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Summary. A particular linear programming model is con- 
structed to predict the diets of each of 14 species of general- 
ist herbivores at the National Bison Range, Montana. The 
herbivores have body masses ranging over seven orders of 
magnitude and belonging to two major taxa: insects and 
mammals. The linear programming model has three feeding 
constraints: digestive capacity, feeding time and energy re- 
quirements. A foraging strategy that maximizes daily ener- 
gy intake agrees very well with the observed diets. Body 
size appears to be an underlying determinant of the foraging 
parameters leading to diet selection. Species that possess 
digestive capacity and feeding time constraints which ap- 
proach each other in magnitude have the most generalized 
diets. The degree that the linear programming models chan- 
ge their diet predictions with a given percent change in 
parameter values (sensitivity) may reflect the observed abili- 
ty of the species to vary their diets. In particular, the species 
which show the most diet variability are those whose diets 
tend to be balanced between monocots and dicots. The 
community-ecological parameters of herbivore body-size 
ranges and species number can possibly be related to forag- 
ing behavior. 
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Optimal foraging ecology (Schoener 1971 ; Pyke et al. 1977) 
has been widely applied in the study of autecology (Krebs 
and Davies 1978; Rapport and Turner 1975, 1977). How- 
ever, it has been little used in addressing problems dealing 
with the study of higher order ecological relationships such 
as competition, predation and trophic dynamics (Brown 
1981). The exception has been the use of foraging strategies 
in studying competition (Werner 1977; Belovsky 1984a). 
Nonetheless, an analysis of foraging behavior for the maj or- 
ity of members of a single trophic level within a community 
and how this might relate to community structure has not 
appeared in the literature. 

This paper examines the foraging ecology of 14 herbivo- 
rous species at the National Bison Range, Montana. These 
species range in body mass over seven orders of magnitude 
(2 x 10 4-6 x 10  2 kg), include members of two very differ- 
ent classes (Insecta and Mammalia) and four orders (Or- 
thoptera, Rodentia, Lagomorpha, Artiodactyla), and ac- 
count for over 90% of the herbivore biomass and plant 

consumption in the community. Using these species, a series 
of questions was addressed: 

1) Can the diets of all 14 species be accounted for by 
a single model? 

2) Do all the species have the same foraging strategy 
[i.e., time-minimizing or energy-maximizing sensu Schoener 
(1969); Hixon (1982)] ? 

3) How does body mass influence the importance of 
different foraging parameters? 

4) Can the range of body sizes and number of species 
of herbivores in a community be explained by foraging con- 
siderations? 

Belovsky (1978, 1984b, c) has shown that the optimiza- 
tion technique of linear programming can explain diet selec- 
tion by three herbivores (moose: Alces alces, snowshoe 
hare: Lepus americanus, beaver: Castor canadensis). Fur- 
thermore, linear programming techniques have been shown 
(Belovsky 1984d) to be biologically and mathematically 
most appropriate for modelling herbivore foraging. This 
technique enables the inclusion of constraints operating on 
the forager's feeding choices that arise from their physiolo- 
gy, anatomy or behavioral repertoire. Foods that are pat- 
chily rather than randomly or uniformly distributed can 
be easily handled in the model. Finally, linear constraint 
values can be determined in a non-circular fashion; this 
is far more difficult to accomplish if constraints are non- 
linear. Furthermore, the solution for non-linear constraints 
requires the use of non-linear programming techniques, 
which are more complicated. 

The linear programming model of herbivore foraging 
(Belovsky 1978, 1984b, c, d) is composed of four feeding 
constraint equations which reflect limits on the animal's 
foraging and its ability to achieve different foraging goals. 
These equations are characterized by: 

1) digestive capacity and its fill by different food plants, 
2) daily foraging time and its utilization by the cropping 

of different food plants, 
3) daily energy requirements and their fulfillment by 

energy provided by different food plants, and 
4) daily nutrient requirements and their satisfaction by 

the nutrient contents of different food plants. 
With the above constraints, linear programming can be 

used to predict diets that maximize or minimize various 
goals. The two most commonly examined goals are either 
the achievement of greatest daily energy intake (energy 
maximizer) or satisfaction of minimum energy requirements 
in the least feeding time (time minimizer). A time minimizer 
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presumably achieves the greatest fitness by spending its time 
in other activities than feeding (e.g. mating, caring for 
young, hiding from predators, etc.)after it satisfies some 
minimal nutritional need. An energy maximizer presumably 
achieves the greatest fitness by ingesting the greatest 
amount of energy or other nutrients. In addition, a forager 
might seek to minimize filling its digestive tract and still 
satisfy minimal nutritional requirements, since a full di- 
gestive tract is mass that must be transported and may 
reduce the forager's ability to run away from predators. 
The importance of these alternate feeding goals or strategies 
has been presented elsewhere (Schoener 1969, 1971, 1983; 
Pyke et al. 1977; Belovsky 1984d; Hixon 1982). 

Table 1. Comparison of the characteristics of different plant growth 
forms as foods for herbivores using ANOVA 

Sample f~_+ S.D. F-value 
Size with 

categories 
above 

Food Bulk (wet wt/dry wt) : 

Grasses 16 1.64 +_ 0.35 

Forbs: 
Herbs 23 2.70 _ 0.75 
Deciduous leaves 16 2.63 + 0.42 

38.46*** 
41A0***, 

0.11 a 

St udy  s i te  

The necessary data to construct linear programming models 
of herbivore foraging were collected during the summers 
(May-Sept.) of 1978-1982 at the National Bison Range, 
Montana. The Bison Range is an intermountain Palouse 
prairie ranging in elevation from 800 to 1,600 m above sea 
level. The area, although overgrazed in the past (pre-1960's) 
by bison (Bison bison), is today maintained to represent 
the original vegetation and is perhaps undergrazed. The 
vegetation is dominated by monocots (70% by biomass), 
with forbs and woody plants (dicots) comprising 20% and 
10% by biomass, respectively (Belovsky unpubl, data). The 
common monocots are Agropyron spicatum, Festuca ida- 
hoensis, Festuca scabrella, Koeleria cristata and Poa praten- 
sis. Common forbs are Lupinus sp., Achillea sp., Balsamorr- 
hiza sagitata, Penstemmon sp., Arnica soraria, and Tragopo- 
gon dubious, while common woody plants are Artemisia 
frigida, A. ludoviciana, A. dracunoloides and Symphoricarpos 
occidentalis. Over the Bison Range, the average plant bio- 
mass of new growth is 189 g/m 2 (s.e.=22.1, n=40)  (Be- 
lovsky unpubl, data). 

Methods and model parameters 

The vegetation. Belovsky (1978, 1984d) points out that the 
linear programming model predicts diet choices between 
plants which differ in their impact on foraging constraints 
and which are spatially located in separate patches (i.e., 
they cannot be searched for simultaneously). On the Bison 
Range in summer, plants appear to fall into two classes, 
monocots (predominantly graminoids) and dicots (forbs 
and deciduous leaves), based upon their nutritional value, 
digestive capacity utilization and distribution in the envi- 
ronment. 

Nutritional characteristics were estimated by digesting 
0.5 g dried samples (10 samples/species) of vegetation in 
HC1 and pepsin, an approximate measure of digestibility 
for herbivores (Terry and Tilley 1964). Digestive capacity 
utilization was measured as bulk (wet wt/dry wt) for 10 
samples/species. For these plant traits, monocots were far 
more similar to each other than to forbs or deciduous 
leaves, while forbs and deciduous leaves were very similar 
to each other (ANOVA, Table 1). Therefore, monocots 
were considered one food plant class, while dicots (forbs 
and deciduous leaves) were considered another. 

Distribution of monocots and dicots in the environment 
was determined by sampling at 10 sites (0.16 ha) reflecting 
different slopes, aspects and elevation at the Bison Range. 
Sixteen to 40 0.01 m 2 plots were located randomly at each 

Food Digestibility (% dry matter soluble in acid + pepsin): 

Grasses 21 21.17_+ 5.42 

Forbs : 
Herbs 30 42.05 _+ 10.25 74.17"** 
Deciduous leaves 17 48.06_+ 10.25 107.81"**, 

3.90 a 

" N.S.;  ** P < 0 . 0 5 ;  *** P < 0 . 0 0 I  

Table 2. Data on the distribution of grasses and forbs at 10 sites 
at the National Bison Range, Montana. A one-sided test was used 
because a negative association and positive skewness were hypothe- 
sized, i.e., monocots and dicots are patchily distributed in different 
portions of the environment 

Site n Skewness coefficient Spearman Rank 
correlation 

Grass Forb 

1 40 2.58** 3.20** -0.33** 
2 36 0.54* 3.28** -0.59** 
3 40 0.16 1.05"* -0.26** 
4 30 2.65** 3.05** -0. t0 
5 40 1.59"* 2.65** -0.01 
6 18 1.01" 1.57"* -0.27 
7 18 -0.57 1.05"* -0.34* 
8 16 0.71 2.79** -0.36* 
9 16 1.07"* 1.14"* -0.32* 

l0 16 0.12 1.60"* -0.50* 

* P<0.10, one-sided; ** P<0.05, one sided 

site; the vegetation was clipped, separated to monocot and 
dicot, dried, and weighed. Skewness coefficients for the dis- 
tribution of monocot and dicot biomasses at each site were 
computed; a positive coefficient indicates a "patchy" distri- 
bution within each food class (Table 2). Spearman Rank 
correlations were computed for the association of monocot 
and dicot abundances at each site to determine whether 
monocots and dicots occur together (Table 2). For mono- 
cots, 9/10 sites had positive skewness coefficients (binomial 
probability: P <  0.001) and 6/10 areas were statistically sig- 
nificant (P<0.10). For dicots, 10/10 sites had significant 
positive skewness coefficients, (binomial probability: P <  
0.001). These results indicate that dicots are strongly dis- 
tributed in patches, while monocots are less so but still 
not randomly or uniformly distributed. Furthermore, 10/10 
sites had a negative rank correlation between monocots 
and dicots (binomial probability: P<0.001), and for 7/10 
sites the association was significant (P<0A0). Therefore, 
monocots and dicots are distributed patchily and their 
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patches do not occur together, requiring non-simultaneous 
search by herbivores if they are to feed on both. 

The foragers. Model parameters reflecting the consumption 
of monocot and dicot foods were collected for four orthop- 
terans (Melanoplus femur-rubrum, M. sanguinipes, Dissos- 
teira carolina and Circotettix undulatus) and ten mammals 
(Microtus pennsylvanicus, Spermophilus columbianus, Sytvi- 
lagus nuttalli, Marmota monax, Antilocapra americana, 
Odocoileus virginianus, Odocoileus hemionus, Ovis canaden- 
sis, Cervus elaphus and Bison bison). The data collection 
methods have been provided in detail elsewhere (Belovsky 
1978, 1981 a, b, c, 1984b, c, d; Belovsky and Jordan 1978, 
1981) and, unless previously unreported, will only be sum- 
marized here. During each month, data were collected for 
each species if the species was active (i.e., the adult grass- 
hoppers are not active until late July; Spermophilus colum- 
bianus and Marmotaflaviventris are hibernating by August). 
All parameter values appear in Table 3 along with the stan- 
dard errors and sample sizes if the values were obtained 
from this study. 

Constraint equation 1). Digestive capacity. Digestive ca- 
pacity is measured as the product of the volume of the 
forager's organ(s) used for the breakdown of plant tissues 
(Table 3, parameter 2), and digestive turnover through the 
organ(s) (Table 3, parameter 3). For ruminants, the organs 
are the rumen-reticulum; for other tetrapods, they are the 
caecum and stomach; and for insects, the midgut and fore- 
gut. Organ capacity is obtained by killing animals and 
weighing the contents (wet weight) after the animals have 
fed ad libitum. 

Digestive turnover can be measured by a number of 
methods. Animals can be fed foods 'labelled' with an indi- 
gestible marker (radioactive isotopes, e,g., Mautz and Pe- 
trides 1971; cotton thread, e.g., Campling et al. 1961) to 
measure rate of appearance of the marker in feces. Another 
method is to sacrifice a set of animals, who have had food 
provided ad libitum, and measure changes in digestive organ 
contents over a period of time (Storr 1963). Both techniques 
were used in my studies. 

The 'labelled' food technique (cotton thread: see Be- 
lovsky 1984b) was used for Marmotaflaviventris and Sytvi- 
lagus nuttalli. The sacrifice technique was used for Spermo- 
phitus columbianus, Microtus pennsytvanicus and orthopter- 
ans. Digestive turnover rate was determined using feeding 
trials for these species, where a mixed diet of  monocots 
and dicots was provided ad libitum, and then 50 animals 
were sacrificed (5 every 30 min). The digestive turnovers 
for the other larger mammals (>  3 kg) were taken from 
the literature, as determined using 'labelled' foods. Di- 
gestive turnover is measured as 24 h + mean retention time, 
where mean retention time (Moen 1973) is the expected 
time that a food particle is resident in the digestive tract. 

The fill of digestive capacity by plants is measured as 
the ratio of wet (fresh) to dry weight. These values for 
monocots and dicots were based upon 10 samples for each 
plant species, 16 and 39 species, respectively (Table 1). 

Constraint equation 2). Feeding time. To solve the linear 
programming model, the estimate of daily feeding time 
must represent a maximum value potentially available to 
the forager (Belovsky 1978, 1984d). A thermal physiology 
model has been employed to compute this value in previous 
studies (Belovsky 1981 b, 1984b) for herbivores. This esti- 
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Fig. 1. A comparison of the thermal physiology-based estimate of 
daily feeding time and the observed daily feeding time are presented 
for 7 species of herbivores. Two species (marked with an asterisk) 
are included from a forest environment (Belovsky 1981 b, t984b), 
indicating that the observation that daily feeding time is dependent 
on climate and the forager's thermal physiology may be a general 
condition 

mate represents the maximum time the forager can feed 
given climate, its thermal physiology and different habitats 
that it can use in the environment. The model is constructed 
under the assumption that climate and periods when the 
digestive organ is unfilled set the upper limit for feeding 
time. 

Computing a daily feeding time for t4 species over a 
five-year period based upon a thermal physiology model 
is very time consuming and is in progress (Belovsky, un- 
publ. data). At this time, however, a comparison of the 
observed daily feeding time and that predicted from the 
thermal model indicates that agreement is quite good 
(Fig. 1) for 5 species spanning the range of body sizes in 
the study. 

Extrapolation of these findings to the remaining species 
is further substantiated by the observation that all 14 spe- 
cies demonstrate a common response in summer to in- 
creased daily air temperatures by reducing daily feeding 
time (Belovsky and Slade 1986). Therefore, observed daily 
feeding times were employed as estimates of maximum daily 
feeding times. 

Under the worst scenario, if the observed daily feeding 
time is less than the thermal-based maximum value, which 
does not seem to be the case here, analysis of the foraging 
model is still illustrative. First, solutions to the time-mini- 
mizing goal are always independent of  the daily feeding 
time constraint and this is usually the case for the digestive 
capacity-minimizing goal. Consequently, the model's pre- 
dictions of these two goals are unaffected. On the other 
hand, if the energy-maximizing solution and the forager's 
observed behavior agree, then we are presented potentially 
with a case where the forager is an energy maximizer within 
a daily feeding time that is restricted by factors other than 
climate (e.g., required time for care of young, avoiding pre- 
dators, etc.). These additional limits on feeding time may 
not be all-consuming as assumed in the time-minimizer hy- 
pothesis and this observation would indicate that the time- 
minimizing and energy-maximizing goals are not strict al- 
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Table 3. Parameters measured to use in the linear-program diet optimization model for Bison Range herbivores during summer. Standard 
errors and ranges of sample sizes are given only for values from this study 

Parameters and sample size range Herbivore species 

Dissosteira Circotettix Melanoplus M e l a n o p l u s  Microtus 
carolina undulatus s a n g u i n i p e s  femur-rubrum pennsylvanicus 

1. Weight (kg) 1.6 • 1 0  . 3  7.7 x 10 .4 3.59 x /0  -4 2.04 x 10 .4 0.035 
• 10 -4 +1.68 x 10 -4 _4.4x 10 -5 • 10 -5 

(sample size) (6) (8) (114) (54) 

2. Digestion organ volume 5.2 x 10 -2 4.2 x 10 -2 2.32 x 10 _2 1.69 x 10 -2 4.0 ~ 
(g-wet wt) +4.2x 10 -3 • 10 -3 ___7.09 x 10 -3 _3.72x 10 -3 _+0.6 
(sample size) (6) (8) (114) (54) (26) 

3. Digestive turnover (times/day) 3.87 3.60 3.50 4.09 7.8 
(animal days : 3-65) 

4. Feeding time (rain/day) 239.0 z 239.0* 239.0 z 239.0 z 231.0 d'z 
(animal h: 110-3290) 

5. Cropping rate (min/g-dry wt) 
monocot (min: 140-160) 1,100.0 2,860.0 6,250.0 10,000.0 21.17 d 

• 130.0 • 330.0 -t- 830.0 + 203.0 • 2.86 
dicot (forbs & leaves) (min: 160-820) 280.0 580.0 7,140.0 7,690.0 /0.97 d 

• 50.0 • 100.0 • 720.0 • t,000.0 • 

6. Bulk (wet/dry wt) 1.64 1.64 1.64 1.64 1.64 
monocot (sample size: 64) • 0.09 • 0.09 • 0.09 _+ 0.09 _+ 0.09 
dicot (forbs and leaves) 2.67 2.67 2.67 2.67 2.67 

(sample size: /56) _+0.13 +_0.13 _+0.13 +_0.13 • 

7. Energy content (KJ/g-dry wt) 
monocot (animal days: 6~20) 
dicot (forbs and leaves) 

(animal days: 4-20) 

8. Average energy requirement 
(2 x basal: K J/day) 

7.04" 7.04" 7.04 a 7.04 ~ 8.84 
9.76" 9.76 a 9.76" 9.76 ~ 9.63 

0.854 b 0.528 b 0.297 b 0.214 b 70.60 g 

a Bailey and Mukerji 1976, 1977; Smith 1959; Dyer and Bokhari 
/976; Gyllenberg/970; Husain et al. 1946; Bernays and Chap- 
man 1972; Davey/954; Dadd 1960 

b Reichle 1968 
c Kostelecka-Myrcha and Myrcha 1964; Lee and Horvath 1969; 

Belovsky/984d 
d These values determined from captive animals; Belovsky 1984 d 
e Data collected in 1980 
f Data collected in 1978 

g Packard 1968; Wiegert 1961 
h Karasov 1981 
i Bailey 1965 
J O'Gara 1970; and 2 measurements from our study 
k Berwick 1968; and 3 measurements from our study 
1 Short 1964; Short et al. 1969; Prins and Geilan 1971 
" Short 1963; Short et al. 1965, 1966; Prins and Geilan 1971 ; Allo 

et al. 1973; Schoonveld et al. 1974; Dean et al. 1975 
n Assumed same as white-tail deer (Mautz and Petrides 1971) 

ternatives as often conceptualized. Rather, they might rep- 
resent endpoints of a cont inuum. 

The feeding time values (time actually spent cropping 
foods) in this study (Table 3, parameter 4) were empirically 
determined by observing individual animals feed over the 
summer period in the field (Belovsky and Slade 1986). The 
only exception to this was Microtus pennsylvanicus which 
was observed in 0.2 m 2 terraria with vegetation-covered sod 
present (Belovsky 1984d). This was necessary because Mi- 
crotus could not  be observed feeding in the field. A complete 
review of these data appears elsewhere (Belovsky and Slade 
1986). 

Cropping rate values (Table 3, parameter 5) are a major 
measurement required for this study because they are gener- 
ally not  available from the literature and are the most diffi- 
cult to measure in the field. Determinat ion of cropping rates 
requires the measurement of two parameters: the number  
or area of food items an herbivore ingests per uni t  time, 
i.e., leaves, blades, or cm 2 consumed per minute,  and the 

mean dry weight of an item of food. The number  or area 
of items ingested per minute  must  be multiplied by the 
weights per item to obtain cropping rates (g/minute). 

The number  of items ingested per minute  was measured 
by observing herbivores larger than 100 g at close range 
( < 2 5  m and usually <10  m) with binoculars or spotting 
scope. For  the smaller herbivores (Microtus pennsylvanicus 
and grasshoppers), the number  of food items or area in- 
gested was measured by observation of the animals in cages 
or terraria (0.2 m;)  containing sections of sod for Microtus 
or several food items for Orthoptera. The food was present 
for periods of time short enough to prevent food depletion 
( <  20 rain duration). The number  of bites of a food class 
was counted in two-minute periods for all the herbivore 
species except grasshoppers where the area of food items 
removed in 20 min was measured. Area removed was mea- 
sured by tracing the food items on graph paper before feed- 
ing and comparing the item with the tracing after feeding 
to estimate the region that had been consumed. 
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Herbivore species 

Spermophilus Sylvilagus Marmota Antilocapra Ovis Odocoileus Odocoileus Cervus Bison bison 
columbianus nuttalli flaviventris americana canadensis virginianus hemionus canadensis 

0.35 1.0 2.5 46.0 72.0 80.0 90.0 318.0 636.0 

43.0 92.0 230.0 5,942.0 j 4,653.0 k 4,200.01 4,386.0 TM 21,159.0 s 87,700.0 t 
_+ 3.22 _+ 5.2 • 22.8 -+ 8,460.0 
(48) (7) (42) (11) 

7.3 6.9 4.7 1.14 n 1.14" 1.14 n 1.14 n 0.45 u 0.3 v 

228.0 e,z 236.0 f,~ 196.0 f,z 218.0 ~ 209.0 z 203.0 ~ 199.0 ~ 181.0 ~ 178.0 ~ 

3.49 ~ 1.61 f 1.52 f 0.207 0.128 0.18 0.18 0.029 0.010 
+0.21 +0.233 +0.47 -i-0.016 +0.008 +0.013 _+0.016 +0.002 +8 x I0 -5 

1.37 e 0.38 f 0.29 f 0.08 0.086 0.10 0.09 0.056 0.045 
+0.10 +0.048 -+0.021 +0.007 -+0.005 -+0.007 +0.007 _+0,005 _+0.007 

1.64 1.64 1.64 1.64 1.64 1.64 1.64 1,64 1.64 
_+ 0.09 _ 0.09 _+ 0.09 _+ 0.09 _+ 0.09 _+ 0.09 +_ 0.09 _+ 0.09 _+ 0.09 

2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 
+0.13 _+0.13 _+0.13 +0.13 +0.13 _+0.13 -+0.13 _+0,13 -+0.13 

9.46 10.51 11.01 9.63 '1 12.14 y 9.63" 9.63 n'r 10.22 .... 12.40 w 
10.22 11.35 11.93 10.05" 12.48 y 10.05 n 10.05 n'r 16.67 x'w 14.66 w 

196.4 h 586.26 1,624.79 i 8,618.1 ~ 1t,377.7 v 9,853.4 q 10,766.3 r 46,352.6 X 74,250.4 

o Wesley et al. 1970, 1973 
P Chappel and Hudson 1978a, 1980 
q Silver et al. 1971 
r Short 1981 

Murie 1951; Prins and Geilan 1971; Nagy and Regelin 1975; 
Church and Hines 1978; and data from this study 

' Meagher 1973; and ten from our study 
u Maloiy and Kay 1971; Staines 1976; Milne et al. 1976; Dean 

et al. 1980 

v Schaefer et al. 1978 
w Peden 1971 ; Richmond et al. 1977; Schaefer et al. 1978; Hawley 

et al. 1981 
x Nelson and Leege 1982 
Y from Ovis aries, Milne 1976; Arman and Hopcraft 1975; Blaxter 

1962 
z Belovsky and Slade 1986 

Only observations which entailed the herbivore's crop- 
ping of a single food class were used to compute cropping 
rates. Mixed observations do not  allow determination of 
the food-cropping rates for each of the food categories in 
an independent  manner.  

To obtain the number  of items ingested per minute, 
the bites/minute values must  be multiplied by the number  
of items/bite. The number  of items/bite is often a difficult 
measure to obtain in the field for bison, elk, bighorn sheep, 
deer, p ronghorn  antelope, marmots,  cottontails and ground 
squirrels. Fortunately,  semi-tame animals were present at 
the study site. These were animals either raised in captivity 
and turned free or natural ly unafraid of humans because 
of the absence of hunting. Semi-tame animals permitted 
very close observations at times ( <  2 m) which enabled mea- 
surement of the items/bite. This was not  a problem for 
the species observed in captivity. 

By observing the herbivores in the field or in captivity 
at close range ( <  20 m), the plants on which they fed could 

be relocated and the size of the items consumed was mea- 
sured using calipers (width for monocot  blades and diame- 
ter for dicot stems or petioles). These plant  measurements 
( 'eaten remainder ' )  were matched using calipers to a plant  
of similar size which was then clipped, and the port ion 
equivalent to that consumed ( 'matched bite ')  was sepa- 
rated, saved, dried and weighed to provide the weight/item. 
For  grasshoppers, the known area of a food item was col- 
lected, dried and weighed to measure the conversion of area 
ingested to weight. 

For  the estimates of cropping rate, based on the prod- 
ucts of the above values, a standard deviation must be com- 
puted. Because bites/rain, items/bite and weight/item are 
too difficult to measure simultaneously for a given individ- 
ual forager, a simple measure of s tandard deviation using 
the products of these values is not  possible. For  the product 
of independent  variables, the standard deviation was esti- 
matedas : [(VAR(XY) = VAR(X)VAR(Y) + E(X)VAR(Y) + 
E(Y)VAR(X)] (Snedecor and Cochran 1967; Travis 1982). 
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This formula, however, provides an overestimate of the 
standard deviation because the bites/min, items/bite and 
weight/item are not independent measures and they covary 
negatively (Hudson and Nietfeld 1985; Wickstrom et al. 
1984). Negative covariation reduces the standard deviation 
estimate based upon an assumption of independence (Sne- 
decor and Cochran 1967; Travis 1982). I could not compen- 
sate for negative covariation because the three parameters 
were not measured simultaneously in my study. 

Constraint equation 3). Energetic requirements. Each herbi- 
vore's energy requirements were taken from metabolic stu- 
dies in the literature. If studies were not available in the 
literature, the energy expenditures were computed using the 
standard body weight-metabolic function (Kleiber 1961; 
Hemmingsen 1960), increased two times for an active life 
(Moen 1973). This metabolic value was chosen to reflect 
a minimum intake needed for an individual's survival and 
replacement reproduction (one surviving offspring/life- 
time), the basis for the time-minimizer foraging goal 
(Schoener 1971). Furthermore, this minimum value should 
not be confused with observed measures of energy budgets 
or maximum physiological values, rather it reflects a hypo- 
thetical value. These energy requirements appear in parame- 
ter 8 of Table 3. 

The net energy content of food plants (Table 3, parame- 
ter 7) was measured as the product of gross energy content 
of the average plant within a food class and its average 
digestibility to the herbivore. Monocot and dicot gross ener- 
gy contents were, respectively, 18.4 KJ/g-dry wt and 20.1 
KJ/g-dry wt (Golley 1961 ; unpublished work, Bison Range 
files). For species in a given plant class, these values were 
found to be fairly constant (Golley 1961). 

Measurements of the food plant's digestibility to each 
herbivore are often available in the literature. When not 
available, the digestibility measures for each herbivore were 
made using captive animals. Digestibility was measured as 
dry matter disappearance of the food (l-dry wt of feces/dry 
wt of ingested food). These measurements only had to be 
made for the smaller herbivores (marmot, cottontail, 
ground squirrel, Mierotus and grasshopper species). This 
was accomplished by feeding captive animals various plant 
species in each food class in ad Iibitum quantities. The dry 
weight of food ingested was measured as well as fecal pro- 
duction over 24 h to compute digestibility. 

Constraint equation 4). Nutrient requirements. No nutrient 
constraint seemed necessary to explain these herbivores' 
foraging. Either sodium (Botkin et al. 1973; Belovsky and 
Jordan 1981; Belovsky 1981c; Jordan et al. 1973; Weeks 
and Kirkpatrick 1976; Denton et al. 1961; Denton 1956, 
1957, 1965; Bott et al. 1964; Scoggins et al. 1970; Bakko 
1977; Weir 1972, 1973; Jarman 1972; Aumann 1965; Au- 
mann and Emlen 1965; Hutchinson and Deevey 1949; Kim- 
mins 1970) or protein (Schwartz etal.  1977; Bell 1969, 
1971; Gwynne and Bell 1968; Owen-Smith and Novellie 
1982; Klein 1962; Klein and Schonheyder 1970; Moen 
1973; Murphy and Coates 1966) often are considered to 
be potentially important as limiting nutrients to herbivores. 

The sodium and protein content of plant species at the 
study site were taken from the literature for sites with simi- 
lar environmental conditions. The average sodium content 
for a number of plant species at the Bison Range was 400 
times greater than for plant species in areas where sodium 

appeared to influence herbivore foraging (0.04% vs. 
0.0001% by weight). Crude protein averaged 12.3% over 
the summer and 17.7% over the period of peak parental 
investment in reproduction; approximately 6-7% is re- 
quired for maintenance and 13-16% for growth and repro- 
duction (French et al. 1955). Only during the period of peak 
parental investment (lactation) might protein be constrain- 
ing. Therefore, nutrient impacts on foraging were not con- 
sidered important in this study. If a model without nutrient 
constraints fails to predict diet choice, then a protein con- 
straint would be a possible addition for further study. 

Herbivore diet. The observed herbivore diets were measured 
using microhistological analysis of the plant fragments in 
feces or stomach contents (Sparks and Malechek 1968). 
The proportion of monocots and dicots was determined 
for each sample. Each herbivore's diet for the summer was 
computed as the average of its average monthly diets. The 
monthly estimates were based upon a minimum of 15 sam- 
ples. Generally, stomach samples were used for herbivores 
smaller than Spermophilus columbianus (350 g), stomach 
and fecal samples were used for Spermophilus columbianus 
and Marmota flaviventris (2.5 kg), and fecal samples were 
primarily used for Sylvilagus nuttalli and larger herbivores 
(>  3 kg). 

Diet values obtained by microhistological analysis were 
scaled by relative digestibility to account for differential 
appearance of monocots or dicots (Smith and Shandruk 
1979). This was accomplished by scaling the observed 
counts of monocots and dicots by their dry matter digestibil- 
ity for each herbivore species (Table 3, parameter 7). Al- 
though there are some difficulties with this technique in 
estimating species composition of an herbivore's diet (Smith 
and Shandruk 1979), it appears adequate for predicting diet 
composition by food classes which is the goal of the model. 

These measures of an herbivore's diet are well suited 
for testing the linear programming solutions, because they 
do not employ any of the observations used for estimating 
the model parameters as do other diet-estimating techniques 
(e.g., cropping rates times feeding times). 

The linear programming model. The digestive capacity, daily 
feeding time and energy-requirement constraints can be 
written as: 

C > or < alg + azd 

where C is the foraging constraint and al or az converts the 
dry matter intake of monocots (g) or dicots (d), respectively, 
into the units of C. Because there are only two food classes 
(monocots and dicots), the linear programming solutions 
to the various goals, if they exist, occur at the intersections 
of two constraint equations or of a constraint equation 
and an axis (Belovsky 1978, 1984d). One of the three con- 
straints drops out of the analysis for each of the three goals 
because it becomes the goal or object of foraging: for energy 
maximization, the energy constraint drops out; for feeding 
time minimization, the daily foraging constraint drops out; 
and for digestive capacity minimization, the digestive con- 
straint drops out. For a review of linear programming tech- 
niques, see Strum (1972). 

Results and discussion 

Foraging by each species. The data necessary to construct 
the linear programming model for each of the 14 Bison 
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Fig. 2a, b. Linear programming solutions are graphically presented for Microtus a and bison b. The lighter shaded region represents 
the region of feasible diets that satisfies the forager's constraint equations. The time-minimizing, energy-maximizing and digestive-capacity- 
minimizing solutions are presented for comparison with the observed diet ('k). The 95% confidence region of the observed diet is 
presented by the darker shaded rectangle. The Microtus possesses the largest confidence interval of all the species studied and the 
bison has the lowest 

Range herbivores appear in Table 3. Examples of time-min- 
imizing, energy-maximizing, and digestive capacity-mini- 
mizing solutions to the linear programming model appear 
in Fig. 2, along with the observed diets for two of the 14 
species, bison and Microtus. These two species were chosen 
as examples since they provide comparisons between the 
model's predictions and the observed diets for conditions 
with the greatest potential error (Microtus) and with the 
lowest potential error (bison). Therefore, these two exam- 
ples represent the best and worst possible cases of the 14 
species studied. Microtus have a large potential error in 
their observed diets because they were measured using 
stomach contents, and for such a small species its small 
digestive capacity can be filled in a single meal which may 
not reflect the daily diet (Belovsky 1984a). 

Figure 3 presents a comparison of the linear program- 
ming model's predictions for time-minimizing and energy- 
maximizing diets with the observed diets for the 14 species. 
The 45 ~ angle line in the plots represents perfect prediction 
of the observed diets by the model. The comparison indi- 
cates that the energy-maximized solution to the model pre- 
dicts the observed diet very well (r 2 = 0.99, n = 14, P <  0.001), 
even though the time-minimized solution also provides a 
statistically significant correlation (r2=0.50, n=14,  P <  
0.05). Another alternative strategy of digestive capacity 
minimization provides a poor fit with observed diets (r2= 
0.06, n =  14, n.s.). 

The diet resulting if the herbivores choose their foods 
at random, that is, take foods as they are encountered, 
would be a constant of approximately 70% monocots by 

weight (r2=undefln., n =  14, n.s.). This is not observed. In 
conclusion, the energy-maximized linear programming 
model gives the best fit by far for diet in these herbivores. 

To further examine the model's predictions, a Z 2 good- 
ness of fit test can be used to compare the predicted and 
observed diets for each of the 14 species. For each species' 
diet determination, a known number of plant fragments 
had been counted in the stomach or fecal analysis. Each 
fragment is approximately equal in size since the samples 
are ground through a given-sized screen. Consequently, the 
number of fragments counted were considered as indepen- 
dent samples. An expected value for each zZ-cell was com- 
puted as the predicted diet proportion times the total 
number of  fragments counted, which is compared with the 
observed fragments counted for the cell. The zZ-test has 
one degree of freedom since it has two cells (monocots 
and dicots). 

A z2-test was employed for several reasons, rather than 
a t-test, to compare the observed mean diet and standard 
deviation to a predicted value as portrayed in Fig. 2. First, 
the computation of a mean and standard deviation is mis- 
leading since it would require the averaging of monthly 
values which would unrealistically inflate the standard de- 
viation by expressing diet variation between months and 
not samples. Second, the standard deviation may be inflated 
if it measures the variation between stomach contents that 
arise from meal and not diet choice (see above). Third, 
the t-test would tend to underestimate differences between 
the predicted and observed diets due to the small sample 
sizes based on monthly averages and their large standard 
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Fig. 3. The time-minimized and energy-maximized diets predicted 
by the linear programming model versus the observed diets are 
presented, demonstrating that time-minimizers are predicted to be 
either monocot or dicot specialists. The energy-maximizing diet 
explains the observed diets better. Each number represents a differ- 
ent species: 1 Melanoplus femur-rubrum, 2 Melanoplus sanguinipes, 
3 Circotettix undulatus, 4 Dissosteira carolina, 5 Microtus pennsyl- 
vanicus, 6 Spermophilus columbianus, 7 Sylvilagus nuttalli, 8 Mar- 
mota flaviventris, 9 Antilocapra americana, 10 Ovis canadensis, 11 
Odocoileus virginianus, 12 Odocoileus hemionus, 13 Cervus canaden- 
sis (or elaphus), and 14 Bison bison 

deviations. Therefore, a xZ-test was more likely to find the 
model predictions different from the observed diets. 

Based upon the x2-test, the time-minimized diet is signif- 
icantly different from the observed diet for all species but 
bison and Dissosteira carolina, but their observed feeding 
times are much greater than that predicted for time minimi- 
zation. Only the observed diet for elk (Cervus elaphus) was 
not significantly different (P>0.05)  from a random diet. 
Three of  the 14 diets predicted to minimize digestive capaci- 
ty were not  different from observed (Dissosteira carolina, 
Circotettix undulatus, and Bison bison); however, the ob- 
served feeding times for these species were very different 
from those of  a digestive-capacity minimizer. None of  the 
energy-maximized diets were different from observed. 

Even though the elk's observed diet is not  different from 
random foraging, it also is not  different from the energy- 

Table 4. Predicted and observed feeding times for pronghorn ante- 
lope with different reproductive statuses are presented, along with 
sample sizes and t-test values 

Energy Time Observed 
maximizer minimizer 

218 min/day 69 min/day 218 min/day Doe or non- 
reproductive 
buck 

Subordinate 
reproductive 
buck 

Dominant 
reproductive 
buck 

218 min/day 69 min/day 177 _+ 94 min/day 
t = 0.42 t=  1.1 (n = 11) 

218 min/day* 69 min/day 84_ 17 min/day 
t = 7.2 t = 0.80 (n = 5) 

* P < 0 . 0 5  

maximized diet. This suggests that given the elk's feeding 
characteristics and the Bison Range environment, the best 
elk diet might be provided by eating foods as they are en- 
countered, but this still provides an energy-maximizing diet. 
In the three cases in which the predicted diets that minimize 
digestive capacity or the two cases in which the predicted 
time-minimizing diets are not different from the observed 
diet, the energy-maximizing prediction still provides as 
good or a better fit. Therefore, all 14 herbivores appear 
to forage as energy maximizers, even though they are very 
different in body size, digestive physiology and taxonomic 
affiliation. 

Because all the herbivores examined here appear to be 
energy maximizers, the question arises why herbivores 
might be energy maximizers rather than time or digestive- 
capacity minimizers. Perhaps herbivores are energy maxi- 
mizers to survive either long-term (winter) or short-term 
(reproductive) energetic deficiencies (Belovsky 1984d). 
These deficiencies might arise from either low food abun- 
dance or the low digestibility of  plants with a low nutri- 
tional quality per unit bulk. The latter requires herbivores 
to process foods relatively slowly to extract nutrients while 
the food bulk rapidly fills digestive capacity. The net result 
to the animal may be the inability to acquire adequate ener- 
gy intake in some short time period and consequently the 
need to store energy reserves. Therefore, herbivores may 
consistently need to acquire as much energy as possible. 

One might wonder whether a time minimizer is a realis- 
tic, observable alternative, or simply a "s t raw-man" .  For  
this purpose, male and female pronghorn antelope were 
observed during the mating season (approximately Sep- 
tember 7-31), and their daily foraging time was recorded. 
Solving the linear programming model and comparing the 
solutions with the observed feeding times (Table 4), we find 
that dominant  males which perform most  of  the mating 
(Kitchen 1974) appear to be time minimizers, while females 
and non-reproductive males are still energy maximizers. 
Subordinate but reproductive males are intermediate in 
their daily feeding time. This occurs because males spend 
large portions of  their time fending off other males from 
their herds of  females rather than feeding. Therefore, a 
time-minimizing strategy is observable. 

Another  question of  concern is whether the observed 
and/or predicted diets vary between years. It is possible 
that the forager selects a diet which is close to some opt i -  



43 

Table 5. The 1980 daily feeding-time and cropping-rate constraints 
for two herbivores at the Bison Range are presented. Sample sizes 
are presented in parentheses 

Feeding time Cropping rate 
(min/day) (min/g-dry wt) 

Monocot Dicot 

Sylvilagus nuttalli 236 0.71+_0.11 0.46___0.06 
(71 animal h) (81 rain) (57 rain) 

Marmotaflaviventris 242 0.67___0.29 0.35_+0.03 
(323 animal h) (134 min) (242 min) 

Table 6. The predicted time-minimized and energy-maximized diets 
are presented for two species in 1980 for comparison to their 1978 
diets 

Energy- Time- Observed 
maximized minimized 

1980 1978 

SyNilagus nuttalli 
%Monocot  84 0* 80 35 
%Dicot  16 100" 20 65 

Marmotaflavwentr~ 
%Monocot  45 0* 42 12 
%Dicot  55 100" 58 88 

*P<0.05 

mum over time but  cannot  vary its diet selection as condi-  
t ions change. Table  5 presents the foraging model  parame-  
ters for the cot tontai l  and marmot  in 1980, a year  with 
higher rainfall  and p lant  biomass  than 1978, the year  re- 
por ted  for them in Table 3. Solut ion of  the l inear p rogram-  
ming models  for these animals  in 1980 indicates that  the 
predicted diets are very different from those in 1978 (Ta- 
ble 6) and the foragers modify  their diet choice accordingly 
to remain energy maximizers.  Belovsky (1984a) indicated, 
using Microtus, that  predicted and observed diet choices 
varied between habitats ,  in a like fashion. Therefore, the 
foragers appear  to be able to respond to changing environ- 
ments. 

As Belovsky (1978, 1984d) points  out, one needs to 
be concerned with the sensitivity of  a foraging model ' s  pre- 
dictions, as well as goodness of  fit, since excessive sensitivity 
can reduce one's  confidence in predictions.  Sensitivity refers 
to how large of  a change in the model ' s  predict ions arises 
from a change in model  parameters .  I f  a model ' s  predict ions 
change by a large amoun t  then the model  is considered 
very sensitive. In past  appl icat ions of  the l inear p rogram-  
ming model  to herbivore foraging (Belovsky 1978, 1984b, 
c, d), when any one constraint  was varied by 10%, a devia- 
t ion in the predicted diet of  less than 10% was observed. 

The same sensitivity analysis was applied to the herbi- 
vores in this study. However,  increasing and decreasing any 
one const ra int  value for a species (C) by / 0 %  produced  
widely differing model  predict ions for the energy-maxi-  
mized diets. The max imum deviat ion in each species' pre- 
dicted diet with a 10% var ia t ion in any one constraint  equa- 
tion is plot ted against  herbivore body  mass for the 14 spe- 
cies in Fig. 4. The constraint  producing  this deviat ion was 
considered the most  sensitive for the species' model.  F o u r  
species had max imum diet deviat ions less than 10%, 5 had 
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Fig. 4. Species body mass is plotted against the percent variation 
in the summer diets (maximum % monocot intake minus minimum 
% monocot intake) predicted by the energy-maximized solution 
to the linear programming model when the parameters are allowed 
to vary by 10% (sensitivity analysis ) (o). This represents the plas- 
ticity of different species or body sizes in their diets. The maximum 
variation in diet found in the literature or this study (Allen 1968; 
Alldredge et al. 1974; Anderson et al. 1965; Anthony 1976; An- 
thony and Smith 1974; Barmore 1969; Bartmann et al. 1982; Beale 
and Smith 1970; Becker 1972; Berwick 1968; Blood 1967; Boeker 
et al. 1972; Bookhout 1965; Brown 1961; Bryant et al. 1979; 
Buechner 1947; Buechner 1950; Buechner 1952; California Wildlife 
Investigations Laboratory, N.d.; Chamrad and Box 1968; Cliff 
1939; Cole 1969; Collins and Urness 1983; Collins et al. 1978; 
Constan 1972; Couey 1946; Cowan 1945; Cowan 1947; Currie 
etal. 1977; Dailey 1980; DeNio 1938; Deschamp etal. 1979; 
Dirschl 1963; Dorn 1970; Drawe 1968; Dusek 1975; Everitt and 
Drawe 1974; Everitt and Gonzalez 1979; Ferrel and Leach 1949; 
Ferrel and Leach 1950a; Ferrel and Leach 1950b; Free et al. 1970; 
Gordon 1968; Greer et al. 1970; Halloran 1943; Halls 1978; Han- 
ley 1980; Hanley and Hanley 1982; Hansen and Clark 1977; Han- 
sen and Dearden 1975; Harper 1962; Harper et al. 1967; Hill and 
Harris 1943; Hlavachick 1968; Hobbs etal. 1983; Hobbs etal. 
1981; Hubbard and Hansen 1976; Hungerford 1970; Jameson 
1947; Joern 1979; Johnson 1979; Johnson and Hansen 1979; Keller 
1975; Klebenow 1965; Korschgen et al. 1980; Krausman 1978; 
Kufeld 1973; Kufeld et al. 1973; Lauer and Peek 1976; Leach 
1956; Leach and Hiehle 1957; Leopold et al. 1951; Lovaas 1958; 
MacCracken and Hansen 1981 ; M ackie 1970; M artinka 1968 ; Ma- 
son 1952; McCollough et al. 1980; McCulloch 1969; McCulloch 
1973; McCulloch 1978; McCullough 1980; McMahan 1964; 
Meagher 1973; Mitchell and Smoliak 1971; Morris and Schwartz 
1957; Mulkern et al. 1969; Neff 1974; Nellis and Ross 1969; Nel- 
son and Burnell 1975; O'Gara and Greer 1970; Oldemeyer et al. 
1971; Peden 1976; Peden etal. 1974; Pickford and Reid 1943; 
Reynolds et al. 1978; Schwartz and Nagy 1976; Schwartz et al. 
1977; Seegmiller and Ohmart 1981 ; Severson and May 1967; Sever- 
son et al. 1968; Sexson et al. 1981 ; Shank 1982; Short 1977; Smith 
1952; Smith 1965; Smith and Shandruk 1979; Smith et al. 1979; 
Smith and Julander 1953; Spalinger 1980; Stevens 1966; Stevens 
1974; Stormer and Bauer 1980; Taber and Dasmann 1958; Taylor 
1972; Teller 1967; Telfer 1972; Todd 1975; Ueckert 1968; Ueckert 
et al. 1972; Urness 1981; Uzzell 1958; Wallmo 1981; Wallmo and 
Regelin 1981; Wallmo etal. 1973; Wilkins 1957; Willms and 
McLean 1978; Willms et al. 1979; Willms et al. 1980; Zimmerman 
1965) is plotted for comparison (A), indicating that the sensitivity 
analysis of the linear programming model reflects observed sensi- 
tivity (Spearman Rank Correlation = 0.69, P < 0.005). The numbers 
refer to the species in Fig. 3 and provide a ranking by body size. 
The smaller peaks in monocot consumption at species 5 and 7 
may be real but were considered either as sampling variation or 
of minor importance 

10-20% deviations,  3 had 20-30% deviations, 1 had a 
60-70% deviat ion and 1 had a 9 ~ 1 0 0 %  deviation. 

The fact that  5 of  14 species have predicted diet devia- 
tions over 20% is disconcerting (Fig. 4). Moreover ,  given 
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the confidence intervals for the observed constraints, the 
probability that their true values fall within 10% of the 
observed value is only 0.40 (range 0.01 0.80). The daily 
feeding time and cropping rate constraint equations are 
generally the most sensitive for the model. The difficulty 
in reducing the chance of error for this constraint arises 
because of the inherent spatial variability of food abun- 
dance in the environment and little can be done to reduce 
this factor within reasonable sampling time in the field. 

Although the sensitivity of the linear programming 
model for some species is upsetting from the viewpoint of 
the modeller, this sensitivity may be biologically important. 
Figure 4 also contains a plot of the maximum diet deviation 
reported in the literature or taken from this study for the 
14 species (maximum % monocots observed in the diet 
minus minimum % monocots observed in the diet). The 
reported variability in these herbivores' diets is correlated 
with their diet sensitivity predicted by the linear program- 
ming model (Spearman Rank Correlation=0.69, n=14,  
P<0.001). This high correlation is very surprising since 
the literature studies do not portray a uniform range of 
foraging environments for each of the species, making the 
correlations' strengh even more convincing. 

The diet sensitivity for the models may reflect the ability 
of these herbivores to vary their diets with environmental 
variability. Furthermore, the high level of sensitivity of the 
models for some species may be unavoidable because they 
reflect real biological sensitivity. It is also interesting that 
the species which show the greatest model sensitivity are 
those whose diets are in a region of transition from mono- 
cots to dicots or dicots to monocots (Circotettix undulatus, 
Microtus pennsylvanicus, Cervus eIaphus), i.e., a diet tending 
to be balanced between monocots and dicots. These for- 
agers generally have daily feeding time and digestive capaci- 
ty constraints that are very similar in magnitude (see below). 

Sensitivity of the model for the feeding time- and di- 
gestive capacity-minimizing solutions is far less than that 
for the energy-maximizing solutions. Sensitivity of the mod- 
el for these solutions is inconsequential. For example, on 
average, the forager's energy requirements would have to 
vary by at least 2.l-fold (range: 1.1- to 6.2-fold) for the 
feeding time-minimizing goal to change the predicted diet. 
This amount of variation in the energy constraint would 
necessitate energy requirements that are approximately 4.2 
times basal metabolism (range: 2.2 to 12.4 times), which 
is equal to or greater than the maximum energy require- 
ments reported in the literature (Moen 1973). 

Finally, the model's high sensitivity does not diminish 
our confidence in the observation that these herbivores ap- 
pear to forage as energy maximizers. This is because the 
models for the 14 species serve as independent tests of the 
alternative foraging hypotheses, making the overall conclu- 
sion, in essence, a non-parametric test, freed of the paramet- 
ric estimates and sensitivity of species by species analyses. 
Therefore, the conclusion that these herbivores appear to 
forage as energy maximizers is quite robust. 

Body size." the importance for different foraging constraints 
and for plant defense. Since all of the herbivores studied 
forage as though they are energy maximizers, and the same 
foraging constraints are operating to delimit this goal (feed- 
ing time and digestive capacity), then the only difference 
between these herbivores' foraging strategies is the con- 
straint values which might scale with body size. We can 
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Fig. 5. Each Bison Range herbivore's summer diet (% monocot),  
as predicted by the energy-maximized solution to the linear pro- 
gramming model, is plotted against the species' adult body mass 
(obtained from either this study or Burt and Grossenheider 1964). 
The numbers associated with each point refer to the species names 
presented in Fig. 3. 

then ask if there is a pattern of diet selection for energy- 
maximizers with body size. Figure 5 presents the energy- 
maximized predicted diets expressed as % of monocot in 
the diet plotted against body mass. Two peaks of monocot 
consumption (Fig. 5 : 1 0  -3 10 .2 kg and 102-103 kg) and 
two peaks of dicot consumption (Fig. 5 : 1 0 - 4 1 0  3 kg and 
10-i-102 kg) are observed. This indicates that there is a 
wider range of body sizes that selects diets higher in dicots 
than monocots, 4 orders of magnitude vs 2. 

The size classes which are heavy monocot feeders 
(10- 3-10 - 2 kg and 102-103 kg) are characterized by mono- 
cot consumption constrained by digestive capacity and by 
dicot intake constrained by feeding time or digestive capaci- 
ty. Body size classes which are predominantly dicot feeders 
(10-4-10 -3 kg and 10-1-10 2 kg) are constrained in their 
monocot consumption by feeding time while dicot con- 
sumption is limited by digestive capacity. 

Very few body sizes have balanced (near equal) digestive 
capacity and feeding time constraints for both dicot and 
monocot ingestion. This condition leads to a diet balanced 
between monocots and dicots, i.e., equal ingestion of both 
foods. Consequently, most herbivores will tend to specialize 
(consume more) on either monocots or dicots. 

The feeding time constraint, in general, appears to be 
limiting since it most often determines which food class 
does not dominate the diet. The observed changes in the 
importance of the constraints (feeding time or digestive ca- 
pacity) on monocot versus dicot ingestion may arise from 
the impact of body geometry on mouth size, speed of search 
for food, energy metabolism, digestive organ capacity and 
digestive turnover (Belovsky, in prep.). 

From the above pattern of diet choice and body mass, 
we might be tempted to generalize about the defensibility 
of monocots versus dicots. We might conclude that mono- 
cots (primarily graminoids) are better defended against her- 
bivores (less acceptable) than dicots, since a smaller range 
of herbivore sizes can utilize large quantities of monocots 
(2 vs. 4 orders of magnitude of body sizes). "Defense" 
is used here in reference to the acceptability of the food 
plant to the herbivore whether acceptability is determined 
by toxicity, low nutrient content, or low digestive capacity 
due to bulk or slow turnover. This illustrates the difficulty 
in trying to define plant defenses against herbivores based 
on the study of a single herbivore species or a single factor, 
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Fig. 6. The absolute food intake (g-dry wt/day) during summer predicted by the time-minimized ( ,)  and energy-maximized (e) solutions 
are plotted with the observed intake (m: this study; Peden 1972; Short 1981; Alldredge et al. 1974; Wesley et al. 1973; Severson et al. 
1968; Chappel and Hudson 1978b; Halls 1978; Hosley 1956; Hill 1956; Milne et al. 1976; Dean et al. 1980; Van Wormer 1969; 
Nelson and Leege 1982; Stelfox 1974; Armitage 1979) against body mass. The solid lines represent the curve fit to the predicted 
time-minimized intakes for endothermic and ectothermic herbivores; the dashed line is the curve fit to the predicted energy-maximized 
diets. The maximum difference between the dashed and solid curves represents body sizes which have more energy available to individuals 
and the intersection of the lines indicates either minimum or maximum body sizes for foraging (see text). The numbered points represent 
the species named in Fig. 3. The histogram presented illustrates the number of Bison Range herbivore species (right y-axis) of different 
body masses ( < 10- 2 kg: Orthoptera; 10- 2-10 - 1 kg: Microtus pennsylvanicus, M. longicaudus, M. montanus; 10 - 1-10 ~ g: Canachetes 
canadensis, Bonasa umbellus, Dendragapus obscurus, Thomomys talpoides, Spermophilus columbianus, Neotoma cineria ; 10~ kg: Sylvila- 
gus nuttalli, Lepus townsendi, L. americanus, Erethizon dorsatum, Ondatra zibethica, Marmota flaviventris, Castor canadensis ; 10-102 kg: 
Antilocapra americana, Oreamnos americanus, Ovis canadensis, Odocoileus hemionus, O. virginianus ; 102-103 : Cervus elaphus, Bison bison) 

such as toxins. Also, this leads one to question the idea 
that monocots have coevolved in a mutualistic fashion with 
herbivores and are less defended while dicots are more de- 
fended (Owen and Wiegert 1976, 1981; Owen 1980; 
McNaughton 1979a, b). 

The findings presented here are consistent with Feeny's 
(1976) and Rhoades and Cates' (1976) arguments that 
plants which are abundant and not patchily distributed in 
either space or time (monocots) will be heavily defended. 
This defense should be provided by quantitative defenses, 
which impact on most herbivores. Although little evidence 
exists for toxins in graminoids, an ultimate quantitative 
defense in plants is low nutrient or energy content which 
is the case for monocots. Plants that are not abundant and 
are very patchily distributed will be less well defended and 
their defenses will be qualitative, which impact on specific 
herbivores (dicots). Although it must be stressed that sweep- 
ing comparisons must be made with caution (Silvertown 
1982), these results illustrate the need to examine plant de- 
fenses using a suite of herbivores in an environment and 
a range of factors that determine plant acceptability to the 
herbivore. 

Community effects of foraging. Thus far in this analysis, 
we have examined the percentage of monocot and dicot 
comprising the diet, not absolute food intake. Figure 6 pres- 

ents the predicted intake of food per day for energy-maxi- 
mizing and time-minimizing strategies which can be com- 
pared with the observed intake for captive individuals in 
this study or others reported in the literature. The limits 
imposed by the energy-maximizing and the time-minimizing 
food-intake values bound the intake values an herbivore 
can achieve and still survive and reproduce in the environ- 
ment. Contrasting the above two intake levels with the ob- 
served intake, the energy-maximized intake is found to be 
slightly better correlated with the observed intake (r 2 = 0.99, 
n = 14, P < 0.001, vs. r 2 = 0.92 for time minimization). This 
is consistent with the conclusion that herbivores are energy 
maximizers, though without the diet comparisons above 
it would be weak support. 

Using absolute food intake values, we can make some 
predictions of community structure on the basis of trophic 
dynamics. If the time-minimizing intake is greater than the 
energy-maximizing intake (Fig. 6), then the herbivore can- 
not satisfy its energy demands and will not persist in the 
environment. The minimum sizes for herbivores that are 
still able to satisfy their energy demands (Fig. 6) are 
1 0 - L I 0  -~ kg and 10-3-10 -2 kg, for ectotherms and en- 
dotherms, respectively. As might be expected, the smallest 
ectotherms will be smaller than the smallest endotherms. 
This can be envisioned if we consider a similar ability to 
ingest energy for ectotherms and endotherms at a given 
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small size which arises from their similar digestive capacity 
and feeding time constraints. Consequently, the ecotherms 
should be able to survive at lower body sizes because of 
their lower absolute energy requirements at a given size 
than those for endotherms. 

The smallest chewing ectothermic herbivores, first instar 
grasshoppers, fall into the 10 .5 to 10 .4  kg size class at 
the Bison Range and the smallest endothermic herbivores, 
recently weaned microtines, approximately 8 g, fall into the 
10-3-10 .2 kg size class. Therefore, it appears that mini- 
mum herbivore sizes at the Bison Range may be consistent 
with the sizes set by foraging energetics. 

A maximum size at which energy demands are not sat- 
isfied may also be found. For ectothermic herbivores the 
predicted maximum (approx. 50 g) is much larger than the 
observed maximum (approx. 1.5 g) indicating that foraging 
energetics may not explain the largest observed sizes. A 
maximum size, however, does emerge for endotherms at 
a size slightly greater than 103 kg (Fig. 6), corresponding 
with the largest mammal at the Bison Range, a large bull 
bison at 1,250 kg. 

The maximum size for ectothermic herbivores may be 
set by considerations other than foraging, such as preda- 
tion, the physiology of respiration, and climate. Competi- 
tion with the smallest endothermic herbivores also may pre- 
clude larger ectotherms. The endotherms within these size 
ranges may be competitively superior as they appear to 
be able to acquire more energy in foraging relative to their 
requirements (greater deviation between time-minimized 
and energy-maximized lines in Fig. 6) than ectotherms. The 
cause of this observation is uncertain but it might arise 
from the endotherm's foraging constraints being less depen- 
dent upon climatic conditions (feeding time and digestive 
capacity are not temperature dependent). 

I f  foraging also sets a maximum size for endothermic 
herbivores, we must question arguments that large mamma- 
lian herbivores went extinct at the end of the Pleistocene 
from human hunting (Martin 1973). Many of the extinct 
herbivorous species were larger than Bison bison and the 
above analysis indicates that larger herbivores are not ener- 
getically capable of  surviving in this grassland which is one 
of the more productive regions in North America for herbi- 
vores. Therefore, the existence today of the larger extinct 
herbivores would be impossible; i.e., no niche space exists 
for them. Perhaps, the environment changed at the end 
of the Pleistocene by becoming more xeric (Hester 1967) 
which might have made the foraging energetics of the larger 
species untenable. 

From Fig. 6, one can see that certain body sizes of herbi- 
vores can obtain relatively more energy above their require- 
ments (energy obtained/energy requirement) than other her- 
bivore sizes, i.e., they are more efficient. This ratio is mea- 
sured as the distance between the energy-maximized and 
time-minimized intakes since Fig. 6 is plotted in a log-log 
fashion. Even though these body sizes are more efficient, 
this does not imply that they should be selected for over 
other body sizes in the environment, because different sizes 
of herbivores use different food resources and have different 
amounts of food available in the environment (Belovsky 
1984a, 1986). Nonetheless, individuals of certain sizes will 
be more efficient in acquiring the food energy available 
to them. If  food availability limits the population growth 
of the herbivores studied, then individuals of species with 
certain body sizes should be capable of acquiring more ener- 

gy relative to their requirements than species with other 
body sizes. This might result in a more rapid population 
growth for species of  these body sizes and a greater ability 
to withstand more intense competition for food. An ability 
to withstand intense competition might be reflected as the 
ability of more species of these sizes to coexist together. 

To test whether more species coexist at body sizes with 
greater foraging efficiency, the number of species in a body 
size range can be compared with the body size's energy 
intake relative to metabolic requirements (feeding effi- 
ciency). Also, small body sizes may have greater numbers 
of species because small size permits greater specialization 
on microhabitats which are unavailable to larger species 
(Hutchinson and MacArthur 1959), i.e., the environment 
is patchier for small species. 

Using the data in Fig. 6, we find that body size is highly 
correlated with species number, if energy intake relative 
to metabolic requirements is held constant, (partial correla- 
tion coefficient; r = 0.98, P <  0.001, n = 14); and energy in- 
take relative to requirements is highly correlated to species 
number, if body size is held constant (partial correlation 
coefficient; r=0.95, P<0.001, n=14).  Overall, these two 
variables explain 98% of the variance in species number, 
with body size accounting for 71% and energy intake rela- 
tive to requirements accounting for an additional 27%. 

Although body size is more important, the combination 
of body size and feeding efficiency to explain species 
number may be the reason for observed log-normal distri- 
butions of species number vs. body size (Hutchinson and 
MacArthur 1959; Schoener and Janzen 1968; May 1979). 
This species abundance distribution might arise from three 
distinct regions of body size and abundance characteristics. 
Small to intermediate-sized herbivores may be able to take 
advantage of greater microhabitat specialization and their 
greater foraging efficiency to have the greatest abundance, 
leading to a peak in the body size-abundance curve. Very 
small herbivores only have the advantage of greater micro- 
habitat specialization because they have a low feeding effi- 
ciency; and larger herbivores have neither advantage. This 
leads to a left tail (very small sizes) of the size-abundance 
curve that is higher than the right tail (very large sizes). 
Therefore, a curve approximating a log-normal distribution 
might be produced. 

The above statements on species number only bear on 
competition within a body size class, i.e., competition be- 
tween species that forage similarly. It does not pertain to 
competition between body size classes, since this depends 
upon how similar in feeding different size classes are. Be- 
lovsky (1984 a, 1986) has shown experimentally how compe- 
tition for food can explain the population dynamics of her- 
bivores that are not taxonomically closely-related or have 
very different body sizes. 

The relationship between diet and body size presented 
above indicates that if food is the object of competition, 
the competition probably is most intense for energy-rich 
foods, since all the herbivores appear to be energy maxi- 
mizers. Also, herbivores with certain body sizes are more 
likely to exhibit competition. Insects between 10 -4 and 
10 .3 kg will compete most intensely with mammals be- 
tween 10 -1 and 10 .2 kg for dicots, while insects between 
10 .3 and 10 -2 kg will compete most intensely with mam- 
mals between 102 and 103 kg for monocots. The separation 
of herbivores into body mass classes, which tend to compete 
more intensely with each other, arises from their similarities 
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in foraging constraints (i.e., feeding time-cropping rate, di- 
gestive capacity-food fill) examined above. 

Conclusion 

The optimal foraging analysis presented in this paper leads 
to a number of conclusions about herbivore foraging behav- 
ior. First, a single foraging model employing the same con- 
straints (feeding time, digestive capacity and energy require- 
ments), linear programming, appears to apply to all the 
herbivores studied. Second, all the herbivores in this study 
appear to be adopting a goal of energy maximization for 
all but very short periods (e.g., pronghorn males in the 
mating season). Third, the model solved for energy maximi- 
zation appears to predict diets that follow a pattern with 
forager body size. Whether or not the same patterns occur 
in other herbivore communities must still be investigated, 
although similar patterns have been observed in a forest 
environment for a less diverse herbivore assemblage 
[moose, Alces alces ; beaver, Castor canadensis and snow- 
shoe hare, Lepus americanus (Belovsky 1978, 1984b, c)]. 

The observed foraging behavior patterns probably occur 
because herbivores have common anatomical and physio- 
logical processes constraining their diet choice (Belovsky 
1984d). These physiological processes are probably body- 
size dependent, which leads to the relationship between diet 
choice and body size (Belovsky unpublished work). 

Why do herbivores behave as energy maximizers? Per- 
haps seasonal food shortages arising from low abundance 
and quality, such as occur in winter, necessitate a long-term 
goal of energy maximization. Food shortages are not un- 
ique to herbivores living in temperate climates, for periods 
of low food abundance and quality also exist in tropical 
areas (Sinclair 1975). One must, however, bear in mind 
that the analysis has been restricted to generalist herbivores, 
those consuming a range of plant species, not specialists, 
such as many Lepidoptera, that feed on only one or several 
plant species (Belovsky 1984d). 

The foraging strategy analysis provides more than just 
a means of estimating a species' diet and insights into its 
rationale for diet choice in the context of behavioral ecolo- 
gy. It enables us to examine community ecology problems. 
For example, the herbivore foraging analysis presented here 
indicates: 1) how 'plastic' different herbivore species are 
to changing environments through diet variability, 2) 
whether the largest and smallest body sizes for herbivores 
in an environment are set by foraging limitations, 3) wheth- 
er or not certain herbivore body size classes are able to 
acquire more energy relative to their requirements, which 
should influence their population dynamics, if food limited, 
and 4) how foraging may bear on questions of the number 
of herbivore species in the environment and the potential 
for competition (Belovsky 1984a, 1986). 

The underlying assumption for inferring community 
patterns from the foraging strategy model is that food limits 
the population dynamics of the herbivores. This immediate- 
ly raises the question of the HSS hypothesis (Hairston et al. 
1960; Slobodkin et al. 1967): that predators limit herbivore 
numbers. A review of the literature on generalist herbivore 
abundances and a set of experiments conducted by me (Be- 
lovsky 1984a, 1986) indicate that generalist herbivores ap- 
pear to be food limited. This is not to say that predation 
does not influence herbivore population dynamics, but food 

availability and its apportionment between different species 
appears to be of principal importance (Belovsky 1984a). 

Food limitation of herbivores, however, is by no means 
established and additional investigations on this matter 
must be undertaken. Whether differences should exist be- 
tween specialist and generalist herbivores for food limita- 
tion is unknown and may be important for the relevance 
of HSS. Nonetheless, if this assumption continues to be 
borne out, the utility of foraging models for answering com- 
munity structure questions can be seen and permits the 
linking of behavioral ecology with population biology (Be- 
lovsky 1986; Werner 1977). 
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Note added in proof. Fig. 2b. The energy-maximized diet should 
appear at the intersection of the x-axis (Monocot Intake) and the 
Digestive Capacity contraint (S). Also, the confidence region repre- 
sents + 1 SE, not 95% confidence, for bison. 


