant is varied
as a parameter. The heat exchanger time constant was held constant
at 5 minutes, and the thermostat hysteresis at 0.12°F., These curves
further demonstrate that the room temperature cycling amplitude is a
decreasing function of gain, until k, > 0.81 where it starts to level
off. Figure 7.7 shows the corresponding cycling period behavior.

Therefore, it can be stated generally that the room tempera-
ture cycling amplitude decreases as the feedback gain of the surface
temperature T,, increases and it levels off at k, > 0.8. The cycling
period is consistently within practical values i.e. within cycling peri-
od values which do not lead to working the mechanical parts of the heat-
ing system at a very high frequency. It is to be noted at this point
that the practical implementation of a gain different from unity re-
quires more circuitry. Thus, it is recommended for economical reasons

to use k,; =1 for the porposed sub-optimum controller.
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Reviewing the analysis of these graphs indicates a definite
improvement in the sub-optimum system over the conventional heating sys-
tem. This improvement is apparent from the differences in the various
room temperature cycling amplitudes. Therefore, it may be concluded
that the addition to the conventional heating system of a feedback sig-
nal which is proportional to the temperature of the wall surface, improves
the performance of that system.

If either the sub-optimal or conventional system is to be com-
pared with the optimal system, the basis of comparison must be the de-
fined quadratic performance criterion. It is true by definition that the
optimal system developed is the best with respect to this criterion;
however, interesting points can be made by analyzing the systems in gen-
eral.

If the conventional heating system is analyzed and compared

to the optimum heating system it is found that:

(i) the peak to peak variations of the room temperature are
much greater for the conventional heating system, when compared to the
maximum deviation of the optimal system.

(ii) For an outside temperature distrubance the response and
adjustment of the optimum heating system is superior to the correspond-~
ing response of the conventional heating system. In the optimum sys-
tem, the temperature begins to fall gradually (due to an outside tem-
perature drop) until it deviates to -0.15°F. Then within about 5 min-
utes it tends to remain to within 0.1°F or less from the original value.
The conventional heating system, on the other hand, begins to oscillate.

The rates of increase and decrease in the room temperature depend on the
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thermostat time constant, and thermostat hysteresis, as explained in
Chapter 4. They also depend on the nature of the distrubance.

(iii) The rate of change in the room temperature is greater
when using the conventional controller thus causing the conventional
heating system to be less comfortable.

From the analog computer results on the sub-optimal system,
it is evident that this system lies in-between the conventional control-

ler and the optimum controller as far as general characteristics are con-

cerned.

(i) The room temperature variations are lower than in the con-
ventional system, but higher than in the optimal system; however, the
maximum room temperature variations are closer to the optimum system.

(ii) The sub-optimum system oscillates between on and off
positions when a disturbance is applied, a characteristic of the con-
ventional system. This is anticipated since an on-off furnace system
is employed in the sub-optimum system.

(iii) The sub-optimum controller tends in general to have a
smaller cycling period; however, these values are by no means near to
operating the heating system at a high mechanical frequency, which leads

to excessive wear of the gas-valve.

7.3 The Practical Implementation of the Sub-Optimal Controller

Tt is evident that the financial cost of the optimal control
of a gas-fired forced-air domestic heating system makes impossible the
- implementation of such a system. The optimal controller devised in this
study requires a heat exchanger that is equipped with a continuous modu-

lation system. Such furnace accessories will cost the consumer



~149-

approximately $200.%* A solid state modulation controller is currently
produced by the Maxitrol Company. It is used only for several specialized
installations requiring rigid performance., The optimal controller also
needs four sensors, and the arrangement for feedback gains. Such sensors
and gain controls cost at least six times as much as any currently pro-
duced thermostat. Therefore, it is evident that the optimal controller,
although possible to construct technically, cannot be implemented practi-
cally because of current economical considerations. The same cost prin-
ciple applies to any sub-optimal control system., However, the sub-optimal
system suggested in this study was selected on the basis of performance
and cagpital cost.

The concepts derived in Chapter 4 indicate that a preferred
on-off heating system is one possessing a small thermostat time constant,
a small thermostat hysteresis value, and a small heat exchanger time con-
stant. The time constant of the heat exchanger depends primarily on its
size, which in turn is determined by the size of the system to be heated.
The time constant of the thermostat on the other hand,‘depends primarily
on the properties of the bimetal and the speed of its response, since it
is the sensing element, One method of improving the time constant of the
sensing device is to employ a thermistor. Thermistors vary in response
according to quality which is directly proportional to cost. For example,
thermistors of the type Keystone RL21FIT have about a 20 second time con-
stant, and are priced at a very reasonable rate. Such a time constant is
much smaller than the time constant of any bimetallic thermostat. The

amount of the hysteresis of a bimetallic thermostat depends primarily

*
A figure given by the Maxitrol Company, Southfield, Michigan.



-150~-

on the properties of the relay or the switching device used. FPhysically,
a switching device or relay will produce some hysteresis. However, this
hysteresis may be minimized by increasing the sensitivity of the system.
The sensitivity of such a thermostat system can be increased by amplifying
the signal that is proportional to the room temperature deviation.
Therefore, taking these ideas into consideration along with the
fact that the addition of a feedback signal that is proportional to Ty
improves the performance of the heating system, the sub-optimal controller
can be implemented practically at a reasonable cost. The idea of this
sub-optimal controller is sketched in Figure 7.10, The temperatures Tg

and T are sensed by thermistors in the sub-optimal controller, rather

w
Power
Supply
, TR
Thermister .
Electrical
ST, + T ) K(8T, + 8T )
1 T Bridge R il Tranélétor R L Relay
The i ster Amplifier
-TRO -Two Gas
Valve
Reference Reference

Figure 7.10. Block Diagram of the Sub=-0Optimal Controller,




“ISTTox3uo0) Tewrido-qng 23e38 PITOS oyl °TT °) oInStd

-151-

_ ]
_ _
| |
| _
Hmom_ gy _
ﬁll lllllll _ mwww> “h.az _pﬂsonﬂo
. SATBA
| | o
64 [ frorau
It FTTdmy _ la : L _— lu_
_ I09STSUBIL _ g : f
: !
_ X 156
g
_ 9y
| 4ty _
o L —— 1|

93pTay Teo TI309TH




-150-

than using a conventional bimetal element. These signals are compared
with reference signals TRO and" TWo , by using an electrical bridge
circuit. The difference signal is then amplified by a one stage tran-
sistor amplifier., The output of the amplifier actuates a relay. This
relay then operates the gas valve of the furnace in an on-off manner.
The electrical bridge, the transistor amplifier, and the relay circuits
all receive power from the supply through a transformer which must be
included, TFigure 7.1l shows the detailed solid state sub-optimal con-
troller.

The feedback gain, k, , for the surface wall temperature, Ty ,
is selected as unify in this design. This selection éllows for the use
of fewer components than if a system possessing non-unity gain was used,
and at the same time, it renders considerable imﬁrovement to the system.
This fact was demonstrated in the previous section.

The room temperature reference TROF"iS set by the resistor
R3 . Two-, théuwallVSurface:temperature reference, is set by Ry . -
Thermistor R5 senses the actual room temperature Tg , and thermistor
R, senses the actual surface wall temperature T, . The output of the
bridge circuit which has a signal proportional to (STR + STW) , feeds
into a transistor amplifier QL . The output of this amplifier operates
the relay Kl , which in sequence turns the gas valve on or off.

Preliminary experiments on the sub-opﬁimal controller revealed
a 75% reduction in the time constant from the average exiéting bimetallic
thermostat. The hysteresis of this sub-optimal controller, had a value

of 0.18°F%, The best bimetallic thermostat available showed approximately

1 F hysteresis in the same test.

These values were measured using the standard chamber of the Maxitrol
Company, Southfield, Michigan. '
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It is believed that a sub-optimal controller possessing these
characteristics given above including its estimated price may be a

significant competitor in the heating industry field.

Summary

In this chapter a sub-optimal controller for the gas-fired,
forced-air heating system has been presented which has improved per-
formance compared with that of a conventional heating system, and which
also has an economical practical implementation, This system was simu-
lated on the analog computer and its performance compared to the optimal
system and the conventional system, After showing that the sub-optimal
controller offers a substantial improvement over existing systems, a
practical implementation was presented and shown to overcome the finan-

cial problems which beset a truely optimal system.



CHAPTER VIII

CONCLUSION

The problem of analyzing and optimizing the forced-air gas-
fired domestic heating system using modern control theory was treated
in this dissertation. A mathematical model of the domestic heating
system which is acceptable for engineering and for simulation purposes
was developed. The model was accurate enough for predicting the effects
of parametric changes in system response, and for mathematical analysis
in the valid operating region of temperatures. Typical heating system
parameter variations were studied using this simulation model. Con-
cepts concerning these system parameters weré derived from this analysis
and should be of considerable assistance to heating system designers.

An optimal heating system for a defined integral quadratic
cost function has been developed which incorporates the main objective
of minimizing room temperature variations. The optimal control was
shown to have the desirable property of providing additional feedback
loops to account for disturbances in the system. The feedback portions
of the optimum control heating system were also shown to be time-in-
variant, a characteristic which is advantageous in practice. Parameters
of the optimum controller were determined through the use of the Control
System Algorithm Program (CSAP) on the 7090 digital computer at the
University of Michigan. The resulting optimum heating system was then
simulated on the electronic analog computer in order to study its perfor-
mance in comparison with other systems, namely, (a) the conventional

heating system and (b) the sub-optimal system. For the heating system
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under consideration,‘the optimum controller appeared to drive the room
temperature to within 0.1° F. These results were shown to be superior
to the corresponding conventional heating system. The optimum heating
system represented an optimum from the theoretical point of view for

the configuration and cost function selected. Therefore it represents
an upper bound or standard with which conventional or sub=-optimal systems
may be compared. However, for some specialized installations possessing
rigid performance standards, it may be feasible to utilize a system

such as the optimal.

Primarily due to economical considerations, it appeared that
valuable information might be gained by investigating sub-optimal adap-
tations of this type of optimum system. In Chapter VII, a sub-optimum
control system was proposed that possesses some characteristics of both
the optimum and conventional systems and which is economical. The main
difference between the optimal and the sub-optimal controllers is that
for the optimal system a modulated heat exchanger or one whose average
flame temperature can be varied continuously over wide units is required.
On the other hand the sub-optimal system used a heat exchanger with on-
off characteristics. This sub-optimum system was simulated on the
electronic analog computer and compared with the corresponding conven-
tional and optimum systems. The results showed a significant degree of
improvement could be obtained using the proposed sub-optimum controller
rather than a conventional controller.

The practical implementation of the sub-optimum controller

was treated in Chapter VII. Since it was shown in Chapter IV that a
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good on-off heating éystem would be one that possessed a small thermostat
time constant and small hysteresis, a practical controller which possesses
small hysteresis and small time constant was devised. Utilizing a con-
troller possessing these characteristics and with ideas devised from the
optimal system model a system was practically implemented, and a solid
state controller was constructed. Based upon estimated prices it is ap-
parent that a sub-optimal controller could be made a significant competitor

in the heating system industry.



APPENDIX A

TIME DELAY CALCULATIONS

An element volume of air coming in the room will travel the
jet region in Ty minutes, region 2 in To minutes and region 3 in

T5 minutes,
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As the air jel enters the second region it will possess an
average velocity Ve oo It is expected that the air will rise for a short
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time, reflect from the ceiling and then move into region 3. If we assume
a linear variation for the velocity in this region then an estimate for

the time delay can be obtained, 1In Chaptef II, it was shown that:

3JVA v

v, = —20 ft/min,
X 1.hx

and assuming continuity of flow in the second region then:

' ft/min,

Vo = wL - Ay

where V2 average velocity of air entering region 3 ft/min.

(1/2) Ay = area of jet as air enters region 2,
If Ty = time delay in region 2, then:

1/2(vX + v2)

A-3 Time Delay in Region 3

A rough estimate of the time delay in this region can be ob-
tained if we assume that the air travels with a uniform velocity 2
which was determined above, If we denote the time delay in this region

by T3 then:

2 V2
Comparing now the three time delays it is found that:

R,

T3 2(wL - Ay)

2. X

T3 2wL
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and since the cross-section area of the jet Ay is very small compared
to twice the cross sectional area of the room space (about 1% or less),

therefore it follows that:

T, < T2 3 and To << T3 .



APPENDIX B

BASICS OF THERMAL CIRCUITS

The idea of a thermal circuit rests on the fundamental simi-
larity between the flow of heat within a rigid body and that of a charge
in a non-inductive electric circuit. Conservation of the scalar quantity
charge corresponds to conservation of heat, The scalar point function,
electrical potential, in electrical field theory corresponds to the
scalar point function in heat flow temperature, Ohm's law corresponds
to Fourier's law., The concept of electrical capacity of a conductor cor-
responds to the concept of thermal capacity of a portion of mass, Simi-
larly the concept of electrical conductance of a conductor corresponds to

the concept of thermal conductance of a portion of mass.

B-1 Flow of Heat in Solids:

If the temperature of a body varies throughout its volume, heat
will flow from the sections of higher temperature to the sections of
lower temperature, Let T(x, y, z, t) be the temperature at a point
(x, vy, z) within a body at time t . Let A be a plane or curved sur-
face passing through that point and leﬁ the coordinate n represent di-
rected distance along the normal to A at the point, Then the flux of
heat per unit area per unit time transferred across A at the point by

conduction is given by the formula:

Q(X;yyz;t) = =K a'(_i'ﬁ T(X)yyz;t)

‘Where @ is the flux of heat which is the rate of flow of heat %E and

K is the coefficient of thermal conductivity of the material, This for-

mula means that the rate of flow of heat across any face of the volume
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will be proportional to the temperature gradient normal to the face. The
negative sign indicates that the heat flow is considered to be positive
in the direction in which the temperature decreases. This is the imper-
ical law or the basic postulate for the conduction of heat in solids,

If the temperature is only a function of x and t, i.e.

™(x,y,z,t) = T(x,t) then the flux in the direction x 1is given by:

o(x,t) = -k xE)
- Ox
09 _ _gof
ot ox
where . . 3
T ot

Consider now the element of solid shown in Figure B-1

I
! 2
!

X + AX)
S R
g ————————— — — ) Heat flux
CDX /
—————————— /
/
Heat flux , 8y )
/
/
,/ dx

Figure B-1. An Element of Solid with Heat Flow in One Direction.



-162~-

The rate of flow of heat through the area 8y 8z at x 1is given by

oQ
ot

®X =

The rate of flow of heat through the area &y &z at x + Ax 1is given by

_ 99 . 9 (9Q
Yeax) = 5 ek ae

Therefore the net heat gained by the element is given by:

29 20, 3 (99 &
ot ot ox ot

or

_ 9 (99
5 Gl o

This is equal to the mass of the element multiplied by the rate of rise

oflits temperature multiplied by the specific heat of the material:

oT

P dxX dy 8z « C, + =—

4 Pt

Thus,
9 (X - -p Cp By B2 oL (B-1)
. ox at ot

and . ' .

%/ _ K 5y &z oL (B-2)

ot ox

where o 1is the density of the body and C is its specific heat, Tt

D
is to be noted that (dQ)/(dt) in Equation (B-2) is the total heat
flux over the area Jy dz .

From Equations (B-1) and (B-2) the following equations are

obtained:

2
or _ K T - (B-3)
ot pCp ox2
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and
) _ kK o (aQQ) (B-14)
3?2 ooy 3

It is to be noted that similar expressions could be written for the

other coordinates.

In a unidirectional flow, the area will not be restriced to
5z 8y , since it will be constant. Assume it is constant and let it

be A . Equations (B-1), and (B-2) then become:

909 _ _ gy OF B-
ot ox (-5)
O (99) - -t B-6
dx ot P (2-6)

B-2 TFlow of Charge in a Noninductive Transmission Line:

By applying Kirchhoff's laws to a uniform transmission line con-
structed to have a resistance R and a short capacity C per unit length,it

follows that:

. 1o (B-7)
R ox
o -c@’- (B-8)
ox ot
oi
i R 5x i+ -~ dx

C &x ——i Bx C ox

Figure B-2. Transmission Line Lﬁmped Model.
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where 1 1is the current, and v is the voltage, as defined in the
circuit of Figure B-2, Equations (B-7), and (B-8) are derived as

follows:

Voltage change along length & = v - [v + %X 5x ]
X
ov
= --'--.-5}{
.ax
Using Ohm's Law, therefore:
R« ¥+ i = - QZ Bx
ox
or
1 v
1 = - — B_
Change in current flow per unit length
= i=-[i+ of 8x]
ox
.ot 8x
ox

And since the current is the rate of flow of charge, therefore:

dvy o1 -
C &x (,5?) =-5F 5%
or
of _ _aov .
= - "% (B-10)

From Equations (B-9) and (B-10) the following equations are obtained:

QX - L1 QEK (B-11)
dt RC Ox2
él = E;.ééi (B-l2)
dt RC Ox°

Note that i = (dq)/(dt) , where q is the quantity of electricity,
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B-3 The Analogy between Thermal and Electrical Constants and Variables:

Since Equations (B-3), (B-4), (B-5), and (B-6) are respectively
of the same form as Equations (B-11), (B-12), (B-7), and (B-8), the follow-
ing analogy can be maintained and thus an electrical respresentation may

be made of any heat problem,

Heat Problem Electrical Problem
Thermal Conductivity x Area Conductance/unit length of trans-
(KA) mission line 1/R
Area x density x Specific heat Capacitance per unit length of
i,e, thermal capacity per unit transmission line
length (ApCp) (c)
Quantity of Heat Quantity of Electricity
(Q) (a)
Flow of Heat Current (i)
Temperature Difference (T) Potential difference across trans-

mission line (v)

B-4 Scale Problems

The values of thevelectrical quantitiés representing'either
variables (T, (3Q)/(dt) , x and t) or constants (K, P and cp) in
the thermal problem may be scaled by any factor, However, changes have
to be done in order to preserve the equalities of Equations (B-7) and
(B-8).

If the value of the capacity is multiplied by a factor n ,
both the equalities (B-7) and (B-8) are preserved merely by modifying
the time scale. Equation(B-7) remains unchanged and Equation (B-8)

becomes:

ol _ _ . o
ox ndt
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If the value of the fesistance is changed, the equalities cannot be
preserved by altering only one parameter. One way is to modify 1 and

t . TIf the scale of i is divided by n , Equations (B-7) and (B-8)

become
i . 1w
m mR OX
1oi _ _ov
m OX mot

Tt is noted that since R and C occur in Equations (B-11)
and (B-12) only as the broduct RC , the result will not be affected by
changing R and C individually, provided their product is not changed.
Also since Equation (B-11)is homogenous in v , v may be replaced by
v without affecting anything else,

By suitable choice of scale factors m , n, £ the electric
model may be operated at convenient voltages and transit time intervals
and built with feasible magnitudes of resistance and capacitance. A
heat process actually taking hours or days may be condensed to a few
minutes in the experiments, On the other hand, a short process requir-

ing only fractions of a second may be stretched in the model so as to

last several minutes,



nAPPENDIX C

HEAT CAPACITY ESTIMATION OF THE ROOM BOUNDARY

In this appendix an experimental check is made for the estima-
tion of the room boundary equivalent capacity. The room boundary para-=
meters are calculated first, For every layer of the boundary, the heat
capacity and thermal resistance are calculated, Then these capaciters
and resistors are connected to form an RC netwerk representing the
boundary, For region two, which faces the lower part of the wall and
the floor, the boundary model ie two RC networks in parallel, The same

applies for region three, The electrical circuits representing the models

&

5]

B

)

< : RC Net-

& —o 6 work of ®

o wall

5

d 0]
= &
4 A
a RC of

3 ¢ —

3 0 floor

Figure C-1. The Experimental Set-up for Capacity Estimation.

for region two and three are connected experimentally. A square wave
generator is connected across the input of each model, and the response
of the output is observed by an o0scilloscope to measure the time con-
stant of the model, Knowing now this timebcenstent, and the thermal
resistance of the one T-network model calculated in Appendix D, the

equivalent capacity may be estimated.
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C-1 Estimation of the Capacity of Region Two=-Boundary:

Region two faces: an area of 91 ft2 of the wall and the floor.
Figure C-2 illustrates the construction and electrical model of the
wall, Using Table C-I, and the formulas: Heat Capacity C = density

px specific heat Cpx volume V, and

TABLE C-I

PROPERTIES OF THE BUILDING MATERIALS

Material - p 1b/e.f.  Cp Btu/lb, °F kEZE%%??E
plywood .84 .57 .085
Aluminum 2.8 .266 122
Air .0808 2375 .016
Fiber glass .022
Tempered Hardboard Nl .65 .125
Wood .65 ST 0.085

Thermal Resistance R = - thickness x , which were

Thermal Conductivity k x Area A

defined in Appenidx B, the thermal resistances and capacitances are cal-

culated for the section facing region 2,

Rp = 5  °F/(Btu/sec) Cp = 1.36 Btu/°F
R, = 69  °F/(Btu/sec) Co = 0  Btu/°F
Rs = . 0  °F/(Btu/sec) C3 = 0.12 Btu/°F
R, = 118  °F/(Btu/sec) C, = 0.18 Btu/°F
Ry = O °F/(Btu/sec) Cs = 0.15 Btu/°F
Rg = 1.67 °F/(Btu/sec) Cg = 0.45 Btu/°F
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Similarly for the floor:

Ry = 32.4 °F/(Btu/sec) ¢, = 15.4 Btu/°F
R, = 255 °F/(Btu/sec) C, = 0.8k Btu/°F
Ry = 13.5 °F/(Btu/sec) C3 = 6.38 Bty/°F

These two networks are connected in parallel to form the elec-
trical model of the boundary facing region two. A measurement for the
time constant of this boundary was made using a square wave generator and
an oscilloscope. A time scaling was introduced in the electrical analog
so that 1 sec on the electrical model corresponds to lO6 seconds in real
time (Refer to Appendix B for scale problems), The measured time con-
stant was 2.1 milliseconds which corresponds to 2100 seconds in real
time, If the response of such a model is to be approximated with a one
RC T-network, whose resistance is the thermal resistance of the region
two boundary, then the value of the capacity of the boundary would be

estimated as:

Time Constant measured

Thermal resistance of Boundary + Impedance of generator

- . 2100 = 12,45 Btu/°F
1,975 x 60 + 50

C-2 FEstimation of the Heat Capacity of Region Three-Boundary

The same method is employed to estimate the heat capacity of
the boundary facing region three, This region faces a 35k,2 ft2 of the
wall shown in Figure C-2, and the ceiling shown in Figure C-L, The RC

parameters of the wall portion and the ceiling are:
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For the part of wall facing region 3:

Ry = 1.28 °F/(Btu/sec) ¢, = 5.31 Btu/°F
Ry =1T.7 °F/(Btu/sec) o = O Btu/°F
Rz = O °F/(Btu/sec) C3 = 0.468 Btu/°F
R, = 0.303 °F/(Btu/sec) Cy, = 0.702 Btu/°F
Ry = O °p/(Btu/sec) C5 = 0.585 Btw/°F
Rg = 0.428 °F/(Btu/sec) C6 = 1.75 Btu/°F

Ry = 1.12 °F/(Btu/sec) ¢, = 0.69 Btu/°F
R, ¥ 0  °F/(Btu/sec) C, = 0.233 Btu/°F
Rs =140  °F/(Btu/sec) cs ¥ o0 Btu/°F
R, ¥ 0  °F/(Btu/sec) C, = 0.233 Btu/°F
Ry = 4  °F/(Btu/sec) Cs T 0 Btu/°F
Rg = 3.4 °F/(Btu/sec) Cg = 2.06 Btu/°F
Time constant measured = 2,2 millisecond
3
Estimated Capacity = m—oe2 10
0.66 x 60 + 50
= 24,5 Btu/°F

The capacities determined in this appendix using the electrical
analog are within approximately 7% of the corresponding values measured
experimentally in Chapter III. It is to be noted that the accuracy of
the electrical model depends on the accuracy of the data of parameters

for building materials, There is some uncertainty in these data because
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of the porosity of the materials and uncertainty of their water content,
Thus, it follows that there is also some uncertainty in the estimated
values of capacities using the electrical analog method., On the other
hand, an error results when using the experimental measurement (used in
Chapter III) due to the accuracy of the measuring equipment, Therefore,
it appears that there is some uncertainty in both methods. The values
estimated experimentally were used for the mathematical model in Chapter
IIT, and it resulted in an average percentage error of less than five

when analytical and experimental results were compared.



APPENDIX D

EXPERIMENTAL MODEL CALCULATIONS AND TEMPERATURE PLOTS

D-1 Volume Calculations

From Figure D-1 the volume V , of the jet region is calculated:

V] = § (1.9u)2(7.75 + tan 11°) - 30.7 o

11°

T.75"

L 588 _.l

Figure D-1, Dimensions of Region 1.

1l
1]

11,76 x 11,76 x 1.9k 270 £t7

Volume of region 2 Vo

1

11,76 x 11,76 x 7.75 - 270 = 1049,3 £t

]
I

Volume of region 3

Vs

D=2 Thermal Conductivity Calculations:

In order to calculate the equivalent thermal conductivity of
the walls, the ceiling, and the floor of the experimental room model the

following equation for a multi layer material is used:(13)

X _ S i (D-1)
k i-1 Ki

=173~
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where,
Xy = thickness of layer i,
k; = thermal conductivity of layer i,
X = total thickness under consideration
k = equivalent thermal conductivity of the multi-layer material,

Applying now Formula (D-1) to the wall, which is composed of

six layers, then:

Ky o oi=l Ky
where,
6
= total thickness of wall = ) x; = 2,807"
XW i=1 " ’
kW = equivalent thermal conductivity of the wall.

Using Table D-I, k, 1is calculated:
ky, = 0.0238 Btu/ft °F hr,

TABLE D-T

a. WALL PROPERTIES

. Thickness Thermal conductivity
Material inches Btu/ft °F hr
Plywood 3/8 0.125
Fiber Glass 1 0,02k
Aluminum 0,025 118

Air 1.25 0.0175
Aluminum 0.032 118

Tempered Hardboard 1/8 0.125




b,
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TABLE D-I (CONT'D)

CEILING PROPERTIES

o Thickness Thermal Conductivity
Material inches ‘Btu/ft °F hr
Plywood 3/8 0,125

Fiber Glass 1 0.02k4

Aluminum 0.032 118

Fiber Glass L 0.024

Aluminum 0.032 118

Tempered Hardboard 1/8 0.125

c. FLOOR PROPERTIES
Thickness Thermal conductivity
Material inches Btu/ft °F hr
Plywoad 1.5 0.125
Air 4 - 0.0175
Wood 3-5/8 0.125
For the ceiling:
ke i=1 ki
where,
x. = total thickness of ceiling = k4, 564",

equivalent thermal conductivity of ceiling,
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Therefore by using Table D-I:

k, = 0.0267 Btu/ft °F hr
For the floor:

where,
xp = total thickness of floor = 9,125",

equivalent thermal conductivity of floor

H
I

Hence, using Table D-I:
kp = 0.0338 Btu/ft °F hr

D-3 Thermal Resistance Calculations

In this section two mgin parameters for the experimental model
are calculated: R, and R3 the thermal résistances of the boundaries
surrounding regions 2 and 3 respectively., Rp is the parallel -
combination of two resistances: RW.2 which is the thermal resistance
of the part of the wall facing fegion 2 and Rf ~which is the thermal
resistance of the floor, Similarly R3 is the parallel combination of
RW3 the thermal resistance of the part of the wall facing region 3 and
Rc the thermal resistance of the ceiling. By using the analogy be-
tween heat and electrical problems explained ih Appendix B, then:

X X

R. = - f W

f keAs ’ ng kWAW2

]
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and

Xe B Xw

R R =
¢ kehe w3 kWAMB

where Af?AWQ’Ac and Aw3 are the areas of the floor, the part of wall

facing region 2, the ceiling, and the part of wall facing region 3 re-

spectively.
Ap = AR, Ay, = 91 ftP
A, = 13h £t2 hys = 354.2 ££2
Calculating, then:
Re = 10.1  °F/(Btu/min)
Ry, = 6.5 °F/(Btu/min)
R, = 6.38 °F/(Btu/min)
Rw3 = 1.66 °F/(Btu/min)
Also
R
_ l.“‘ fRWE _ o .
Ry = > Ty = 1,975 °F/(Btu/min)
and
1 Re Ry .
Bs = 3 — 3 - 0.66 °F/(Btu/min) ,
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