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Abstract Changes in glucose transporter expression in
glomerular cells occur early in diabetes. These changes,
especially the GLUT1 increase in mesangial cells, appear
to play a pathogenic role in the development of ECM
expansion and perhaps other features of diabetic neph-
ropathy. In addition, it appears that at least some diabetic
patients may be predisposed to nephropathy because of
polymorphisms in their GLUT1 genes. GLUT1 overex-
pression leads to increased glucose metabolic flux which
in turn triggers the polyol pathway and activation of
PKCo and B1. Activation of these PKC isoforms can lead
directly to AP-1 induced increases in fibronectin expres-
sion and ECM accumulation. Other, more novel effects of
GLUT1 on cellular hypertrophy and injury could also
promote changes of diabetic nephropathy. Strategies to
prevent GLUT1 overexpression could ameliorate or pre-
vent the progression of diabetic nephropathy.
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Introduction

Since the publication of the Diabetes Control and Com-
plications Trial (DCCT) over a decade ago [1], the link
between hyperglycemia and the development of micro-
vascular diabetic complications has been incontrovertible.
This landmark trial and a number of other clinical studies

have strongly supported the hypothesis that enhanced
cellular glucose uptake and metabolism in susceptible
cells contribute to the progressive tissue damage and
functional decline that characterize diabetic microvascu-
lar complications. However, the implied corollary of these
studies, that glucose uptake by cells is directly propor-
tional to extracellular glucose levels, is not true for many
cells and tissues that in fact show a reduction in glucose
uptake in the face of hyperglycemia [2, 3, 4]. Indeed, the
failure of skeletal muscle and other insulin responsive
tissues to augment glucose uptake in the face of elevated
glucose levels contributes to hyperglycemia in both typel
and type 2 diabetes mellitus. It is therefore not surprising
that these tissues are generally protected from diabetic
microvascular complications.

Nonetheless, at least some cells in the body do show
enhanced glucose uptake in diabetes and therefore are
candidates for diabetic injury. It has been our fundamental
hypothesis for the past decade that susceptibility of renal
cells to glucose-induced injury is mediated by increased
expression or activity of facilitative glucose transporters,
which are integral plasma membrane proteins that con-
duct glucose into cells. Since the initial pathologic hall-
marks of diabetic nephropathy are confined to the glo-
merulus and include glomerular basement thickening and
mesangial expansion [5], as well as a loss of glomerular
podocytes [6, 7], we and others have focused attention on
glomerular glucose transporters.
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Glomerular facilitative glucose transporters
in diabetes

The facilitative glucose transporters comprise a family of
at least 13 members, most of which function to allow
glucose to diffuse down its concentration gradient across
the plasma membrane [2]. Initial studies of renal facili-
tative glucose transporters revealed significant expression
of GLUT1 and GLUT4 in glomerular cells [8, 9], though
the intensity of GLUT1 and GLUT4 immunostaining in
glomeruli was much lower than in many renal tubular
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segments, possibly due to the relatively low rate of me-
tabolism compared to that of renal tubules [10]. Both
GLUTI1 and GLUT4 are expressed in mesangial cells and
podocytes [8, 9, 11]. In cultured mesangial cells, GLUT1
appears to be the predominant transporter, but because
GLUT4 is often downregulated in culture it is not abso-
lutely certain that GLUT1 predominates in mesangial
cells in vivo. GLUT3 was also detected at low levels in
glomeruli [9], though the exact cellular localization has
not been determined. In addition, a recent preliminary
report found that GLUTS, another insulin-responsive
transporter identified in the last several years, is expressed
in podocytes as well as in tubular cells [12]. It is not yet
known whether any of the other, more novel glucose
transporters, including GLUT11, are expressed in glom-
erular cells. Finally, one group has identified sodium-
glucose cotransporter (SGLT) activity in cultured me-
sangial cells [13]. However, there have been no additional
studies reported to suggest that sodium-coupled glucose
transport plays a major role in glucose uptake and me-
tabolism in mesangial cells in culture or in vivo.

Hyperglycemia and diabetes mellitus often result in a
reduction of glucose transporter expression in tissues, and
GLUT4 expression is reduced in glomeruli from strepto-
zotocin rats [14]. This implies that glucose uptake via
GLUTH4 is reduced in diabetes in both mesangial cells and
podocytes [14]. However, Saleem and colleagues have
shown that GLUT4 redistributes to the basal surface of
podocyte foot processes during type 2 diabetes in humans
[11], suggesting that functional (i.e., plasmalemmal)
GLUT4 transporters may not be reduced in diabetic po-
docytes. More definitive studies will be required to de-
termine the effects of GLUT4 in these cells.

In contrast to the decline in GLUT4 expression, ex-
posure of mesangial cells to elevated extracellular glucose
concentrations (an increase from 8 to 20 mM glucose) for
3 days enhances GLUTI levels in cultured mesangial
cells [15]. Similar changes occur in diabetic glomeruli.
For example, diabetes induces GLUT1 in the cortex from
type 1 streptozotocin diabetic rats [16] and in glomeruli
from streptozotocin diabetic mice as well as in type 2 db/
db diabetic mice [17]. These increases in GLUT1 occur
relatively rapidly after the onset of diabetes, at least
within 5-6 weeks in the db/db model and probably earlier.
In addition, high glucose levels stimulate IGF-1 mediated
glucose uptake in cultured mesangial cells [15], suggest-
ing that glucose may stimulate the translocation or the
activity of individual glucose transporters as well as
GLUT1 gene expression in these cells. Together these
data strongly suggest that mesangial cells manifest en-
hanced glucose uptake via GLUT1 during diabetes. As
noted above, since GLUT1 appears to be the predominant
glucose transporter in mesangial cells, it is likely, al-
though not absolutely proven, that mesangial cell glucose
uptake increases in diabetes despite the concomitant re-
duction in GLUT4 levels.

The association between GLUT1 and diabetes is less
certain in podocytes. However, we have preliminary data
suggesting that high glucose induces expression of

GLUT!I in cultured podocytes within 4-12 h (F.C. Bro-
sius et al., unpublished observations). Thus, it may be the
case that hyperglycemia affects both mesangial cells and
podocytes similarly by enhancing GLUT1 expression and
glucose uptake. However, whether this occurs in podo-
cytes remains to be demonstrated in vivo. Finally, podo-
cyte GLUTS levels are increased in type 2 db/db mice
[12]. This could further enhance glucose metabolic flux in
diabetic podocytes. On balance, it seems likely that glu-
cose uptake and glucose metabolic flux are enhanced in
diabetic glomerular podocytes.

Effects of increased GLUT1
and glucose metabolic flux on glomerular cells

Previous studies indicate that GLUT]1 is rate-limiting, or
nearly so, for glucose metabolism in cultured mesangial
cells and that increased GLUT1 expression in glomerular
cells drives many of the changes that are characteristic of
diabetic nephropathy such as ECM production and ac-
cumulation [18, 19]. Overexpression of GLUT1 in cul-
tured mesangial cells without any other changes leads to
excessive ECM production and release [18], while sup-
pression of mesangial cell GLUT1 leads to reduced ECM
production [19]. Similar findings appear to take place in
vivo. Preliminary data indicate that transgenic overex-
pression of GLUI in db/m mice leads to enhanced
glomerular ECM accumulation (Heilig et al., unpublished
observations). In these transgenic mice, a modified S-
actin promoter drives expression of the GLUT1 transgene.
This promoter was chosen specifically to enhance GLUT1
expression in glomerular mesangial cells where it is ro-
bustly active [20, 21], although it is active in a number of
other tissues as well. At 6 months of age, the nondiabetic
mice that overexpress GLUT1 show normal blood sugars,
but demonstrated a 67-200% increase in albuminuria by
4.5 and 6.5 months of age with substantial increases in
ECM expansion when compared to nontransgenic mice
[22]. At present, diabetic mice overexpressing GLUT1 in
mesangial cells are being evaluated to determine whether
augmented GLUT1 expression, beyond that which nor-
mally occurs in diabetes, accentuates diabetic injury. The
effect of specific GLUT1 overexpression in diabetic po-
docytes is also being evaluated in another transgenic
mouse model in a db/m background.

While the studies of glomerular GLUT1 overexpres-
sion in diabetes are still being assessed, the effects of
preventing GLUT1 overexpression are clear. Transduc-
tion of cultured mesangial cells with a GLUT1 antisense
construct resulted in a >50% reduction in GLUT1 ex-
pression and glucose uptake [19]. In addition, when these
cells were exposed to elevated extracellular glucose
concentrations, the expected increases in GLUT1 levels
and glucose uptake were prevented [19]. Most impor-
tantly, GLUT1 antisense expression also prevented the
increase in ECM expression, the in vitro corollary of di-
abetic nephropathy. Such prevention of diabetic neph-
ropathy has recently been confirmed in an in vivo model.



Diabetic db/db mice carrying an antisense-GLUTI
transgene have been found to have GLUTI1 levels and
glomerular glucose uptake reduced to approximately 50%
of levels in wild-type diabetic mice, levels that are not
significantly different from levels in nondiabetic wild-
type mice. In these GLUT1 antisense diabetic mice the
mesangial cell glucose uptake rate is also reduced by
50%. Such mice with diabetes demonstrate protection
against the development of glomerulosclerosis [17].
Therefore, both in cultured mesangial cells and in glo-
meruli in vivo, the GLUT]1 transporter appears to be an
important regulator of ECM production.

449

tigations are currently underway to determine whether
this SNP may affect GLUT1 expression.

Whether such an association between the GLUTI
polymorphisms and diabetic nephropathy occurs in all
populations is uncertain. One study in Chinese type 2
patients has found that the Xba I (-) genotype is associated
with a higher incidence of diabetic nephropathy [27],
while another study found that the Xba I (+) allele was
associated with increased risk in Caucasian type 2 patients
in Poland [28]. Finally, another study has found no as-
sociation between the GLUT1 polymorphism and diabetic
nephropathy [29].

Possible role of GLUT1 polymorphisms
in the genetic predisposition to diabetic nephropathy

Because of the likely role of enhanced glomerular GLUT1
expression in predisposing to diabetic nephropathy in
animals, GLUT1 has been considered a potential disease
gene in humans. Several case-control studies have im-
plicated GLUT1 polymorphisms in the risk of developing
nephropathy in different type 1 and type 2 diabetic pop-
ulations. One study in British type 1 patients found that an
Xba 1 (-) restriction fragment length polymorphism was
associated with an increased risk for diabetic nephropathy
[23]. A more recent study found that Caucasian type 1
diabetic patients who were homozygous for the A allele
of a single-nucleotide polymorphism (SNP) in the en-
hancer-2 region in the second intron of the GLUT1 gene
had a 2.4-fold increased risk for diabetic nephropathy
compared to patients who did not have this genotype [24].
This SNP is very tightly linked to the Xba I polymorphism
site identified in the previous study [23, 24]. The en-
hancer-2 SNP of GLUTT1 is inside a predicted binding site
for USF transcription factors which regulate gene ex-
pression in response to high glucose [24, 25] and there-
fore could be functionally significant in regulating
GLUT1 expression in diabetes. In another study, recent
preliminary data indicate that Caucasian type 2 diabetics
and nondiabetics who were homozygous for the A allele
of the GLUT1 enhancer-2 SNP were also at increased risk
for renal disease manifested by albuminuria [26]. Inves-

Fig. 1 GLUT]1 signaling in
mesangial cells. Increased
GLUT]1 expression leads to en-

hanced polyol pathway and Tglucose glucose —— sorbitol ——» fructose
production of PKC. In turn, this TGF-
enhances the synthesis of fi- B = (oLut \

bronectin and other ECM pro-
teins. Increased extracellular
glucose and TGF-f augment
GLUT]1 expression and enhance
this signaling cascade

Effects of increased GLUT1 expression on signaling
in glomerular mesangial cells

Since expression of the GLUT1 gene leads to morpho-
logic features of diabetic nephropathy and since the
GLUT1 gene appears to be linked to the development of
diabetic nephropathy in some populations, it is important
to understand the mechanisms by which GLUT1 expres-
sion can lead to such outcomes. Several studies over the
past decade have helped to reveal at least some of the
pathways involved, especially in cultured mesangial cells.
Chronic overexpression of GLUT1 leads to activation of
the polyol pathway [30], as well as PKCeo and B1 acti-
vation [30, 31]. Enhanced glucose metabolism through
the polyol pathway can lead to synthesis of diacylglycerol
and phosphatidic acid, which may account for increased
mesangial cell PKC isoform activation as well as in-
creased PKC levels [32]. In turn, PKC a and S1 activation
by GLUT]1 leads to increased AP-1 levels which enhance
transcription of several genes, such as those of fibronectin
and other ECM proteins [31]. Thus, increased GLUT1
expression, independent of elevated extracellular glucose
levels, can directly enhance ECM production through a
PKC and AP-1 dependent pathway (see Fig. 1).
Interestingly, chronic GLUT1 overexpression alone
does not lead to activation of MAP kinase (ERK and p38)
pathways, to induction of TGF-p, or to enhanced pro-
duction of reactive oxygen species (ROS) [31]. Activation
of MAP kinase and TGF- pathways and enhanced ROS
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production have all been strongly implicated in the pro-
gression of diabetic nephropathy. This curious lack of
GLUT1 effect on these pathways has several implica-
tions. First, it suggests strongly that increased GLUT1
expression can lead to enhanced ECM accumulation in-
dependent of these pathways. Second, increased glucose
uptake and metabolic flux alone are clearly not sufficient
to trigger MAP kinase and TGF- signaling, at least in
cultured cell systems. Perhaps, as Weigert et al. specu-
lated, stimulation of these pathways may require ROS
production. Since GLUT1 is chronically overexpressed in
these experimental systems, it is possible that the cells
have adapted to the enhanced metabolic flux and have
increased mechanisms for dealing with oxidative stress.
Additionally it appears that most of the excess glucose
metabolic flux is glycolytic, not oxidative, and therefore
mitochondrial oxidative stress is not enhanced [31].
Whether GLUT1 overexpression in diabetic tissues in
vivo fails to enhance ROS production, and signaling via
MAP kinase and TGF-f pathways, is uncertain. Perhaps
the oscillatory nature of hyperglycemia, and hence
GLUTT expression, in diabetic patients would stimulate a
more acute response in complications-prone tissues acti-
vating mitochondrial generation of ROS as well as TGF-f
and MAP kinase pathways. Although GLUT1 does not
stimulate TGF-S or MAP kinase pathways in cultured
mesangial cells, there is evidence that TGF-§ [33] and
possibly ERK [34] can stimulate mesangial cell GLUT1
expression. Thus, these important pathways in diabetic
nephropathy are still ultimately linked to GLUTI.
Newer areas of investigation examining the effect of
GLUT1 overexpression on cellular signaling have been
performed in nonrenal tissues that have clear implications
for diabetic nephropathy. One recent report confirmed
that GLUT1 was necessary for cardiac myocyte hyper-
trophy [35], which had previously been suggested in
transgenic mouse studies. This recent study found that
preventing the expected increases in GLUT1 expression
with an adenoviral GLUT1 antisense approach before
exposure to hypertrophic stimuli blocked induction of
hypertrophy in cardiac myocytes. Surprisingly, this study
found that all of the effects of GLUT1 overexpression
occurred equally in the absence and presence of extra-
cellular glucose and confirmed that the effects were in-
dependent of glucose transport. One possible explanation
for these findings is that GLUT1 can influence cellular
adaptation and signaling via direct protein—protein inter-
actions that may be independent of the molecule’s glu-
cose transport function. A number of investigators have
already demonstrated the direct interaction of GLUT1 and
other proteins [36, 37, 38, 39] and have shown that
GLUTT1 can thereby affect signaling [37]. Morissette et al.
[35] suggest that GLUT1 may interact with signaling
molecules that result in Akt phosphorylation. While this
latter mechanism remains to be demonstrated, such a
finding would nicely complement pathways by which
glucose uptake and metabolism also enhance Akt acti-
vation [40, 41]. The observation that GLUT1 is associated
with lipid rafts in several cell types [39, 42] strengthens

this hypothesis since many plasma membrane signaling
processes are localized adjacent to these detergent-insol-
uble domains in many cell types. Should similar, non-
metabolic effects of GLUT1 be demonstrated in diabetic
glomerular mesangial cells and/or podocytes, novel
mechanisms for diabetic cellular hypertrophy and possi-
bly ECM expansion could be elucidated.
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