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Abstract In this paper, we present a modeling and numerical 
simulation of a mold filling process in resin transfer molding/ 
structural reaction injection molding utilizing the 
homogenization method. Conventionally, most of the mold 
filling analyses have been based on a macroscopic flow model 
utilizing Darcy's law. While Darcy's law is successful in 
describing the averaged flow field within the mold cavity packed 
with a porous fiber preform, it requires experiments to obtain 
the permeability tensor and is limited to the case of porous fiber 
preform - it can not be used to model the resin flow through 
a double porous fiber preform. In the current approach, the 
actual flow field is considered, to which the homogenization 
method is applied to obtain the averaged flow model. The 
advantages of the current approach are: parameters such as the 
permeability and effective heat conductivity of the impregnated 
fiber preform can be calculated; the actual flow field as well as 
averaged flow field can be obtained; and the resin flow 
through a double porous fiber preform can be modelled. In the 
presentation, we first derive the averaged flow model for the 
resin flow through a porous fiber preform and compare it with 
that of other methods. Next, we extend the result to the case 
of double porous fiber preform. An averaged flow model for 
the resin flow through a double porous fiber preform is derived, 
and a simulation program is developed which is capable of 
predicting the flow pattern and temperature distribution in the 
mold filling process. Finally, an example of a three dimensional 
part is provided. 

1 
Introduction 
Resin Transfer Molding (RTM) and Structural Reaction 
Injection Molding (SRIM) molding are relatively new process 
for manufacturing continuous fiber reinforced materials. They 
are among the several processes that have been developed for 
mass production of these materials. In RTM/SRIM, the mold is 
packed with dry fiber preforms which act as reinforcements. 
These preforms are impregnated progressively by the resin 
injected through injection ports of the mold. After the mold is 
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completely filled, the resin solidifies in the curing phase and 
the product is taken out of the mold. 

The analysis of a mold filling process is a very important step 
in the product development stages of RTM/SRIM products. It 
can provide useful information to a mold designer such as 
pressure distributions and flow front profiles within the mold 
cavity which can be used to predict operating parameters, 
possible location of defects, hard to fill regions, and proper 
locations of air tabs and injection ports. Conventionally, these 
data were obtained based on experience and repeated 
experiments which are time consuming and inefficient. In order 
to optimize the manufacturing process and reduce the cost, 
computer simulation of the mold filling process is necessary. 
So far, many computer programs have been developed which 
can simulate the mold filling process. However, most of these 
programs require as an input the permeability tensor which 
must be obtained by experiments. 

In this paper, we develop a computational model to calculate 
the permeability effective heat conductivity of the impregnated 
fiber preform and use it to simulate a non-isothermal three 
dimensional mold flow problem. The ability to calculate the 
permeability and the effective heat conductivity can be very 
valuable to the mold designer, since it enables him to try all 
possible different fiber arrangements- or different micro 
structures- as well as different air tab and injection port 
arrangements to avoid defects. The mold designer may then 
conduct few experiments with some of the best fiber 
arrangements found in the calculation for more accurate 
analysis. 

Here, we also consider the mold flow through double porous 
fiber preforms. In many mold filling processes, the fiber 
preforms used are woven structures made of fiber bundles which 
consist of much thinner fibers. For such fiber preforms, there 
are two different level of pore structures: the pore structure 
between the fiber bundles, and the pore structure inside the fiber 
bundles. In the mold filling, the pores between the fiber bundles 
are filled first and then the pores within the fiber bundles are 
filled up. This will create along the flow front an intermediate 
region where the fiber bundles are partially impregnated. 
Depending on the width of the region and fiber orientations, the 
air inside the fiber bundle can be trapped and cause defects in 
the product. In the current analysis, this partially impregnated 
region can be estimated, which, with some experimental data, 
can be used to predict the partial impregnation inside the fiber 
bundles. 

Many researchers have investigated the mold filling process 
in the context of RTM and SRIM. Gonzalez, Castro, and Macosco 
(1985) studied the process using a disk-shaped mold. They 
de-coupled the chemical reactions and heat transfer from the 



mold flow and solved a 1-D mold filling problem using both 
analytical and numerical methods. Coulter and Gfiqeri (1988) 
studied the effects of anisotropic reinforcements on the mold 
flow. They considered an isothermal flow and developed a 2-D 
finite difference code to simulate the mold flow utilizing 
boundary fitted curvilinear coordinate systems. Young, Han, 
Fong, and Lee (1991) investigated the effects of permeability 
variations in a similar 2-D setting. They simulated the mold flow 
utilizing the Fluid Analysis Network (FAN) method. Bruschke 
and Avani (1993) considered a non-isothermal flow and solved 
a 2-D momentum equation with a 3-D energy equation. They 
simulated the flow using the finite element/control volume 
method. 

While many methods have been proposed and developed to 
simulate the mold filling process in these investigations, most 
of the analyses are based on the same macroscopic flow 
model - Darcy's law. Darcy's law states that the averaged resin 
velocity, V is proportional to the pressure gradient: 

cr = _ 1 k-W' (1) 
,u 

where k- is the permeability tensor, P is the resin pressure, and 
is the viscosity. While Darcy's law is successful in describing 

the overall (or averaged) behavior of the mold flow, it does not 
give any information on the actual flow field in the pore 
structures of reinforcing fiber mats. All the interactions between 
the resin and fiber mat are summarized and represented by 
a single permeability tensor k, which must be obtained by 
experiments. 

Here, we take the microscopic approach to model the non- 
isothermal mold flow. In the microscopic approach, the flow 
through the fiber preform is analyzed based on the boundary 
conditions which account for all the fibers in the flow field. It 
may seem beyond the limitations of the computational 
capability to calculate the actual flow field within the fiber mat 
while considering the reinforcing fibers as boundary conditions. 
However, there is a method to calculate the averaged flow field 
while taking care of the actual flow field. Using the 
homogenization method, one can simulate the mold filling 
process in terms of averaged flow field and calculate the actual 
flow field between the reinforcing fibers whenever necessary. 

The homogenization theory appeared in the 1970's and 
has been the subject of considerable research in different 
areas of applied mechanics. The theory deals with partial 
differential equations of physics in heterogeneous materials 
with periodic structures when the characteristic length of 
the period is small. The fundamentals of the theory can be 
found in the works of Lions (1981) and some generalizations 
can be found in the works of Lene (1984). Application of the 
method to the flow and transport through porous media was 
first done by Keller (1980) and Tartar (1980) who showed the 
derivation of Darcy's law as a macroscopic equation from 
Stoke's equations as a micro-model. After the pioneering work 
of Keller and Tartar many applications followed (Arbogast 
(1989), Hornung (1991)). 

In the homogenization method, it is assumed that the flow 
domain is locally formed by spatial repetition of a "microscopic 
cell" which is very small compared to the overall dimension 
of the flow domain. With this assumption, the governing 
equations for the actual flow field are converted to a set of 

'microscopic equations' and 'macroscopic equations'. The 
microscopic equations govern the characteristic flow field 
within the microstructure, and the macroscopic equations 
govern the averaged flow field of the mold filling. From the 
solutions of the microscopic equations, the permeability and 
averaged heat conductivity of the flow domain are calculated 
which, in turn, are used to solve the averaged flow field in the 
macroscopic equations. After the simulation, the solutions of 
the microscopic equations can be post-processed to give 
the actual flow field within the microstructure. Advantages of 
the homogenization method are: parameters such as 
permeability of the flow domain and effective conductivity of the 
impregnated fiber preform can be calculated; the actual flow field 
within the pore structure can be obtained as well as the averaged 
flow field; and the method is based on a rigorous mathematical 
theory. 

In the following sections, we utilize the homogenization 
method to obtain the governing equations of a non-isothermal 
mold flow through double porous fiber preforms. First, we give 
a brief derivation of the homogenized governing equations for 
the mold flow through porous fiber mat and compare them with 
those of other methods in terms of permeability and averaged 
heat conductivity. Next, we derive the governing equations for 
the mold flow through a double porous fiber mat. Then, 
a computer program is developed which is capable of predicting 
the flow pattern and the temperature distribution within the 
mold cavity. The program is based on the finite element/control 
volume method and the Crank Nicholson method and is capable 
of simulating the mold filling of three dimensional parts. Finally, 
an example is provided for a simplified composite crossmember 
of a passenger van. In the example, the flow pattern, temperature 
distribution, and the actual flow field within the mold cavity 
is obtained and plotted. 

2 
Resin flow through porous fiber preform 

2.1 
Mathematical model 
In RTM/SRIM, the mold is pre-packed with fiber preforms. 
Throughout the mold filling process, the fiber preform is 
assumed to be rigid - it is not deformed or shifted by the 
resin flow. The flow of resin through the porous fiber mat is 
usually very slow and can be modeled as Stokes' flow which 
is an inertia-less viscous flow. The inertia effect is negligible 
because the Reynold's number of the resin flow is small, and 
the effect of the surface tension is negligible compared to the 
dominant viscous force. With these assumptions, the 
momentum balance equation and the continuity equation of 
the resin flow can be written as: 

- VP + /~V. (W)  + f =  0 (2) 

V.v-= 0 (3) 

where ~7 is the actual velocity, P the pressure, p the viscosity, 
and f the specific weight of the resin. The boundary conditions 
are: pressure is zero at the free flow front, and the normal 
component of velocity is zero at the mold walls. Either injection 
pressure or flow rates are prescribed at the injection ports 
depending on the port types. 

z3 
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In general, the mold filling process is not an isothermal 
process. As the resin fills the mold, heat transfer takes place 
between the resin, fiber preform and mold walls. Heat may 
be generatedby the resin curing which is an exothermic process. 
As a result, temperature variations are created throughout 
the mold cavity. These temperature variations influence the 
flow pattern by changing the viscosity which is a strong function 
of temperature. 

In analyzing the heat transfer, it is assumed that the resin 
and fiber reach local thermodynamic equilibrium as soon as 
the fiber is impregnated. This is justified because the heat 
transfer coefficient between the resin and fiber is fairly large 
compared to the thickness of the fibers. With this assumption, 
the energy equation takes the following form: 

~T 
pcp-~ + pcp(~.VT) = - V . ( -  ~VT) + (4) 

where T is the temperature and t is the time. p and cp are the 
density and heat capacity respectively. ~ is the conductivity. 
The coefficients p, cp and ~ are equal to p~, cp, and ~ at the 
resin and equal to pp Cpi and ~f at the fiber. G, cp,, Kr and pf, 
cvf, ~y are the density, heat capacity, and conductivity of the resin 
and of the fiber respectively. ~ is the velocity of the resin flow 
and g is the specific heat generated in the resin due to curing. 
Both ~ and g have zero value at the fiber. The first term of (4) 
represents the change in internal energy, and the second term 
represents the contribution due to the convection of the resin. 
On the right hand side, the first term represents the contribution 
due to conduction. The last term represents the energy 
generated due to curing. 

To solve the energy Eq. (4), boundary conditions must be 
specified at the injection ports, the mold walls, and the flow 
front. At the injection ports and mold walls, temperature is 
specified. For a more complete analysis, the mold plates can 
be included in the heat transfer analysis instead of specifying 
mold wall temperatures. At the flow front, the heat transfer 
from the flow front to the ambient is neglected. However, the 
initial internal energy of the fiber preforms is taken into account 
during the impregnation at the flow front. This is done by 
considering a local heat balance which assigns a convection 
type boundary condition at the flow front. 

The energy Eq. (4) is coupled with the momentum Eq. (2) 
in terms of viscosity which is a function of temperature. The 
viscosity can be obtained using an Arrhenius type relation 
which describes the viscosity, #, as an exponential function 
of temperature: 

The heat transfer needs to be analyzed in three dimensions, 
even for the thin shell type mold cavities. For thin mold cavities, 
the temperature gradient in the thickness direction is large, 
which makes the heat conduction from the mold wall to the 
resin as important as the convection in the in-plane flow. 

2.2 

The homogenization method 
It is almost impossible to solve the governing Eqs. (2)-(5) 
due to the complexity of the flow domain which consists of 
the cavity between the reinforcing fibers. Here, we try to remove 
this difficulty by applying the homogenization method, which 
incorporates a special averaging technique. 

In the homogenization method, it is assumed that the fiber 
mat is made of spatial repetitions of a unit cell, and that the 
scale length of the unit cell (l) is much smaller than the overall 
dimension of the flow domain (L). See Fig. 1. In order to capture 
the details within the periodic micro structure, a stretched 
scale (`9) is utilized. The coordinate 9 is defined by: 

1 
Y=-e where e=--L (6) 

Using the stretched coordinate y, the details of the unit cell 
are shown in Fig. 2. In the figure, Y is the unit cell, Y1 is the cavity 
between the reinforcing fibers which is to be filled by the resin, 
and Y2 is the solid part consisting of the fiber./" is the 
boundary between Y1 and Y2- 

Resin 

Details of the fiber mat 

4 L 

Configuration of a mold cavity 

Fig. 1. Periodic structure of a fiber mat 

Unit cell of the fiber mat 

=/~oexp ( - aO) (5) 

where 0 = T - To with T O being the reference temperature at 
which the viscosity is P0. 

In addition to being a function of temperature, the viscosity 
of resin also depends on the degree of cure. However, we assume 
that the curing starts after the mold is completely filled and 
do not include curing effects in the current analysis. If this 
effect becomes significant, a chemorheological model should be 
introduced to Eq. (5). An analysis which take into account 
a chemorheological model can be found in Bruschke and 
Advany (1993). 

r - I *  I. 

Y=Y~UY2 

Yl 

Fig. 2. Cross section of a Unit cell 

Y: Unit cell 
Y1 : Fluid part 
"(2: Solid part 

* : In the stretched scale 



Since the flow domain has a periodic micro structure, the 
pressure, velocity and temperature distribution tend have two 
dependencies on space variables: the dependency in the 
macroscopic level (if), and the dependency in the microscopic 
level (,9,)7 = :~/~). Furthermore, the dependency on)7 is Y- 
periodic. In order to represent the dependency in the 
microscopic level, symbols P'(2), i*(~) and T=(2) are used 
instead ofP(2), ~7(~) and T(2). 

The objective of the homogenization method is to remove 
the dependency on )7 by introducing an averaging technique 
over the unit cell. Heuristically, the method is based on the 
consideration of two length scales associated with microscopic 
and macroscopic phenomena as e approaches zero. In the 
following sections, the method is applied to the momentum 
and continuity Eqs. (2)-(3) and to the energy Eq. (4). 

2.2.1 
The momentum equation and continuity equation 
The first step of the homogenization method is to expand the 
pressure, P=(~) and the velocity, F=(Y) into a formal power 
series of e (here, the argument for time, t is dropped for the 
simplicity of notation). 

P= (2) = P (0) (~) + sp(,) (~,)7) + e2p (z) (2,)7) + . . .  (7) 

~ t : ( ~ )  = g2~(0) ( 2 , ) ~ )  _~_ g 3 ~ ( 1 ) ( ~ , y )  _~_ e4~(2) ( )~ ,~ )  _~_ . . .  ( 8 )  

where: 

(~Wi } 
Vy = w~lwg~(H~(Y~)) 3, Y-periodic, w~ = 0 on F, ~ = 0 

(16) 

To remove the y-dependencies in Eq. (15), a "mean" or 
"average" operator is introduced. The mean operator, "~"  
is defined as: 

1 
~ = ~y-]f r (17) 

where I Y} is the measure of Y, and r is any YLperiodic function. 
Note that after applying the mean operator, r is not a function 
ofy any more. Applying the mean operator and the divergence 
theorem to Eq. (15) gives: 

(f~ _SP(~ .Sw~ By{ ~ +x,/Sw,dY-  ar = o y, (1=) 

Suppose that Z? is the solution of." 

Z'~eV,: ~ c~Z'~(;) 8wi(Y) dr  = ~ wm()7)dr Vw,eV~, (19) Oyj oyj 
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Here, P(~ and v ~) are periodic functions with respect to argument 
Y. Since y is defined as y = Y/e, the differential operator in 
Eqs. (2)-(3) becomes: 

84,=(~) _ 86=(x,)7) 18C(x ,y)  
- -  + ( 9 )  

8x~ 8x~ e @,~ 

Then, due to the linearity of Eq. (18), v7 can be written as: 

, ( 2 0 )  

Applying the mean operator to Eq. (20) yields: 

where r (2) is an arbitrary function of 2 and 9. Introducing 
(7)-(9) to Eqs. (2)-(3) and collecting terms of the same order 
of e yields: 

/ &(0)\ (f/ 8p~0)~ 8P ~' 8 { / ~ ) +  _ = 0  (10) 
- 8y-T+ \ yj / 8 x ,  } 

87}0) -- 0 (11) 

9(~ = 0 (12) 

8vlO) ov i "  o) 
~xi t - ~  = 0 (13) 

170)IF---- 0 (14) 

# \  
(21) 

where: 

v~ = ,s2"~,~ ~ (22) 

K i m  - -  2 ~m 
- -  g Zi ( 2 3 )  

p = fi(0) (24) 

Note that Eq. (21) is identical to Darcy's law. The averaged 
velocity qD defined in (22) is called the "Darcean velocity". 

From the remaining two Eqs. (13)-(14), the continuity 
equation for the Darcean velocity field can be derived. Applying 
the mean operator and the divergence theorem to Eqs. (13)-(14) 
yields: 

The first three Eqs. (10)-(12) can be written in a variational 3v~ = 
form which is: 8x~ 0 

.SP (~) . 0 / Ov!~ 
v?~ G: - J - -  wd~+ J- -  r~-~-' lw,da 

(25) 

The continuity Eq. (25) can be combined with Eq. (21) to give 
the pressure formulation: 

vw, v, 8FK.,,/m 8P\q 
(26) 



0.1 This pressure formulation is easier to solve and thus is used 
in the simulation because it deals with scalar quantity (P) 
rather than vector quantity such as 07D). 

As a result of applying the homogenization method to the 
momentum equation and to the continuity equation, Darcy's 
law (21) and the continuity equation for the Darcean velocity 
field (25) is derived. The permeability tensor of Darcy's equation 
is calculated in (23) using the solution of Eq. (19) which is 
called the "microscopic equation". The permeability tensor, 
in turn, is used to calculate the pressure distribution in Eq. (26) 
which is called the "macroscopic equation". After the pressure 
distribution is calculated, the Darcean velocity field and the 
actual velocity field can be obtained by Eqs. (21) and (20) 
respectively. 

In order to verify the current formulation, permeability 
tensors are calculated and compared to the results of 
S ahraoui and Kaviany (1991 ). They calculated permeability 
tensors by solving Navier-Stokes' equation for flow over 
various arrangements of cylinders using the finite 
difference approximation. In Fig. 4, normalized permeability 
(K/I z) of the current method is compared to the result 
of Sahraoui and Kaviany. The plot is obtained by calculating 
the transverse permeability (K) and normalizing it with 
respect to the size of the unit cell (1). See Fig. 3. The flow 
domains used in the calculations consist of in-line array 
cylinders with various volume fractions. Even though the 
current flow model does not take into account any inertia 
effects which are considered by Sahraoui and Kaviany, the 
plot shows that the two results agree within 10%, which 
justifies the assumption made to model the resin flow as an 
inertia-less viscous flow. 

The permeabilities calculatedhere, like most of the computed 
permeabilities, gives rough approximations, because the 
formulation relies on heavy assumptions (rigid and periodic 
fiber structure, etc.). However, in many cases, they can still 
provide reasonable trends to the change of micro structure, 
and can be used as a guideline in the initial mold design stage 
when the mold designer is checking all the possible fiber 
arrangements. This will reduce the number of experiments 
while providing more design options to the mold designer. 

2 . 2 . 2  

T h e  e n e r g y  e q u a t i o n  

As with the momentum and continuity equation, the 
temperature variable of the energy Eq. (4) is expanded into 
a formal power series of e: 

T=(~) = T(~ + sT~ ~) + a2T(2)(E, 9) + ... (27) 

,t 
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In-line array of cylinders Unit cell 

Fig. 3. In-line array of cylinders 
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Fig. 4. Transverse permeability for in-line array of cylinders 

Introducing (9) and (27) to Eq. (4) and collecting terms of 
the same order of ~ yields: 

8 [- /ST  (~ 8T~ -] 
- -  /el. - - + - -  = ( 2 8 )  

g~T(O) [- / /(~T (o, (~ T (1,"~q 

g [- , [ST (~ 8T( ' ) \ ]  
- - - Kq - - + - -  

<L t < )I 
The first Eq. (28) can be written in a weak form: 

~ 8 F ( S T  (~ 8T(1G-1 
o, w w, (30) 

where 

Wy = {w[we(H 1 (Y))3, Y-periodic} (31) 

Applying the mean operator and the divergence theorem to 
Eq. (30) yields: 

&c ~jOT~ (Tz ~T (~ -- ~ i j ~ d Y  (32) 

Suppose that ~/P is the solution of: 

- - K i . - - a z =  - -  S - - l ~ i  d Y  (33) 
yay, , ayj ray, 

Then> due to the linearity of Eq. (32), T (1) can be given as: 

8 T (0) 
T (~) - $ ; - -  + f(,~) (34) 

- gxv ' 

where f()7) is an arbitrary function of )7. 



ST(~ F [ ST(~ 8T(1)'~ ~ 

~r [(~T (~ 3T(1)\ + j - -  ~ ; / - -  oex  "\ % + yj /ao 

. o / 3 T  (~ 

=j~zd.C2+J~q~l--+~)n~zd3.C2,o oa \ 8xj 

where 

Vr~W= (35) 

W~ = {wlwe(H ~ (0))  3, w = 0 at mold walls} (36) 

8$2 denotes the boundary of the flow domain ~. Tne last term 
of Eq. (35) represents the boundary condition. At the mold 
walls, the term becomes zero because the temperature is 
prescribed. At the flow front, the term can be replaced by 
a convection type boundary condition which is obtained by 
considering the local balance of energy. 

After combining Eqs. (34) and (35), the mean operator 
and the divergence theorem are applied to give: 

1 c~ T (o) 

~ k l t l v  " J at okl~rlY .J (JXi 

1 ?~P . ] 0 T  (~ & , ~  
- -  d r - - - - a ~ 2  

l ~dY],cd.Q_ 5 c,,Pf~fv, n~( T(~  (37) = a [ /Z l  r I aay " Tg)dO~2 

where 3~f denotes the flow front boundary, ~r denotes the 
volume fraction of the fiber part, and Tg denotes the initial 
temperature of the fiber. In Eq. (37), the last term of (35) is 
replaced by the convection type boundary condition which takes 
into account the initial temperature of the fibers. Equation 
(37) can be rewritten as: 

rOT . ~OT & 
at a axi ~2 ~xp ~x  i 

=Ie" aa- 5 r)aea 
o o~r (& 

where: 

(38) 

0.45 

1 
(pcp)"= V~ !  pcpdY (39) 

1 
= - - ( . 4dY  (40) 

IYIy 

, 1 (Kip q- K..OOP~dY (41) 
,,  yj/ 

46, is the voume fraction of the resin part, and T is identical 
to T(~ Note that the boundary conditions of (38) need not 
be periodic since T (0) is a function of ~ only. 

As a result of applying the homogenization method to the 
energy equation, another set consisting of a macroscopic 
equation and a microscopic equation is obtained. Equation 
(38) is the macroscopic equation which describes the averaged 
(or overall) heat transfer within the mold cavity. In (38), 
homogenized constants defined in (39)-(41) are used to 
represent Eq. (37). (pc;) ~ is the homogenized version of (pc;) 
and is equal to the volume average of (pep) between the resin 
and fiber, i" is the homogenized version of g and is equal to 
(d46~). ~c~ is called the "homogenized conductivity" and 
represents the effective conductivity of the impregnated fiber 
preform. Note that d!,j is not a simple volume average of ~%. 
It is calculated from the solution of the microscopic Eq. (33) 
which governs the characteristic heat conduction within the unit 
cell. 

In order to verify the current method, the current 
formulation (33), (38)-(41) is compared to that of other 
method. Since the homogenized coefficients (pc) ~ and g" which 
are obtained by simple volume averaging are widely accepted 
among researchers, comparison is made in terms of the 
homogenized (or effective) conductivity. In Fig. 5, effective 
conductivity is calculated and plotted using the homogenization 
method and the self-consistent model method, which is based 
on a simplification of a medium consisting of cylinders. The 
plot is obtained considering the transverse conduction in the 
in-line array of cylinders with various volume fractions. The 
conductivity was 1.0 (W/InK) for the fiber part and 0.2 (W/mK) 
for the resin part. In the plot, the two results show good 
agreement, within 4%. 

3 
Resin flow through double porous fiber preform 
In this section, we extend the results of the previous sections 
to the mold flow through double porous fiber preforms. 
A double porous fiber preform is a fiber preform whose 
reinforcing fiber is actually a fiber bundle - which is a porous 
media itself- made of much thinner fibers. See Fig. 6. Due to 
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The second Eq. (29) can be written in a weak form: 

Fig. 5. Normalized conductivity for in-line array of cylinders 
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this added complexity, several difficulties arise in the analysis. 
Now, the flow domain has become even more complicated. 
It consists of pore structures in two regimes: one between the 
reinforcing fiber bundles, and the other within the reinforcing 
fiber bundles. To simulate the mold filling process, one has 
to consider both regimes of flow which are interacting with 
each other. To overcome this difficulty, we apply the 
homogenization method twice to derive a set of governing 
equations for the averaged flow field. 

As a flow domain, a double porous fiber preform has 
micro structures in two different scales, namely, the 
"first level micro structure" and the "second level micro 
structure". The first level micro structure is the pore 
structure between the reinforcing fiber bundles whereas the 
second level micro structure is the pore structure within 
the fiber bundles. In both levels of micro structure, it is 
assumed that the micro structures are made of repetitions 
of a unit cell, which implies that they have periodic structures. 
It is also assumed that the scale length (1) of the unit cell 
of the first level micro structure is much smaller than the 
macroscopic scale length (L), and that the scale length 
(I') of the unit cell of the second level micro structure is much 
smaller than I. 

In order to capture the details within both levels of micro 
structure, two stretched scales,)7 and ~ are employed. The 
coordinate )7 is used for the first level micro structure whereas 
the coordinate ~ is used for the second level micro structure. 
These coordinates are defined by: 

I 
= -  where e = - -  (42) 

Y e L 

_ . 9  I '  
z = ~  where 6 = 7  (43) 

In Fig. 7, the unit cells of both levels of micro structures are 
shown in scaled coordinates. The unit cell of the first level 
microstructure Y consists of fluid part Y~ and fiber bundle 
part Y2 with boundary F. The unit cell of the second level micro 
structure Z consists of fluid part Z~ and fiber (or solid) part 
Z 2 with boundary I2. 

While the flow domain is much more complicated for the 
double porous fiber mat, the governing equations for the resin 
flow remain the same. The governing equations are: 

-- VP + #V.  (Vf) + f = 0 (44) 

V. 17 = 0 (45) 

~T 
pco--~- + pcp(~.VT) = - V . ( -  ~VT) + g (46) 

Details of a fiber mat 

Fig. 6. Double porous fiber mat 

Details of the fiber bundle 
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Fig. 7. Unit cells of the first and second level micro structures 
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Cross section of a unit cell of 
the second level micro structure 

3.1 
The momentum and continuity equation 
The homogenization method will be applied to the momentum 
and continuity Equations (44)-(45) noting that there are two 
different regimes of flow domain. First, the homogenization 
method is applied in the second level micro structure, which 
describe the flow within the fiber bundle. As a result, the 
macroscopic and microscopic equations are obtained. The 
macroscopic equation describes the averaged flow within the 
fiber bundle, whose permeability is calculated from the solution 
of the corresponding microscopic equation. Formal derivation 
is identical to that of sect. 2.2.1 except for the scaling parameter 
(~) and thus is omitted. The obtained macroscopic equation 
is identical to Darcy's law: 

gx i 0 where v ] =  _(eb)2 (47) 

where v~ is the averaged velocity, and k~j is the calculated 
permeability inside the fiber bundle. 

Remark: Depending on the fiber surface and resin type, the 
surface tension can have significant effect on the flow field 
inside the fiber bundle. The effect can be taken into account 
by assigning negative pressure at the resin/air boundary within 
the fiber bundle. This requires experiments to determine the 
magnitude of the pressure, and is not included in the example 
of sect. 5. 

Now we have two different types of flow within the mold 
cavity interacting with each other. One is the Darcy's flow 
within the fiber bundle, and the other is Stokes' flow between 
the fiber bundles. From now on, we apply the homogenization 
method to the governing equations of Stokes' flow to obtain 
the macroscopic equation and the microscopic equation of 
the mold flow. The macroscopic equation will be identical to 
Darcy's law except for the added sink term which represents 
the flux absorbed into the fiber bundle. 

In order to apply the homogenization method, we expand 
the pressure and velocity into a formal power series of 

(superscript e is added to P and v in order to represent the 
dependency in the microsopic level,)7): 

pc(K ) = p(o)(~) + ~pO)(~,y) + e2p(2)(E,)7) + . . .  (48) 

~(~) = ~2r + ~r + ~4~(2)(~,)7) + ... (49) 



Here, P(~) and ,7 (~) are periodic functions with respect to argument 
y. Introducing the asymptotic expansion (48)-(49) to 
Eqs. (2)-(3) and collecting terms of the same order of e yields: 

8P (~) 8 / 8vl~ / 8P(~ 
, ,  =o 

0vl~ = 0 

~(o) [r = 0 

63vp ) av}~ + = 0 
8xi 

a3Yl 1) rli[ v = vai nilr 

Equations (50)-(54) are identical to Eqs. (10)-(14) in sect. 2.2.l 
except for the boundary condition (54) which represents the 
mass balance between the two regimes of the flow domain. 

The macroscopic and microscopic equations can be obtained 
by applying to Eqs. (50)-(54) the same procedure used in 
2.2.1. They are: 

�9 microscopic equation: 

m v r c~ (;) ow, 0 v) , :; ,  aY=!w ( )aY vw  v, (55) 

where 

Vy = w i [ w i e ( W ( Y ~ ) )  3, Y-periodic, w i = 0 on F,  $7 ,  = 0 

�9 macroscopic equation: 

?v~ 2 
+   .idv= o 

8x~ I I r~ 

where 

lviJ=N  ' 

1 
p = _ _  ~ PI~ 

IYI~ 

P[r,=P[~2 along P 

6 2 . k O P  

The microscopic Eq. (55) can be solved for Zj, which in turn 
is used to calculate the permeability tensor (Kq) in Eq. (59). 
Using the permeability tensor, the macroscopic Eq. (57) is 

solved for the pressure distribution (P) and the Darcean velocity 
(v~) of the mold flow. In addition, the actual flow field within 
the micro structure can be obtained by combining the solutions 
of both the macroscopic and microscopic equations: 

(50) = (63) 

(51) While solving the macroscopic Eq. (57), it should be noted 
that the equation is coupled with Eq. (47) which is the governing 
equation of the resin flow within the fiber bundle. The coupling 

(52) term, which is the second term of (57), represents the flux 
absorbed into the fiber bundle and must be evaluated from 

(53) the solution of Eq. (47). To solve the coupled equations, one 
has to keep track of the moving free boundary within the 
fiber bundle while keeping track of the moving free boundary 

(54) of the overall mold flow. This requires that if finite element 
approximation is to be used to solve (57), Eq. (47) must be 
solved at each node of the finite elements. 

To indicate the degree of impregnation within the fiber 
bundle, a wet ratio can be introduced. The wet ratio, co is 
defined as: 

impregnated volume within the fiber bundle 
co - (64) 

total volume of the fiber bundle 

Since the resin starts to impregnate the fiber bundle as 
soon as the fiber bundle is included in the flow domain, 
a wet ratio can also be used to determine the impregnated 
region within the mold cavity. The region can be identified 
by checking if the wet ratio is larger than zero at each point of 
the mold. 

3.2 
(56) The energy equation 

To obtain the averaged energy equation for a double porous 
fiber preform, the homogenization method should be applied 
twice, once in each regime of the flow domain. First, the method 
is applied to the energy equation within the fiber bundle which 

(57) is the second level micro structure. As a result, the homogenized 
thermodynamic properties are obtained. They are: 

1 
(pcp) h = -~) ! , cpdZ  (65) 

(58) 
1 

gh = _ _  [ g dZ  (66) 
IZl~ 

h 1 

(60) where ~,P is a solution off 

(61) ~,PfWz: j - - K i j - - a z , = _ S _ _ K i p d Z ,  V,c~Wz (68) 
z 8zi 8zj z 8z~ 

(62) Wz = {wi lwi6(H~(Z))  3, Z-periodic} (68) 

The formal derivations are identical to those of sect. 2.2.2 
except for the scaling parameter (e) and thus omitted. The 
homogenized thermodynamic properties (65)-(67) represent 
the averaged thermodynamic properties of the impregnated 
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part within the fiber bundle. (pcy  represent the averaged 
heat capacity, gh represents the averaged heat source, and 
~c~p represents the averaged (or effective) heat conductivity. 

Using these homogenized properties, the homogenization 
method is applied once again to the first level micro structure. 
This procedure is straightforward except for the region near the 
flow front where the fiber bundles are not fully impregnated. 
At this region, the local energy balance is made between the 
resin and the impregnated part of the fiber bundle. After 
applying the homogenization method once again to the energy 
equation, one obtains: 

�9 microscopic equation: 

8z 8@P__ , & h S@P 
@PeW r: j - - K i . - - d Y +  J ~v.Kq~v. dY 

Or . 8z h 
= -- ~--~:, d Y -  J - - K  i dY, VzeW r (70) 

W e = (w~lw~(W (y))3, Y-periodic} (71) 

�9 macroscopic equation: 

ST(~ ~ ! ~(pG)H--~zdE2+~p~c;~v~ zd~2+ K,~ OT(~ 
8z 

~ 6 t ~ . 8x----~ ~x Z d.Q 

= j  . . . . .  .~'Ff ~ f  F f ~ p f ~ \  ~ -Tg)zdaQ (72) 

= -  pC dg + ~ (pcp)hdg (73) 

11 + S ghdy] 

(74) 

(75) 

where Y2co is the impregnated part of the fiber bundle Y2" ~}I) and 
qS) 2) are the volume fraction of the fiber part in the first and 
second levels of the micro structure. They are defined as 
I Y2]ll YI and [Z2I/LZI respectively. 

The microscopic Eq. (70) has the same form as that of the 
porous fiber preform except for the integration domain. In 
(70), the integration domain is Y1 w Y2~, whereas in the porous 
fiber preform, it is Y(Y = YI w Y2). The macroscopic Eq. (72) 
has the same from as that of the porous fiber preform except 
for the last term which takes into account the initial energy 
of the fiber preform. In the double porous flow domain, the 
local energy balance is made considering the degree of 
impregnation within the fiber bundle. The homogenized 
thermodynamic properties (73)-(75) also have the same form 
as those of the porous fiber preform except for the integration 
domain which is Yx w Y2~o instead of Y~ w Y2. 

using the conventional finite element method. In contrast, 
the numerical implementation of macroscopic Eqs. (57) and 
(72) poses several difficulties. Most of the difficulties come 
from the fact that the mold filling is a transient process 
throughout which the flow domain is changing constantly. 
To solve the macroscopic equations, one has to find the location 
of the flow front and redefine the meshes at each time step. 
In the finite element method, this requires iterations to 
keep the flow front within the mold cavity and a re-meshing 
at each time step, which significantly slow down the simulation. 
See Lee and Sin (1990). 

In order to avoid the re-meshing at each time step, several 
numerical methods have been developed. Examples of these 
methods are the Fluid Analysis Network (FAN) method 
(Tadmor, Broyer and Gutfinger (1974)) and the Finite 
Element/Control Volume (FE/CV) method (Wang, Hieber 
and Wang (1986)). In these methods, One initial grid is used 
throughout the entire simulation, and the flow front can be 
found without any iteration. In the following sections, the 
numerical implementations of both macroscopic Eqs. (57) 
and (72) are discussed using the FE/CV method. 

4.1 
The homogenized momentum and continuity equations 
Macroscopic Eq. (57) is coupled with Eq. (47) which governs 
the flow within the fiber bundle. In order to solve Eq. (57) 
using finite element approximation, one first has to solve the 
coupled Eq. (47) and keep track of the moving free boundary 
within the fiber bundle at each nodal point of the finite elements. 
This can be done by updating the location of the flow front 
at  each time step according to the time increment and 
the Darcean velocity obtained from the solution of Eq. (47). 
Then, using this solution, one has to solve Eq. (57) over the 
entire flow domain which is changing constantly throughout 
the mold filling process. 

Here, an analytical solution of (47) is found and utilized 
while the FE/CV method is utilized to solve (57). An analytical 
solution can be found when the fiber bundle has a rather simple 
geometry. For a fiber bundle having a circular cross section 
as shown in Fig. 8, the pressure is found to have logarithmic 
distribution: 

( 1 ( 01/ Pv~ = p ln(r/ro) in + 1 (76) 

where Pr2 is the pressure within the fiber bundle and P is the 

4 
Numerical implementation 
The numerical implementations of microscopic Eqs. (55), 
(68), and (70), which have the same form, can be easily achieved Fig. 8. Cross section of a circular fiber bundle 



resin pressure surrounding the fiber bundle, ri represents the 
location of the flow front, and ro represents the radius of the 
fiber bundle in stretched coordinates. For a more complicated 
geometry, a numerical solution should be found using the 
FE/CV method. 

FE/CV method can be used to solve the macroscopic Eq. (57). 
In the FE/CV method, the mold cavity is first divided into 
eight node hexagonal elements. The centroids of each face of 
these elements are joined to the midpoints of the edges and 
to the centroid of the element, creating polygonal control that 
surround each vertex node. This is shown in Fig. 9. 

The FE/CV method is based on the "conservation of mass 
principle" applied to each control volume. Equation (57), can 
be interpreted as: "the net flux entering the control volume 
must be equal to the amount of flux absorbed into the fiber 
bundles within the control volume". This interpretation is used 
to construct a set of linear equations which is the discretized 
version of Eq. (57). 

The net flux entering each control volume can be obtained 
by integrating the flux over the boundary of the control volume. 
As shown in Fig. 10, the control volume assigned to a node 
is accommodated by several elements surrounding that 
node. Within each element, pressure distribution is interpolated 
using tri-linear shape functions. From the pressure distribution, 
the flow rate can be obtained which is proportional to the 
gradient of the pressure distribution. By integrating the flow 
rate over the boundaries of the control volume, the net flow 
rate into the control volume can be obtained in terms of nodal 
pressures. The net flow rate entering the control volume can 
be represented as: 

(77) 

~ ./.. .... 

E l e m e n t  b o u n d a r y  

......... C o n t r o l  v o l u m e  b o u n d a r y  

Fig. 9. Finite elements and control volumes 

Fig. I0. Control volume assigned to a node 

where Pt is the nodal pressure, N~ is the tri-linear shape function, 
and t/m is the outward normal vector, nel is the total number 
of elements accommodating the control volume and A i is 
the boundary of the control volume contained in the ith 
element. 

The amount of flux absorbed into the fiber bundles within 
each control volume can be obtained by integrating the second 
term of Eq. (57) over the control volume. This can be done 
by integrating the term within each element using the 
tri-linear pressure distribution and summing up over the 
elements containing the control volume. 

The boundaries of the flow domain include the mold walls, 
the injection ports, and the flow front. At the mold walls, the 
normal component of the flux is set to zero so that the flux 
is always parallel to the walls. At the injection ports, either 
pressure is specified or incoming flux is assigned according to 
the type of injection ports. At the flow front, a parameter ~9 is 
used to represent the status of each control volume. If a control 
volume is empty, ~9 is set to zero. If a control volume is filled 
up with resin, ,9 is set to one. If a control volume is partially 
filled, • is set to the volume fraction of the resin within the 
control volume. The control volumes with ~9 between one and 
zero are considered to be at the flow front, and zero pressure is 
assigned to the corresponding node. 

A set of algebraic equations can be constructed by 
considering the mass conservation principle with the boundary 
conditions above. Since both the net flux entering a control 
volume and the net flux absorbed into the fiber bundles within 
the control volume can be represented in terms of nodal 
pressures P~, the resulting equations are in terms of nodal 
pressures. By solving the set of linear equations, the pressure 
distribution can be obtained. The pressure distribution is 
then used to determine the velocity of the moving flow front 
which is needed to determine the location of the moving flow 
front at the next time step. 

The mold filling process can be regarded as a quasi-steady 
state process which assumes a steady condition at each time 
step. With the velocity of the flow front and the time increment, 
the location of the flow front can be updated at each time 
step. The selection of time increment for each quasi-steady 
state is based on two considerations. One is that each time 
increment allow less than one control volume to be completely 
filled and the other is that each time increment be small enough 
to ensure the accuracy of the solution within the fiber bundles. 
These restrictions on the time increment ensure the stability 
of the quasi-steady state approximation. 

4.2 
The homogenized energy equation 
Macroscopic Eq. (72) of the energy equation can be discretized 
using the FE/CV method with the Crank-Nicholson method, 
which is one of the time integration methods. This approach 
considers the energy balance for each control volume to 
construct the discretized version of (72). The approach is not 
only consistent with the previous section (sect. 4.1), but also 
has the advantage that it is unconditionally stable and has 
small upwinding effects. 

Since each control volume is assigned to a node lying at 
the center of the control volume, the energy balance for each 
control volume yields a linear equation in terms of the nodal 
temperature at the center of each control volume. The energy 
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balance for a control volume i is: 

n + l  n + l  n n + l  n + l  n n q ( V  T i - -  v n T n ) + c 2 V  (0) T i --o) Ti)  

- -  c3 V n ( o 9  n+ I - -  (]9 n) Tg  

N 

j = I A j  

H _ _  i f imdAA t "~ ~--K'mn aX. / 
j=I Aj 

(V,+~ 
+ (q +c2 ) + V )gA t  

2 
(78) 

where the superscript n denotes the values at the current time 
step and (n + 1) denotes the values at the next time step. 
V denotes the fraction of the control volume filled by the 
resin and T~ is the nodal temperature, co represents the wet 
ratio as defined in (64). Tg is the initial temperature of the fiber 
preform, q, c2 and c3 are the thermal properties of the fiber 
and resin. They are defined as: 

q = ~l)prCp, (79) 

c 2 = (1 -- ~b~ 1)) r (80) 

c3 = (1 - r  (1 - C f 2 ) ) & q ~  (81) 

where ~br 1/and ~b~ 2/ represent the porosity (or volume fraction 
of the resin part) in the first level micro structure and in the 
second level micro structure respectively, rl i is the outward 
normal vector and At is the time step. The convection and 
conduction terms are taken into account by integrating the 
incoming heat flux over the surface areas Aj which are contained 
in each N surrounding elements. The variables are evaluated 
at surface Aj using tri-linear shape functions and integrated 
using the Gaussian integration. In (78), T ~+~ and ~T"+~ 
are given as: 

T.+O.5 _ l t T .  + T"+l~l - -  ~ '  " 'Ai ( 8 2 )  

~ T  n+0"5 !F(~Y~n (~Th]n+l~ 
8X m . 2[_\CqXm/] + (83) 

\ (~Xm, ]  JIA, 

A set of linear equations can be obtained in terms of nodal 
temperatures by applying the energy balance (78) to each 
control volume. By solving the set of equations, the temperature 
distribution can be obtained which is used to determine the 
viscosity of the resin. 

4.3 
Solution procedure 
The flow chart for the numerical simulation program is shown 
in Fig. 11. The input data include: the mesh data, material 
properties of the fiber preform and resin, injection parameters, 
and initial conditions. With this information, the viscosity is 
calculated which is used to find the pressure distribution. The 
pressure field, in turn, is used to calculate the flow front 
velocities in the first level micro structure and in the second 

I Read input data J 

[ Calculate viscosity 

[ Calculate pressure field I 

! Calculate flow field in 
] the first level micro structure ] 
~ d  second level micro structure I 

[Calculate time step I 

Update location of flow fronts l 
[,.in both levels of micro structure I 

[ Calculate temperature field I 

~ C ~  no 

Fig. 11. Flow chart of the mold filling simulation program 

level microstructure. With the flow front velocities, the time 
step is determined and the flow domains are updated in both 
levels of micro structure. In the updated flow domain, the 
temperature field is calculated. Then the program checks if 
the mold is completely full. If the mold is not full, the program 
calculates the resin viscosity and repeats the cycle until the 
mold is completely full. 

It should be noted that even though the energy equation 
is coupled with the momentum and continuity equations, 
iteration is not used to solve these coupled equations. The 
heat transfer (or the temperature field) affects the flow field 
through viscosity and the flow field, in turn, affects the heat 
transfer through convection of the resin. An iteration algorithm 
can be used to solve the coupled equations. However, in the 
current analysis this is not necessary because it is time 
consuming and does not significantly enhance the accuracy 
of the solution. 

5 

Example 
A mold filli~process is simulated for a composite crossmember 
of a passenger van (Farris (1987)). Due to the complexity of 
the geometry, a simplified model is used in the simulation. 
The corresponding mold cavity is shown in Fig. 12. The mold 
cavity has a shell type geometry surrounding the foam core. It is 
packed with a double porous fiber preform whose micro 
structure is shown in Fig. 13. At the center of the front mold 
wall is the injection port through which the cold resin (25~ 
is injected at 0.5 x 10 -4 m3/s. The mold is assumed to be heated 
so that the initial temperature of the fiber preform is 140~ 
and the temperature of the mold walls is fixed at 140~ 
throughout the process. In the actual process, however, the 
temperature at the mold walls may vary. In a case where the 
temperature variation is significant, the mold plates should 



Shell type c~oss section 

Fig. 12. Configuration of the mold cavity for a simplified crossmember 

Fig. 13. Micro structure of the double porous fiber preform used in 
the example 

be included in the heat transfer analysis. The parameters used 
in the simulation are: 

Fiber bundle part Resin part 

Fig. 14. Finite element meshes of the first level micro structure 

l 

Fiber part Resin part 

Fig. 15. Finite element meshes of the second level micro structure 

33 

�9 volume fraction of the resin part: 

= 0.7 

4~ 2) = 0.4 

�9 resin properties 

Pr = 1140 (Kg/m 3) 

cp, = 1900 (J/(Kg~ 

G = 0.2 (W/(m~ 

[0.1 exp( - 0.048 (T - 32))(Pa.s),  (T < 80~ 

# = ~0.00998 exp ( - 0.0115 (T - 80)) (Pa.s), (T > 80~ 

�9 fiber properties 

pf = 2500 (Kg/m 3) 

cpr = 900 (J/(Kg~ 

tcf = 1.0 (W/(m~ 

The permeability and the conductivity within the mold cavity 
are calculated by solving the corresponding microscopic 
equations. The finite element meshes used in the calculation 
is shown in Figs. 14 and 15. The permeabilities and the 
conductivity are: 

�9 calculated permeabilities: 

0.188 0.000 0.0001 

K =  0.000 0.188 0.000|  
/ 

0.000 0.000 0.720J 

X 1 0  - 6  (m 2) 

k = 0.100 x 10 2 (m2)l, 8 = 0.004 ~5.= 0.025 

�9 calculated homogenized conductivity: 

I -0.313 0.000 0.000] 

~c = 0.000 0.313 0.000|  (W/(m~ 
/ 

[0.000 0.000 0.256.J 

The homogenized conductivity 0r is calculated assuming 
that the inside of the reinforcing fiber bundle is fully 
impregnated. At the region near the flow front where the inside 
of the reinforcing fiber bundle is not fully impregnated (wet 
ratio < 1), the conductivity depends on the degree of 
impregnation. In the current example, this effect is neglected 
because the region is small and does not significantly affect 
the overall heat transfer. In the simulation, only quarter part 
of the mold is used because the mold cavity has a symmetric 
geometry. The finite element meshes used are shown in Fig. 16. 

It should be noted that, in the simulation, many 
simplifications are made due to the lack of experimental data 

i see equation (47) 
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Fig. 16. Finite element meshes of the quarter part of the mold cavity 

and/or for the sake of simplicity: the effect of surface tension 
for the flow inside the fiber bundles is neglected; change of 
viscosity due to the partial cure of resin is neglected; and the 
mold wall temperatures are set to constant. These effects, 
however, can be added without much difficulty for more 
accurate analysis. The current example is intended to serve 
as to demonstrate the strength of the analysis method rather 
than to give a complete analysis. 

In the simulation, the flow front profile, temperature 
distribution, and wet ratio are calculated at various points of 
the mold filling. In addition, actual flow field within the micro 
structure is calculated using the solutions of the microscopic 
equations. Figure 17 shows the flow front profiles within the 
mold cavity. The boundaries of each shaded region represents 
the flow fronts when the mold is partially filled, and the numbers 
represent the volume fraction (fill ratio) of the impregnated 
region. Figure 18 shows the temperature distribution which 
is obtained by plotting the temperatures at the center of each 
element when the mold is 50% full. The distribution shows 
that the temperature is higher near the flow front than near the 
injection port and higher at the mold walls than at the center 

Resin injection 

I::::: : : :1 ::: : :i ~i ~:~:' I : ' : : ~ ! ~ > ' , ~ : ' : ~ : ' : ~ ' F ' g 4 ~ - ~ l ~ l ~ ' ~ b  ~ l ~ ' ~ l l e e ~ n  

50 ~ 140 ~ 

Fig. 18. Temperature distribution when the mold is 50% full 

~ Y  Resin injection 

0 1 

Fig. 19. Wet ratio when the mold is 50% full 

of mold cavity, which is typical when cold resin is injected 
into a heated mold. Figure 19 shows the wet ratio of the 
impregnated region when the mold is 50% full. The wet ratio 
is less than one at the flow fronts, which implies that the inside 
of the reinforcing fiber bundle is not fully impregnated. 
Figure 20 shows the actual flow field within the micro structure 
at point A (shown in Fig. 19) when the mold is 50% full. The 
arrows show the velocity of resin moving around the reinforcing 
fiber bundle. 

n ~ l l  I 11 I J~ l -~L l%. l l  I 

Fig. 17. Flow fronts at various fill ratio 
Fig. 20. Actual flow field within the micro structure point A when mold 
is 50% full 



6 
Conclusion 
Using the homogenization method, the macroscopic and 
microscopic equations are derived for the non-isothermal 
mold filling process with double porous fiber preforms. The 
macroscopic equations governs the averaged heat and mass 
transport during the mold filling process, whereas the 
microscopic equations governs the characteristic behavior 
within the micro structure. The microscopic equations are 
solved using the finite element method, and their solutions 
are used to calculate the permeabilities and the averaged (or 
effective) heat conductivity which, in tern, are used to solve 
the macroscopic equations in the simulation program. A 3-D 
simulation program based on the finite element/control volume 
method and the Crank Nicholson method is developed which 
is capable of predicting the flow pattern and the temperature 
distribution during the mold filling process. By post-processing 
the solutions of the microscopic equations and the macroscopic 
equations, the actual flow field within the micro structure is 
obtained. 
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