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Abstract. This paper provides a Bayesian test of parameter nonstationarity and an estimation procedure for the 
detection of change points in the time series of stock returns. The empirical results indicate that this procedure 
can identify the change points in the data without prior knowledge and provide substantially more descriptive 
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1. Introduction 

The form of the distribution for security returns plays an important role in financial market 
theory and practice. A statistical distribution assumption concerning the financial securities 
available for wealth allocation is required for portfolio selection models and in equilibrium 
asset pricing. Furthermore, multiperiod models of asset pricing and contingent claims also 
require knowledge of the time path for the parameters of the statistical distribution assumed. 

The most convenient assumption for both theoretical and empirical research is that the 
return series of an individual security are independent drawings from an identical (station- 
ary) normal distribution. Both theoretical and empirical evidence, however, strongly sug- 
gest that a time series of stock returns will contain significant parameter nonstationarity. 
In a dynamic economic environment, the investment and financing decisions of firms will 
affect the systematic risk, expected return, and standard deviation of equity returns. For 
example, Boness et al. (1974) find parameters shift after a capital structure change and 
Christie (1982) demonstrates that the standard deviation of a stock's return is an increasing 
function of both financial and operating leverage. Beaver (1968), with realized returns, 
and Patell and Wolfson (1981), with ex ante assessments, find an increase in the variance 
of stock returns around the announcement of quarterly earnings. 

Macroinformation shocks may also shift the level of interest rates and market risk 
premiums. For example, Officer (1972) and Hsu et al. (1974) find a substantial increase 
in the characteristic exponent of common stocks from the pre-World War II period to the 
postwar period. Therefore, it is not surprising for the expected return and the risk dimen- 
sions of individual stocks and portfolios to change through time. In fact, the often observed 
skewness, more highly peaked and longer-tailed (leptokurtic) characteristics of the empirical 
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unconditional distribution of daily stock returns are consistent with the nonstationarity of 
the mean and standard deviation parameters. The difficulty, however, is modeling and 
estimating the changing parameter values. Therefore, researchers have proposed a variety 
of alternative explanations in the form of a mixture of normal distributions. 

Blattberg and Gone.des (1974) consider two continuous mixtures of normal distribution 
models. By assuming that the variance of the normal distribution follows an inverted gam- 
ma distribution, the resulting posterior distribution is the Student. They also show that 
the nonnormal stable Paretian distribution hypothesis proposed by Mandelbrot (1963a, 
1963b, 1967) and Fama (1965) is obtained when the variance of the normal distribution 
follows a strictly positive stable distribution with characteristic exponent between zero and 
one. The evidence in Blattberg and Gonedes indicates that the Student distribution model 
provides a better empirical description of stock returns than the stable Paretian model. 1 

Christie (1983) has formulated a discrete mixture of two normal distribution models where 
returns drawn from the higher variance represent information events while the other distribu- 
tion generates noninformation events. Ball and Torous (1988) use a variant of this model 
to approach the problem of single event date uncertainty. A generalized discrete mixture 
of normal distributions has been proposed and tested for daily stock returns in Kon (1984). 
Each return observation is viewed as a drawing from one of a finite number of normal 
distributions, with some fixed probability. This model refers to subsets of the data whose 
observations are not necessarily consecutive in time so that both structural and cyclical 
parameter shifts can be accommodated. The January effect or the weekend effect might 
be examples of cyclical parameter shifts. The release of relevant firm-specific information 
(e.g., a merger, capital structure change, etc.) might result in a structural parameter shift. 
This model formulation and estimation procedure provides both generality and a better 
statistical description of stock returns than the Student model. Finally, Press (1968), Jar- 
row and Rosenfeld (1984), Ball and Torous (1985), and Akgiray and Booth (1986, 1987) 
have provided some positive evidence on a Poisson jump-diffusion process for the distribution 
of stock returns. This model is essentially an infiniite mixture of normal distributions with 
parameter restrictions. 

This paper focuses on the empirical issue of which mixture of independent normal distribu- 
tions model best describes actual dally stock return data. The resolution of this fundamen- 
tal empirical issue is necessary for building relevant theoretical models and for the ap- 
plication of well-specified empirical tests of asset pricing models and the efficient markets 
hypothesis. The maximum likelihood estimation procedure in all of the previous models 
provide estimates of all the parameters without identifying each observation with its respec- 
tive generating distribution. The purpose of this paper is to demonstrate the benefits of 
identification of observations with their respective generating distribution. A more descrip- 
tive model of the distribution of stock returns is obtained by adding minimal structure to 
the model specification and employing a Bayesian estimation procedure. The additional 
structure is a sequential (or time-ordered) mixture of normal distributions model. That 
is, a sequence of return observations are normal variates with stationary parameters up 
to a change point. The sequential structure requires that at least two consecutive observa- 
tions are generated from the same distribution to define a regime with positive variance 
before another shift can take place. With this minimal requirement, a Bayesian detection 
method for the unknown change points (rl, r2 . . . .  ) is derived and tested. 
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The sequential mixture methodology in this paper can be used to generate and accom- 
modate a large number of information distributions with varying parameter magnitudes 
and multiple event date uncertainty. This is important for capturing the effects of multiple 
announcements with information leakage as may arise. These problems arise in a bidding 
contest in mergers and acquisitions or when measuring the effect of tax or regulatory policy 
changes. 

The remainder of this paper is organized as follows: In section 2, the model specifica- 
tion for the sequential mixture alternative is defined. The model formulation and estima- 
tion of change points methodology are provided. Section 3 contains a description of the 
competing models. The empirical evidence comparing the alternative models for the distribu- 
tion of stock returns is presented in section 4. A summary of the results and implications 
are given in section 5. 

2. Sequential mixture of normal distributions model specification 

The previous mixture of independent normal distributions models in the literature use max- 
imum likelihood estimation procedures that provide estimates of all the parameters without 
identifying each observation with its respective generating distribution. This section presents 
a new sequential mixture model. By adding minimal structure to the model specification 
and using a Bayesian estimation procedure, this technique can provide the benefits of (1) 
Identification of observations with their respective generating distribution; (2) computa- 
tional simplicity; and (3) a more descriptive model of the distribution of stock returns. 

2.1. The stationarity normal distribution null hypothesis 

One motivation for using a mixture of normal distributions model to describe daily stock 
return data is skewness and kurtosis relative to a stationary normal assumption. This 
phenomenon is exhibited in table 1 for our sample of daily rates of return from July 2, 
1962 to December 3, 1990 on the 30 stocks in the Dow Jones Industrial Average (DJIA). 
We also report these statistics on three stock indexes: Standard & Poors 500 (S&P), Center 
for Research in Security Prices (CRSP), Equally Weighted (EW), and CRSP Value-Weighted 
(VW). All data comes from the CRSP at the University of Chicago (CRSP tapes). 

Note that all individual sticks and indexes have statistics that reject the stationary (iden- 
tical) normal distribution null hypothesis. The evidence indicates significantly fatter tails 
than the stationary normal distribution for all individual stocks and indexes. The excess 
kurtosis statistic ranges in value from 3.3213 to 73.7098 when the upper 1 percentile in 
the distribution is 0.13. All but five individual stocks reject the symmetric distribution 
null hypothesis with skewness coefficients greater (or less) than the 1 percentile critical 
value of 0.058 (-0.058). Most of the distributions are left-tail heavy. Given the relative 
magnitudes of these statistics, the stationary normality hypothesis is rejected more severely 
by the excess kurtosis statistics than the skewness statistics. 
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Table 1. Sample statistics for daily returns (July 2, 1962-December 31, 1990). 

Standard 
I.D. Security Sample Mean Deviation Skewness Excess 
No. (or Index) Size (%) (%) Coefficient Kurtosis 

1 Allied Signal 1,328 0.0117 2.0594 0.2018 73.7098 
2 Alcoa 7,167 0.0448 1.7386 -0.3221 7.9657 
3 American Exp 3,441 0.0586 2.0386 -0.3778 12.3701 
4 AT&T 7,166 0.0415 1.1934 -0.1692 22.6588 
5 Bethlehem Stl 7,167 0.0274 2.0640 -0.4456 14.8119 

6 Boeing 7,167 0.0854 2.1564 0.5644 4.4869 
7 Caterpillar 7,167 0.0456 1.6644 -0.3081 8.2662 
8 Chevron 7,167 0.0589 1.5638 0.0450 4.8959 
9 Coca Cola 7,167 0.0713 1.5189 -0.1648 17.5454 

10 Disney Walt 7,167 0.0972 2.0860 -0.2979 10.2161 

11 Du Pont 7,166 0.0403 1.4127 -0.0557 6.4517 
12 Eastman Kodak 7,167 0.0458 1.6050 -0.1746 27.5529 
13 Exxon 7,167 0.0612 1.2672 -0.3869 24.1442 
14 General Electric 7,167 0.0518 1.4474 -0.0290 5.8129 
15 General Motors 7,166 0.0411 1.4303 0.0104 10.7273 

16 Goodyear 7,167 0.0355 1.7176 -0.2166 14.6313 
17 IBM 7,164 0.0462 1.3682 -0.3121 13.8527 
18 Int'l Paper 7,167 0.0510 1.6784 -0.2889 12.4147 
19 McD onalds 6,158 0.0999 2.0347 0.04 18 6.3015 
20 Morgan JP 5,495 0.0629 1.5984 -0.3530 53.1677 

21 Merck 7,167 0.0739 1.4341 0.1346 3.3408 
22 3M 7,167 0.0491 1.4285 -0.5951 18.4713 
23 PhiUip Morris 7,167 0.0939 1.5605 0.1490 3.3213 
24 P&G 7,167 0.0541 1.3079 -0.3051 39° 1795 
25 Sears 7,167 0.0329 1.5289 -0.0708 16.3683 

26 Texaco 7,166 0.0503 1.5328 0.0944 6.8170 
27 Union Carbide 7,167 0.0419 1.6307 0.1320 10.0492 
28 United Tech. 7,165 0.0591 1.7923 0.1910 3.3245 
29 Westinghouse 7,167 0.0644 1.9403 -0.5319 20.9271 
30 Woolworth 7,167 0.0584 1.7611 0.6108 7.4724 

31 S&P 500 7,167 0.0288 0.8903 -1.6452 44.2041 
32 EW CRSP 7,167 0.0700 0.7917 -0.9274 25.1124 
33 VW CRSP 7,167 0.0438 0.8435 -1.3757 34.7037 

Notes: The upper and lower 1 percentile points in the distribution of the skewness statistic are 0.058 and -0.058, 
respectively. 

The upper and lower 1 percentile points in the distribution of the excess kurtosis statistic are 0.13 and -0.11, 
respectively. 

2.2. Preliminary evidence on the sequential model 

In  an  ef f ic ien t  marke t ,  p u b l i c  a n n o u n c e m e n t s  of  co rpora t e  i n v e s t m e n t  a n d  f inanc ia l  deci-  

s ions  tha t  i m p l y  a change  in the  f i rm ' s  expec ted  r e t u r n  and  r i s k  wil l  b e  i m p o u n d e d  in s tock  

pr ices  immedia te ly .  T he  a n n o u n c e m e n t s  of  re levan t  m a c r o e c o n o m i c  i n fo rma t ion  wil l  affect  
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the return and risk of all securities, and hence, portfolios (indexes). These events may repre- 
sent change points, and between such events, there may be stationarity. 2 Cyclical (or 
seasonal) nonstationarity may result from the anticipation of regular quarterly (e.g., earn- 
ings and dividend) or weekly (e.g., macroeconomic information) announcements. Sequential 
nonstationarity generally results from unanticipated announcements like capital structure 
changes, mergers, stock splits, an oil embargo or market failure (e.g., October 19, 1987). 
For some intuition on whether the cyclical or time-ordered characteristic of nonstation- 
arity is more dominant, we can partition the data to minimize nonstationarity. Consider 
the following partitions of the 7,167 daily observations in the stock return series with the 
number of regimes in parentheses: no partition (1); every five years (6); every three years 
(10); yearly (29); quarterly (114); by day of the week (5); by month of the year (12); and 
by year and day of the week (145). For example, the day of the week scenario groups all 
Monday returns into the first regime, all Tuesday returns into the second regime, and so 
forth. The last three daily data partitions have cyclical (or seasonal) components. However, 
with the requirement of at least two consecutive observations to be considered a sequential 
(time-ordered) model, a partition by month of the year has a major cyclical component 
that can be estimated sequentially with daily data. 

The entries in table 2 represent the number of stocks among the 30 securities and three 
indexes for which the partition indicated by the column is more plausible than the partition 
indicated by the row. Each pairwise comparison is performed by means of a ~ 2 test at 
the 5 % significance level. The numbers in table 2 indicate that the time-ordered partition 
by quarter is the most plausible. The yearly partition is the next likely, and the mixture 
of time-ordered and cyclical components in the yearly and day of the week partition follows. 
This gives us some intuition that the time-ordered shift of parameters may be more likely 
than the entirely cyclical partition by day of the week.3 

Since the time-ordered pattern is more plausible than cyclical, we can expect a lot of 
overlap between the sequential mixture and generalized discrete mixture specifications. 
That is, both can accommodate the time-ordered pattern, a priori. Furthermore, we do 
no know the change-points a priori, but we do expect many such points in a time-ordered 
pattern. Which model specification and estimation procedure is more powerful in detect- 
ing change points and describing the data is an empirical issue. 

2.3. M o d e l  f o r m u l a t i o n  

The specification of a sequential mixture of normal distributions model is a sequence of 
stock returns (R1, R2 . . . . .  Rr)  that are normal variates with stationary mean or variance 
parameter up to a change point. Define these as rl return observations from regime 1. 
Thereafter, return ~'1 + 1 to 72 are a sequence of return observations from regime 2, and 
so forth, until the last sequence of return observations from 7K-a + 1 to 7K is the Kth 
regime. The formulation of this model is as follows: 

Regime 1: Rt = #1 +e l t ,  t = 1, 2 . . . .  , T1 

Regime 2: Rt = Iz2 + e2t, t = r I + 1, . . . ,  72 

Regime K: Rt = /xtc + eKt, t = TK_ 1 q- 1, . . . ,  r/~(= T) 
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where, for each k, ekt is (for each t E [zk-1 + 1, T~) identically and independently nor- 
really distributed with mean 0 and variance a ~. Change points for the mean and change 
points for the variance are not necessarily coincident. K indicates the total number of regimes 
in which either a mean or a variance parameter deterministically shifts. Note that parameters 
71 . . . .  , Tr-1 define the change points. The nonstationarity arises from observations that 
are drawn from a different population after each change point. 

On a posteriori ground, the sequential mixture specification is a special case of the 
generalized discrete mixture of normal distributions model .4 However, since knowledge 
of the partition is unavailable a priori, the a priori formulation of the partition has impor- 
tant implications. Only the sequential mixture specification attains both computational 
simplicity and observaton identification for a potentially larger number of regimes. 

2.4. A detection procedure for change points 

The major task in the sequential mixture of normal distributions model is how to detect 
change points for the mean and for the variance. There are two ways to detect the change 
points, simultaneously and sequentially. If the number of regimes, K, is known, the 
simultaneous detection method selects the set of change points that has the greatest posterior 
probability (or the likelihood value after adjusting for the number of estimated parameters). 
This is an optimal method. In reality, however, the number of regimes is not explicitly 
known. Furthermore, even if the number of regimes are known, there will be situations 
in which the simultaneous detection of change points is computationally very difficult, in 
particular when the sample size and the number of regimes are relatively large. This situa- 
tion is typical in our stock return data. If the sample size is T and the number of regimes 
is K, approximately f- r J] computations of the joint posterior probability of change points k/¢-1 
are needed for all possibre combinations to be evaluated. For example, if the number of 
daily return observations is 7,000 and the number of regimes is 101, then approximately 
10227 computations of the posterior probability are needed. In other words, we have to 
consider 10227 different change points vectors. Among those, we choose one change point 
vector as the estimate of T1, • . . ,  rl¢-i that has the greatest posterior probability. To avoid 
the difficulties of the simultaneous detection method, we suggest a sequential detection 
procedure. Although this is theoretically suboptimal, it is computationally more efficient 
and can estimate the unknown number of change points. The simulation evidence in the 
next subsection will be used to judge its effectiveness. 

Since change points for the mean and for the variance are not necessarily coincident, we 
estimate change points for the mean and for the variance separately. The sequential change 
point detection procedure begins with a test of the stationarity of the mean (variance) param- 
eter applied to an initial sample (i.e., the first 30 observations). For the stationarity test 
of the mean parameter over a given sample period, we consider the following null hypothesis 

n01 : ~ = /~1 - /z2 = 0,  

where/z 1 and ~ are mean parameters of two implicit regimes in the initial sample. The test 
requires computation of the unconditional p-value for//01 unconditionally on any variance 
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parameter change. This stationarity test of the mean parameter is repeated as each data 
point is added to the initial sample until the unconditional p-value is less than an assigned 
significance level. That is, until the null hypothesis is rejected. If the null hypothesis is 
rejected we assume there is a shift in the mean parameter over that sample. Then we calcu- 
late the posterior probability of each possible two-regime classification for that sample. The 
classification having the greatest posterior probability of a change point is selected as the 
posterior most likely change point for the mean (i.e., generalized maximum likelihood esti- 
matorS). The first detected change point for the mean is ~'l(m). We repeat the above proce- 
dure with an initial sample beginning at the first data point following the previously detected 
change point (i.e., ~h(m) + 1). When the null/-/01 is rejected, we again calculate the poste- 
rior probability of each data point over the sample period beginning at t = ~'l(m) + 1. 
The two-regime classificaiton having the greatest posterior probability of change point is 
selected as the second change point for the mean, z z ( m ) .  This procedure is repeated until 
all data (Tobservations) are scanned. Then all change points for the mean have been sequen- 
tially detected. The sequence of mean parameters is #1 . . . .  , #K,n" The maximum likeli- 
hood estimate of#k is calculated by using observations from t = Z k - l ( m )  + 1 tO t = ~k(m).  

For the stationarity test of the variance parameter unconditionally on any mean parameter 
change, we perform the same procedure by obtaining the unconditionalp-value for the null 
hypothesis 

Ho2 : p = o 2 / o 2  = 1 

over a given test period, where a t 2 and o 2 are also variance parameters of two implicit 
regimes. As in the detection procedure of change points for the mean, change points for 
the variance, 7"1(v), 7"z(v) . . . . .  7"r~-l(v), are also sequentially estimated. The sequence of 
variance parameters are cr21 . . . .  , o~: v. The maximum likelihood estimate of a~ is 
calculated by using observations from t = ~k-l(v) + 1 to t = ~'k(v). 

The sequential detection of change points methodology requires (1) A computational 
method for the unconditionalp-values, and (2) the posterior distribution of a change point, 
7", in each test period. We calculate the p-values based on the highest posterior density 
(HPD) interval. This is a Bayesian significance test with a diffuse prior (see in detail Lindley 
(1965), Box and Tiao (1973), and Kim (1991)). 6 This HPD interval test can be used when 
the information on target parameters is diffuse, while the traditional Bayes test using a 
posterior odds cannot. Since we have no information on the change of mean and variance 
parameters of stock returns a priori, the HPD interval test is appropriate. 7 

Based on Box and Tiao (1973), the unconditionalp-value by the HPD interval test H0x 
over a testing period of sample size n is approximated as 

P~=o = ~ 2 {1 - 3b(It'(0)l)} 7r(7"1R), (1) 
T 

where 

t ' (6 )  = (6 --  ~ )  / {a2( s2 /n l  + s~/n2)}  1/2 

n 1 = 7., n 2 = rt - -  7" 
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- _ Rt/nl - ~ Rtln2 R1 R2 
t=l  t = r + l  

S 2 ----~-~j ( R t -  /~1)2/(nl -- 1), S 2 ---- ~ (R t - -  /~2)2/(n2 -- 1) 
t = l  t = r + l  

a 2 = ((b - 2)/b)J], b = 4 + fz/f2 

f l  = ((n2 --  1)/(n2 --  3))COS2q~ + ((n 1 -- 1)/(nl - 3))sin2~b 

(n 2 -- 1) 2 COS4t~ + (nl -- 1) 2 sin4q~ 
3~ = (n 2 _ 3)2(n2 _ 5) (n 1 -- 3)2(nl -- 5) 

cos2th =(s21n2)/(s21/n 1 + s221n2), sin2~b = 1 --  cos2t~, 

and 5b(') is the cumulative density function of the standard Student t distribution with b 
degrees of freedom, and 7r(r I R) is the posterior distribution of a change point r. Condi- 
tional on a given change point r, the inside bracket in equation (1) represents the stationarity 
test of mean parameter unconditional on any variance change. It computes the conditional 
p-value for H01 given the change point. Since we have no information on the change point, 
we assign every possible value of r into the computation of the conditional p-value. Then 
the unconditional p-value for H01 is the weighted average of  the conditional p-values for 
H01 given a change point r with the probability weights determined by r(rIR). In this ap- 
proximation, each regime should have at least six observations; that is, 6 _< r _< n - 6. 
However, to avoid any spurious detection of mean or variance parameter nonstationarity 
from too small a sample, we require at least seven data points in each regime. 

The posterior probability of  r is determined by 

r ( r [ R )  = "n'('r)n 1 n2F((nl - 1)/2)F((n2 - 1)/2)stn1-1)/2S(2 n2-1)/2 (2) 

where S 1 = F,[=I(R t -/~1) 2, S 2 = ~ = r + l ( R t  - g2) 2, r( . )  is a gamma function, and r ( r )  
is a prior distribution of r. We can assign a uniform prior to r because we have no prior 
information on r,  and hence, the term r ( r )  has no impact in determining the posterior 
probability of r. 

The unconditional p-value for H02 by the HPD interval test for sample size n is given by 

Pp=I =~- ]  2{1 - T , _ l , n _ ~ _ l ( F ( 1 ) ) }  7r(z lR) ,  
T 

(3) 

where Tr_l ,n_r_l ("  ) is the cumulative density function of an F distribution with (r  - 1, 
n - r - 1) degrees of freedom, and 
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Note that F(1) is the conditional F-test statistic for H02 given a change point r. Therefore, 
the unconditionalp-value test for variance parameter stationarity is also the weighted average 
of the conditional p-values based on an F-test given r (i.e., the inside bracket in equation 
(3)) with the probability weights determined by the posterior distribution of z in equation 
(2). As in the mean stationarity test, we require at least seven data points in each regime. 
If the unconditional p-value for//o2 is less than an assigned significance level, we also 
calculate the posterior probability (equation (2)) of each possible two-regime classification. 
Then we select the two-regime classification having the greatest posterior probability as 
the posteriori most likely change point for the variance parameter. 

The derivation of the unconditional p-values fo//01 and H02 and the posterior distribu- 
tion of r are described in the appendix. 

2.5. Sequential mixture model simulation 

This simulation provides a justification for the sequential mixture estimation prodedure 
and the selection of a 1% significance level detection criteria. The number of observations 
in the time series of the simulated data is 100 in table 3 and 400 in table 4. In every case, 
100 replications are used throughout tables 3 and 4. THe simulated data is generated from 
a normal distribution with a mean of 0.05 % and standard deviation of 1%. Then two change 
points for the variance parameter (three regimes) are randomly chosen over the time series. 
When the predetermined ratio of standard deviations is set to be 2, the standard deviation 
of the second regime is twice that of the first regime, and the standard deviation of the 
third regime is half that of the second regime. The same procedure is sued for the predeter- 
mined ratios of 3, 4, and 5. The mean parameter remains fixed over the sample period. 

Table 3 presents the estimation results for comparison of the simultaneous and the sequen- 
tial detection methods. Panel A results are from the simultaneous method assuming that 
the number of regimes is unknown. For each potential number of regimes from 1 to 5, 
we compute the Schwarz (1978) values (large sample posterior probability) for all possible 
classifications of the data into regimes. The set of data points with the maximum Schwarz 
value is selected as the estimate of the change points for variance. Panel B presents the 
estimation results by the simultaneous method by assuming that the number of regimes 
is exactly known. Since we do not know the number of regimes a priori, panel B values 
represent benchmarks for comparison. The results in panel A indicate a substantial amount 
of overdetection. When the predetermined ratio of standard deviations is 1, the true model 
has only one regime and no change points. The simultaneous method, however, estimates 
change points even though none exist. For true models with three regimes and a predeter- 
mined standard deviation ratio of 2, there is some underdetection (.04 or 4 %), but mostly 
overdetection (.65 or 65% for 4 and 5+ regimes). The overdetection increases as the pre- 
determined ratio of standard deviations increase. 

Panels C, D, and E are the estimation results by the sequential detection method (HPD 
interval test) at the 1, 5, and 10% significance levels, respectively. At the 1% significance 
level there is a small amount of overdetection throughout the predetermined ratios. There 
is, however, some undertection. Particularly at the predetermined ratios of 2 and 3, but 
declining at ratios of 4 and 5. As the significance level for detection increases to 5 % and 
10% in panels D and E, the overdetection increases and Schwarz values decline. 
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Table 3. Simulation results: Estimation of unknown change points for variance by the simultaneous and sequential 
detection methods when two change points (three regimes) are randomly given over the sample size of 100 (100 
replications). 

Frequency of Estimated Number 
of Regimes Average Exact Average Estimated 

Ratio of Standard Schwarz Value  Schwarz Value 2 
Deviations I (pl/2) 1 2 3 4 5+ Ave (Standard Error) (Standard Error) 

Panel A: By Simultaneous Detection Method When the Number of Regimes Is Unknown 

1 0.00 0.07 0.31 0.32 0.27 3.70 314.8 (0.64) 306.7 (5.47) 

2 0.00 0.04 0.31 0.28 0.37 3.98 288.2 (1.52) 291.4 (1.52) 
3 0.00 0.00 0.33 0.21 0.46 4.13 272.5 (2.12) 276.6 (2.27) 

4 0.00 0.00 0.28 0.23 0.49 4.21 263.1 (2.40) 265.9 (2.83) 
5 0.00 0.00 0.27 0.24 0.49 4.25 253.4 (3.04) 256.3 (3.28) 

Panel B: By Simultaneous Detection Method When the Number of Regimes Is Known 

1 1. 0. 0. 0. 0. 1.00 314.8 (0.64) 314.8 (0.64) 

2 0. 0. 1. 0. 0. 3.00 288.2 (1.52) 290.7 (1.52) 

3 0. 0. 1. 0. 0. 3.00 272.5 (2.12) 275.6 (2.26) 
4 0. 0. 1. 0. 0. 3.00 263.1 (2.40) 264.8 (2.81) 
5 0. 0. 1. 0. 0. 3.00 253.4 (3.04) 256.1 (3.26) 

Panel C: By Sequential Detection Method at the 1% Significance Level for the HPD Test 3 

1 0.87 0.09 0.04 0.00 0.00 1.17 314.8 (0.64) 315.1 (0.67) 

2 0.24 0.24 0.49 0.03 0.00 2.31 288.2 (1.52) 288.5 (1.55) 

3 0.00 0.21 0.76 0.03 0.00 2.82 272.5 (2.12) 271.7 (2.08) 
4 0.00 0.07 0.88 0.05 0.00 2.98 263.1 (2.40) 261.5 (2.33) 
5 0.00 0.08 0.90 0.02 0.00 2.97 253.4 (3.04) 251.5 (2.96) 

Panel D: By Sequential Detection Method at the 5% Significance Level for the HPD Test 

1 0.62 0.19 0.18 0.01 0.00 1.58 314.8 (0,64) 314.6 (0.74) 

2 0.10 0.18 0.56 0.13 0.03 2.81 288.2 (1,52) 288.8 (1.53) 
3 0.00 0.08 0.76 0.11 0.05 3.13 272.5 (2.12) 272.1 (2.11) 
4 0.00 0.02 0.74 0.22 0.02 3.24 263.1 (2.40) 261.1 (2.33) 

5 0.00 0.04 0.76 0.18 0.02 3.19 253.4 (3.04) 251.2 (2.93) 

Panel E: By Sequential Detection Method at the 10% Significance Level for the HPD Test 

1 0.40 0.25 0.27 0.06 0.02 2.05 314.8 (0.64) 314.0 (0.73) 

2 0.06 0.14 0.52 0.22 0.06 3.08 288.2 (1.52) 288.6 (1.54) 
3 0.00 0.05 0.67 0.19 0.09 3.32 272.5 (2.12) 271.9 (2.12) 
4 0.00 0.03 0.57 0.33 0.07 3.44 263.1 (2.40) 260.7 (2.33) 
5 0.00 0.04 0.67 0.24 0.05 3.32 253.4 (3.04) 250.1 (2.94) 

1This indicates the ratio of standard deviations between two adjacent regimes. When the ratio is one, there is 
no change point in the variance parameter (i.e., one regime). 

2When two change points are estimated by random selection, the average Schwarz values are 314.8,281.7,258.2, 
241.3, and 224.6 for pl/2 = 1, 2, 3, 4, and 5, respectively. 

3The minimum sample size is seven in each regime, and the initial testing sample size is 30. 
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Table 4. Simulation results: Estimation of unknown change points for variance by the simultaneous and sequential 
detection methods when two change points (three regimes) are randomly given over the sample size of 400 (100 
replications). 

Frequency of Estimated Number 
of Regimes Average Exact Average Estimated 

Ratio of Standard Schwarz Value  Schwarz Value 2 
Deviations I (pv2) 1 2 3 4 5+ Ave (Standard Error) (Standard Error) 

Panel A: By Simultaneous Detection Method When the Number of Regimes Is Known 

1 1. 0. 0. 0. 0. 1.00 1,271.4 (1.49) 1,271.4 (1.49) 
2 0. 0. 1. 0. 0. 3.00 1,167.8 (6.02) 1,169.6 (6.06) 
3 0. 0. 1. 0. 0. 3.00 1,127.5 (9.17) 1,128.7 (9.52) 
4 0. 0. 1. 0. 0. 3.00 1,082.6 (11.50) 1,084.3 (12.01) 
5 0. 0. 1. 0. 0. 3.00 1,073.6 (13.31) 1,074.9 (13.97) 

Panel B: By Sequential Detection Method at the 1% Significance Level for the HPD Test 3 

1 0.75 0.10 0.14 0.01 0.00 1.41 1,271.4 ( 1.49) 1,270.7 ( 1.54) 
2 0.01 0.14 0.67 0.12 0.06 3.08 1,167.8 ( 6.02) 1,168.0 ( 5.95) 
3 0.00 0.03 0.65 0.12 0.20 3.52 1,127.5 ( 9.17) 1,126.9 ( 0.08) 
4 0.00 0.01 0.65 0.17 0.17 3.54 1,082.6 (11.50) 1,078.7 (11.64) 
5 0.00 0.01 0.71 0.16 0.12 3.42 1,073.6 (13.31) 1,069.3 (13.40) 

Panel C: By Sequential Detection Method at the 5 % Significance Level for the HPD Test 

1 0.25 0.17 0.28 0.08 0.21 3.05 1,271.4 ( 1 .49)  1,266.9 ( 1.68) 
2 0.00 0.02 0.27 0.22 0.49 4.70 1,167.8 (6.02) 1,165.0 (5.95) 
3 0.00 0.02 0.27 0.19 0.52 4.90 1,127.5 ( 9.17) 1,123.4 ( 9.15) 
4 0.00 0.01 0.18 0.11 0.70 5.49 1,082.6 (11.50) 1,074.1 (11.68) 
5 0.00 0.00 0.18 0.23 0.59 5.28 1,073.6 (13.31) 1,066.4 (13.32) 

Panel D: By Sequential Detection Method at the 10% Significance Level for the HPD Test 

1 0.05 0.04 0.18 0.22 0.51 5.07 1,271.4 ( 1 .49)  1,262.6 ( 1.75) 
2 0.00 0.02 0.07 0.05 0.31 6.17 1,167.8 ( 6.02) 1,162.6 ( 5.95) 
3 0.00 0.01 0.13 0.09 0.87 6.79 1,127.5 (9.17) 1,120.0 (9.15) 
4 0.00 0.00 0.05 0.04 0.91 7.27 1,082.6 (11.50) 1,070.5 (11.70) 
5 0.00 0.00 0.04 0.07 0.89 7.15 1,073.6 (13.31) 1,061.9 (13.24) 

~This indicates the ratio of standard deviations between two adjacent regimes. When the ratio is one, there is 
no change point in the variance parameter (i.e., one regime). 

2When two change points are estimated by random selection, the average Schwarz values are 1,271.4, 1,144.8, 
1,071.0, 995.3, and 961.8 for pl/2 = 1, 2, 3, 4, and 5, respectively. 

3The minimum sample size is seven in each regime, and the initial testing sample size is 30. 

In table 4 ,  the same procedures  are  used for a larger t ime series of  400  observations.  

Exc luded  f r o m  table 4 is the s imultaneous detect ion method  w h e n  the n u m b e r  of  regimes  

is unknown.  This  is the situation that  becomes  computa t iona l ly  difficult  as the number  of  

observations and/or number  of  regimes increase. We do, however, wish to observe the prop- 

erties of  the sequential  detect ion procedure  as the sample size increases. Al l  of  the compar i -  

sons be tween  the panels are  essent ial ly the same as the 100 observat ion case. The  ma jo r  

dif ference be tween  tables 3 and 4 is a general  decrease  in underdetect ion and an increase 

in overdetec t ion  by the sequent ial  detect ion method .  Given  the best  results are found with 

the 1% signif icance level ,  this cr i ter ia  is used on  actual data  throughout  this paper. 
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3. The competing m o d e l s  

The competing models for the distribution of daily stock returns are the Student t distribu- 
tion (s), the Poisson jump-diffusion process ( jp) ,  the generalized discrete mixture of normal 
distribution (gin), and the sequential mixture of normal distribution (sm) models. 

3.1. Student t (s) 

Blattberg and Gonedes (1974) assume that the variance parameter of a normally distributed 
stock return is a drawing from an inverted gamma distribution. Then the resulting posterior 
distribution is the Student model. The Student t probability density function with location 
parameter lzs, scale parameter Hs, and degrees of freedom gs is represented by 

f(Rt I Os) = r [(~s + 1)/21 
r [~J21 , / ~  

f l  2~ -(~s+ 1)/2 
+ Hs (Rt - ~s) ' /)s 

whereOs = {m, Hs, Ps; - o o  < #s < o%Hs > 0, ps > 0}. 
The estimates that maximize the log-likelihood function for the Student t model and our 

data sample are contained in table 5. The student distribution approaches the normal as 
the degrees-of-freedom parameter gets large. In order to explain the observed kurtosis rela- 
tive to the stationary normal exhibited in table 1, the degrees-of-freedom parameter for the 
student model should be in the range 2 < Us < 10. This is confirmed for our sample in 
table 5. Furthermore, the scale parameter is inversely related to the variance of the distribu- 
tion. Therefore, the indexes have considerably larger scale estimates and lower variances 
than the individual stocks. 

3.2. Poisson jump-dif fusion (jp) 

The Press (1968) Poisson jump-diffusion process for the distribution of stock returns con- 
sists of a geometric Brownian motion components and an independent compound Poisson 
process with normally distributed jump amplitudes. This Poisson jump-diffusion process 
can be expressed as follows: 

~ S(---t) 1 ( ~ S (  1) ~.1 21 U(t) log = -- ~ a t + aZ( t )  + 2..a Jn, 
n=l 

where S(t) = the security price at time t; Z(t)  = a standard Brownian motion; N(t)  = a 
Poisson counting process with parameter X > 0; Jn = a normal random variate with mean 
/zj and variance a} representing the logarithm of 1 plus the percentage change in security 
price caused by the nth jump; c~ = the instantaneous conditional expected rate of return 
per unit time for the Brownian motion part of the process; and a 2 = the instantaneous 
conditional variance of o~. 
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Table 5. Student t distribution estimators. 

I.D. #s(× 103 ) Hs(× 10 -3 ) ~s(× 1/2) I.D. /Zs(X 103 ) Hs(x 10 -3 ) l,s(× 1/2 ) 
No. (t-Statistic) (t-Statistic) (t-Statistic) No. (t-Statistic) (t-Statistic) (t-Statistic) 

1 0.0410 7.9943 1.6213 18 0.1349 6.2042 2.3922 
(0.11) (14.58) (10.67) (0.77) (34.32) (17.53) 

2 O. 1007 5.7861 2.3187 19 0.6045 4.8328 1.9499 
(0.56) (33.35) (17.42) (2.78) (31.01) (19.11) 

3 0.1843 4.2990 2.3686 20 0.1659 8.0051 2.1363 
(0.61) (23.61) (12.15) (0.93) (29.21) (16.51) 

4 -0.0645 16.7063 1.6319 21 0.4549 7.8565 2.5737 
(-0.58) (30.67) (22.00) (2.96) (33.62) (15.91) 

5 -0.5373 5.3941 1.7097 22 0.2124 8.9850 2.2400 
(-2.76) (32.05) (22.15) (1.46) (33.580) (18.16) 

6 0.0265 3.8087 2.3139 23 0.6158 7.1148 2.2757 
(0.12) (32.85) (17.87) (3.77) (33.04) (17.53) 

7 0.3073 7.0255 2.0124 24 0.2498 12.2415 1.9656 
(1.85) (33.07) (19.73) (1.97) (32.46) (19.73) 

8 0.2752 8.0508 1.9064 25 -0.0735 8.9714 1.8607 
(1.76) (31.72) (19.76) (-0.49) (32.27) (20.63) 

9 0.4081 9.1235 1.9010 26 0.1778 9.1752 1.7887 
(2.77) (33.07) (20.82) (1.20) (32.58) (21.65) 

10 0.4478 4.4931 2.0112 27 -0.1575 8.1409 1.7985 
(2.14) (32.69) (19.47) (-1.00) (32.49) (21.42) 

11 -0.0159 9.2386 2.0974 28 0.2092 5.2701 2.3712 
(-0.11) (32.26) (18.41) (1.11) (33.350) (17.05) 

12 0.0692 7.4593 2.2100 29 0.0318 5.5234 1.9671 
(0.43) (34.10) (18.76) (0.17) (33.30) (20.33) 

13 0.4800 11.0978 2.4144 30 -0.1054 6.1116 2.0483 
(3.69) (34.19) (17.30) (-0.59) (32.45) (18.97) 

14 0.2677 8.4303 2.2698 s&P 0.3174 26.6409 1.9459 
(1.78) (33.80) (18.08) (3.70) (32.43) (19.90) 

15 0.1054 8.7256 2.2945 EW 1.0582 42.1660 1.54 
14 

(0.71) (33.66) (17.81) (15.01) (31.75) (24.10) 

16 -0.1183 6.1454 2.2822 v w  0.5471 30.0633 1.8835 
(-0.67) (34.46) (18.43) (6.75) (32.01) (20.20) 

17 0.1858 8.8900 2.6118 
(1.29) (34.93) (16.49) 

Then,  the probabil i ty density funct ion of a securi ty re turn  is 

-~j e-Xh n 
f ( R t  1 % )  ~ - -  n ! 

n=l  
- - "  d~(Rt]l~ + n#.l, a 2 + no2j), 

where/x = ot - 1/2tr 2, Ojp = {/x, tr 2, ~,,/~j, 02 }, and  ~(R, la, b) denotes a normal  density 
funct ion wi th  m e a n  a and  variance b. 
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The estimates that maximize the log-likelihood function for the Poisson jump-diffusion 
process and our sample data are contained in table 6. For all of the individual securities 
and indexes that converged to an optimum, all but one security had an estimate of either 
X or a } that is statistically significant. Therefore, this infinite mixture of normal distribu- 
tions model is also capable of explaining the observed kurtosis in table 1. 

3.3. Generalized discrete mixture o f  normal  distrubitons (gm) 

A generalized discrete mixture of normal distributions alternative for daily stock returns 
has been proposed and tested in Kon (1984). Each return observation is viewed as a draw- 
ing from one of a finite number of normal distributions with some probability. The obser- 
vations are not necessarily consecutive. Therefore, the probability density function for L 
regimes is 

f ( R t  log m) = Z ~kj exp -- - -  (Rt - 
jol 2 4  ' 

where the Xj s are the mixing probabilities and the parameter vector is Ogm = {I/j, 4 ,  
Xj }j=l ..... L. A comparison of the stationary normal distribution with a mixture of two nor- 
mal distributions can be made with the statistic: minus 2 times the log-likelihood ratio of 
the models. This statistic has an asymptotically chi-square distribution with 3 degrees of 
freedom. At the .01 probability level, the statistic must exceed 11.3. The actual values 
ranged from 423.26 to 1,854.38. Hence, mixtgures of three, four, and five normal distribu- 
tions can explain the observed kutosis and skewness in table 1. 

3.4. Sequential  mixture (sin) 

The sequential mixture of normal distributions model is conditioned on the estimated change 
points, rl(m) . . . .  , rkm-l(m), rl(V) . . . . .  -Tkv_l(v)), where K m and K v are the total number 
of change points for the mean and for the variance, respectively. Thus, the parameter set of 
this model is Osm = (]Zl, I~Km ' a2,  2 . . . .  a~:). Conditional on the estimated change points, 
the maximum likelihood estimate (MLE) of #k is the sample mean ~k) calculated by using 
observations from t = ~_l(rn) + 1 to t = ~k(rn), and the MLE of a~ is also the sample 
variance ( ~ )  calculated by using observations from t = rk-l(V) + 1 to t = ~k(v). Let #t 
and a 2 be the mean and variance of a stock return at a specific time t, Rt. Then the MLE 
of #t, /~t, equals /2 k for t E [~k-l(m) + 1, ~k(m)], and the MLE of aT, 32, equals 3k 2 for 
t E [rk-a(V) + 1, rk(v)]. Therefore, the maximum likelihood value of Om is calculated by 

L(()sm[R)  = (27r) -r/2 I - [  ~2)-1/2 exp 1 
, = ,  - - 
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Table 6. Poisson jump diffusion process estimators. 

I.D. I.D. 
No. /t(×10 3) 0"2(X10 3) ,uj(x 10 3) a~(×10 3) X No. g ( x l 0  3) tr2(xl0 3) /zd(X10 3) aj2(X10 3) ~k 

1 0.2924 0.1873 -2.0929 5.6731 0.0379 18 -0.3443 0.1470 3.7928 0.5004 0.2432 
(0.93) (4.21) ( -  1.54) (1.98) (5.21) ( -  1.55) (1.39) (1.90) (4.90) (3.11) 

2 0.7151 0.3225 -0.4481 0.0031 0.2346 19 0.2664 0.1936 3.3957 0.8551 0.2450 
(1.32) (2.09) (-1.81) (1.90) (3.21) (0.90) (2.54) (2.11) (3.46) (1.67) 

3 -0.1079 0.2195 3.3885 0.7402 0.2375 20 -0.2407 0.1173 3.9562 0.4682 0.2351 
(-0.78) (2.12) (2.67) (6.32) (4.66) (-0.540) (1.39) (1.59) (4.19) (2.56) 

4 -0.6991 0.0330 1.8206 0.1570 0.6211 21 N.C. N.C. N.C. N.C. N.C. 
(-1.09) (3.44) (0.87) (4.20) (2.00) (N.C.) (N.C.) (N.C.) (N.C.) (N.C.) 

5 -1.0838 0.1693 5.3333 0.8495 0.2687 22 -0.0889 0.1025 2.6066 0.3786 0.2406 
(-2.31) (12.09) (2.45) (1.09) (2.43) (-0.06) (1.23) (1.09) (2.45) (3.17) 

6 N.C. N.C. N.C. N.C. N.C. 23 0.2679 0.1296 2.9745 0.4454 0.2461 
(N.C.) (N.C.) (N.C.) (N.C.) (N.C.) (0.93) (2.05) (1.67) (4.55) (2.32) 

7 0.1818 0.1303 1.3059 0.5399 0.2568 24 -0.1758 0.0547 1.4651 0.1999 0.5061 
(0.98) (1.09) (0.67) (2.01) (3.55) (-1.02) (1.00) (0.56) (1.34) (4.56) 

8 -0.2733 0.0663 1.2727 0.2436 0.7023 25 -0.5564 0.0787 2.0060 0.3076 0.4611 
(-0.70) (0.23) (1.34) (3.54) (5.21) (-1.54) (0.90) (1.43) (3.20) (2.78) 

9 0.1633 0.1028 2.4842 0.4794 0.2409 26 -0.0464 0.1047 2.5488 0.5239 0.2333 
(0.88) (2.44) (2.04) (2.60) (1.87) (-0.06) (1.76) (1.22) (4.29) (2.40) 

10 -0.0044 0.2054 4.2768 0.8428 0.2494 27 -0.7411 0.1019 3.5945 0.4403 0.3369 
(-0.12) (3.44) (2.08) (1.98) (1.30) ( -1 .78)  (2.10) (1.45) (4.32) (3.20) 

11 -0.8712 0.0611 1.9698 0.1981 0.6632 28 -0.6680 0.1184 2.1099 0.3123 0.6251 
( -  1.87) (0.59) (1.56) (1.430) (4.65) ( -  1.32) (3.43) (0.98) (3.21) (5.09) 

12 -0.2668 0.1268 3.3490 0.4774 0.2356 29 -0.4779 0.1664 0.4644 0.7038 0.2596 
(-1.33) (2.11) (2.23) (1.60) (0.71) (-0.93)  (2.78) (1.090) (5.21) (3.78) 

13 0.3448 0.0837 1.3184 0.2923 0.2317 30 -1.4069 0.0978 3.4134 0.3290 0.5968 
(1.54) (0.49) (1.86) (3.48) (1.95) ( -1 .89)  (2.13) (1.09) (3.21) (4.38) 

14 0.0063 0.1098 2.3425 0.3993 0.2384 S&P 0.2804 0.0360 0.1011 0.1615 0.2295 
(0.10) (1.76) (1.66) (3.25) (2.09) (2.90) (1.87) (2.90) (1.56) (3.45) 

15 -0.1989 0.1064 2.7624 0.3767 0.2387 EW 1.2644 0.0223 -2.2028 0.1389 0.2490 
(-1.20) (1.90) (2.03) (4.19) (1.45) (4.59) (2.33) (-3.29)  (4.56) (3.29) 

16 -0.5533 0.1497 4.1086 0.5473 0.2405 VW 0.5680 0.0332 -0.5222 0.1590 0.2069 
( -  1.98) (1.22) (1.90) (4.90) (2.44) (2.78) (1.98) (-3.59)  (4.21) (2.21) 

17 -0.1252 0.1019 2.4903 0.3048 0.2545 
(-0.490) (1.42) (1.09) (4.02) (2.65) 

Note: N.C. indicates no convergence. 

Table 7 provides the number of change points that were estimated for each stock and index 
time-series at the 1% significance level. The large number of change points for the variance 
in each time series indicates that the sequential mixture model of normal distributions is 
also consistent with the observed kurtosis in table 1. 

There is no general rule for the comparison of number of change points detected and 
portfolio size. The fact that there are more change points detected for the variance of the 
equally weighted index than change points for the variance of individual securities is con- 
sistent with nonsynchronous calendar changes across securities. For example, if two stocks 
had one change point (two regimes) each at different dates, then a portfolio of these two 
stocks will have two change points (three regimes). Thus, the process of aggregation may 
result in a portfolio with more nonstationarity of variance over time than their components 
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Table 7. Number of detected change points by the HPD interval test on the mean and 
variance of dally stock returns at the 1% significance level. 

I.D. No. No. of Mean Change Points No. of Variance Change Points 

1 1 15 
2 5 65 
3 0 26 
4 1 80 
5 2 72 
6 5 64 
7 5 81 
8 2 79 
9 1 61 

10 9 65 
11 5 83 
12 1 66 
13 1 67 
14 2 71 
15 0 55 
16 3 69 
17 2 65 
18 3 81 
19 4 47 
20 4 57 
21 4 71 
22 1 62 
23 6 81 
24 3 65 
25 2 71 
26 2 81 
27 2 76 
28 4 69 
29 5 86 
30 0 68 
31 10 73 
32 67 97 
33 12 78 

(individual stocks), s Aggregation may also result in detecting fewer change points if the 

changes of component variances are offsetting or if the investment weights create a zero 
market beta portfolio. Cross-sectionally, we expect to observe synchronous changes in the 
market component of variance as well as nonsynchronous changes in the firm-specific com- 
ponent of variance. 

More change points for the mean of the index than change points for the mean of individ- 

ual securities is also due to the sensitivity of the test to the magnitude of the variance param- 
eter. That is, if  variance is small, the change in the mean can be relatively easily detected. 
However, if variance is large for the same magnitude of change in the mean, the change 
in the mean is hard to detect. It is well known that the variance of portfolios (indexes) is 

much smaller than that of individual securities (i.e., see table 1). 
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Figure 1. Sequential mixture variances for the S&P 500. 

Figure I displays the sequential mixture variance estimates for the S&P 500 stock index. 
The results are consistent with our intuition. Without a priori knowledge, regimes with high 
variance estimates include the Cuban missile crisis, the assassination of President John F. 
Kennedy, the invasion of Cambodia, President Nixon's resignation, the stock market crash 
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Figure 1. Continued. 
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Figure 1. Continued. 

of October 19, 1987, the minicrash of October 13, 1989, and the Iraqi invasion of Kuwait. 
The procedure appears to be capable of detecting the major market volatility changes. 

The logical next step is to determine which of these alternatwes represents the best descrip- 
tion of daily stock returns. 

4. Model of stock returns--A comparison 

The log-likelihood ratios of each competing model, against the stationary normal distribu- 
tion model, are presented in table 8 for daily return data from July 2, 1962 to December 
31, 1990. Note that all of the log-likelihood ratios in table 8 are positive. Therefore, each 
competing model might have some ability to capture the observed kurtosis in the uncondi- 
tional distribution of stock returns. The quarterly partition is offered as the most likely of 
the partitions of the data from table 2. For 29 of the 30 stocks and all three indexes, the 
quarterly partition log-likelihoods are greater than the Student t, Poisson jump process, 
and the generalized mixture of normals alternatives. The log-likelihood dominance of the 
sequential mixture indicates that estimating sequential change points for parameter shifts 
may be superior to the assumption that parameter shifts can take place only at the beginning 
of each quarter. For the 281/2-year time period, the quarterly partition represents 113 change 
points. The number of change points in table 7 for the sequential mixture model is con- 
siderably less for each stock and index. 

The competing models in this study are not only nonnested, but also contain very dif- 
ferent numbers of process parameters. Higher-order models have more process parameters 
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Table & Log-likelihood ratio of each model against the normal distribution model with daily returns from July 2, 
1962 to December 31, 1990. 

Firm's Student Poisson Two Three Four Five Quarterly 
I.D. No. SM t Jump Normals Normals Normals Normals Partition 

1 488.86 376.56 353.88 309.25 315.88 327.77 334.04 362.32 
2 765.49 387.25 290.87 347.38 400.46 412.58 417.37 626.01 

3 422.21 239.48 220.12 211.63 250.96 N.C. 256.17 364.14 
4 1,573.27 778.85 772.93 714.55 816.25 830.01 N.C. 1,250.30 
5 1,286.78 764.21 738.28 703.82 784.67 798.82 N.C. 1,053.08 

6 700.33 353.07 N.C. 351.71 384.04 N.C. 391.24 591.36 
7 835.24 514.59 491.72 470.89 516.28 525.62 N.C. 628.61 
8 1,043.28 447.74 450.12 433.92 462.86 N.C. N.C. 847.17 
9 1,110.31 681.53 650.70 616.79 682.08 N.C. N.C. 957.76 

10 959.01 529.89 505.09 476.97 548.93 N.C. N.C. 830.30 

11 943.16 399.26 411.15 379.79 426.01 434.10 442.70 759.20 
12 1,115.79 642.29 602.59 556.13 N.C. N.C. 571.72 943.88 
13 971.22 524.59 486.63 454.19 N.C. N.C. N.C. 819.57 
14 889.66 386.51 378.75 366.23 389.15 397.33 398.19 776.99 
15 893.96 443.05 442.57 395.29 450.51 459.35 459.77 754.46 

16 897.32 489.58 479.55 410.57 435.46 N.C. 512.68 705.48 
17 852.45 396.63 378.20 350.78 N.C. N.C. N.C. 700.43 
18 792.41 436.11 418.03 355.36 449.35 N.C. N.C. 583.33 
19 960.44 473.70 460.51 451.91 476.76 482.22 483.87 864.16 
20 970.58 616.96 581.09 587.22 591.01 N.C. N.C. 835.60 

21 569.54 268.79 N.C. 251.11 N.C. 288.00 N.C. 435.36 
22 830.93 497.73 470.54 461.15 506.92 N.C. N.C. 725.91 
23 730.53 321.88 317.22 N.C. 337.40 344.50 345.58 567.92 
24 1,169.54 730.73 690.64 682.48 683.38 N.C. 719.63 1,039.25 
25 1,150.96 623.50 605.41 530.30 623.60 644.54 645.20 955.63 

26 1,343.61 637.12 607.05 N.C. 646.93 650.29 N.C. 1,095.74 
27 1,241.33 680.66 655.95 628.78 694.98 708.43 711.56 1,008.84 
28 668.19 307.63 307.75 294.73 321.71 325.94 N.C. 539.22 
29 1,062.11 707.20 673.61 580.63 719.07 728.94 N.C. 805.29 
30 745.42 453.66 471.08 430.94 488.59 N.C. 496.69 627.24 

S&P 1,591.49 740.26 681.34 676.95 730.07 N.C. N.C. 1,367.46 
EW 2,171.17 1,013.48 978.45 927.19 1,032.95 1,047.28 1,048.25 1,600.39 
VW 1,569.97 719.63 659.69 656.92 694.24 696.89 N.C. 1,326.88 

Note: N.C. indicates no convergence. 

lSequentiai inlxture of normal distributions. 

a n d  may  have  h i g h e r  l i ke l ihood  func t i on  values  so le ly  due  to g rea te r  d i m e n s i o n .  In  o rde r  

to con t ro l  for  this  po ten t i a l  se lec t ion  bias ,  we ca lcu la te  the  Schwarz  (1978)  cr i te r ion .  Th i s  

c r i t e r ion  p rov ides  g u i d a n c e  for  se lec t ing  a m o d e l  f r o m  a n u m b e r  of  m o d e l s  wi th  d i f fe rent  

p a r a m e t e r  space  by f ind ing  its large  sample  Bayes ian  so lu t ion .  The  Schwarz  c r i t e r ion  is 

def ined  as 
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1 
SC = log(maximum likelihood) - ~ p log(T), 

where p is the number of estimated parameters. In the large sample limit the leading term 
in the Bayesian solution is the maximum likelihood estimator. The latter term in the Schwarz 
criterion represents the penalty for models of higher dimension (p). Thus, choose as most 
likely the model with the greatest SC value. 

Table 9 contains the SC value of each competing model relative to the stationary normal 
distribution alternative. These are the asymptotic log posterior odds of each model relative 
to the independently and identically normally distributed alternative. It is quite striking 
to see that the quarterly partition alternative has negative relative SC values for 22 of 30 
stocks. Clearly, the penalty for the increased number of parameters more than offsets any 
benefit of additional model fitting of the data. This evidence strongly contradicts the results 
of the log-likelihood ratios alone. Rather than ranking second best in table 8, the relative 
SC values in table 9 indicate that the quarterly partition actually ranks last among the com- 
peting models. 

The sequential mixture of normal distributions model, however, has the highest relative 
SC values of all alternatives for 25 of the 30 stocks and all three indexes. It is evident that 
the descriptive value of this high dimension model is worthwhile. Hence, the benefit must 
come from the precise estimation of the change points for parameter nonstationarity. 

It is also interesting to note that the Student t model ranks second in the sample of relative 
SC values. This model has the highest value for four stocks and is second highest for 22 
of the 30 stocks and all three indexes. With only three parameters in the Student t model, 
the generalized mixture of normal distributions alternatives did not have enough additional 
descriptive ability in table 8 to offset the required increase in the number (3L - 1) of pa- 
rameters accounted for by the Schwarz criterion in table 9. 

In sum, the sequential mixture of normal distributions model is the most likely alterna- 
tive for the distribution of stock returns followed by the Student t, the generalized mixture 
of normal distributions, the Poisson jump process, the stationary normal, and the quar- 
terly partition. 

5. Summary of the results and implications 

Previous mixture of independent normal distributions models in the literature that attempt 
to explain the observed kurtosis and skewness in dally stock return data require computa- 
tionally intensive search procedures and do not identify observations with the parameters 
of their respective distributions. The sequential (or time-ordered) mixture of normal distribu- 
tions model spefication put forth in this paper contains the constraint that there be at least 
two consecutive observations from the same distribution. With this minimal time-ordered 
structure, Kim's (1991) Bayesian estimation procedure provides computational simplicity 
and the direct estimation of change points for parameter nonstationarity. The methodology 
was applied to daily return data on each of the 30 stocks in the Dow Jones Industrial Aver- 
age, the Standard & Poors 500 stock index, and the CRSP equal-weighted and CRSP value- 
weighted indexes. The results indicate that the sequential mixture specification has substan- 
tially more descriptive ability than all of the competing alternatives. 
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Table 9. Asymptotic log posterior odds of each model relative to the i.i.d, normal distribution model with daily 
returns from July 2, 1962 to December 31, 1990. 

Firm's Student Poisson Two Three Four Five Quarterly 
I.D. No. SM 1 t Jump Normals Normals Normals Normals Partition 

1 391.32 372.96 343.09 298.46 294.31 295.41 290.89 218.49 
2 454.78 382.81 277.56 334.06 373.83 372.63 364.11 -377.11 
3 316.34 235.41 207.90 199.41 226.53 N.C. 207.31 -75.61 
4 1,213.75 774.41 759.61 701.23 789.62 790.06 N.C. 247.19 
5 958.32 759.77 724.96 690.50 758.04 758.87 N.C. 49.96 

6 394.06 348.63 N.C. 338.39 357.41 N.C. 337,98 -411.77 
7 453.52 510.15 478.40 457.57 489.65 485.67 N.C. -374.52 
8 683.75 443.30 436.80 420.60 436.23 N.C. N.C. -155.96 
9 835.12 677.09 637.38 603.47 655.45 N.C. N.C. -46.77 

10 630.55 525.45 491.77 463.65 522.30 N.C. N.C. -172.82 

11 552.57 394.82 397.83 366.47 399.38 394.15 389.44 -243.91 
12 818.41 637.85 589.27 542.81 N.C. N.C. 518.46 -59.24 
13 669.40 520.15 473.31 440.87 N.C. N.C. N.C. -183.56 
14 565.64 382.07 365.43 352.91 362.52 357.38 344.93 -226.14 
15 649.84 438.61 409.25 381.97 423.88 419.40 406.51 -248.65 

16 577.74 485.14 466.23 397.25 408.83 N.C. 459.42 -297.64 
17 555.08 392.19 364.88 337.46 N.C. N.C. N.C. -302.65 
18 419.56 431.67 404,71 342.04 422.72 N.C. N.C. -419.80 
19 737.94 469.34 447.42 438.82 450.58 442.96 431.52 17.79 
20 707.92 612.65 568.17 574.30 565.18 N.C. N.C. 95.00 

21 236.64 264.35 N.C. 238.79 N.C. 248.05 N.C. -467.77 
22 551.29 493.29 457.22 447.83 480.29 N.C. N.C. -278.62 
23 344.37 317.44 303.90 N.C. 310.77 304.55 292.32 -436.61 
24 867.72 726.29 677.32 669.16 656,75 N.C. 666.37 36.12 
25 826.94 619.06 592.09 516.98 596.97 604.59 591.94 -47.50 

26 975.21 632.68 593.73 N.C. 620.30 610.34 N.C. 92.63 
27 895.12 676.22 642.63 615.46 668.35 668.48 658.30 5.71 
28 344.18 303.19 294.43 281.41 295.08 285.99 N.C. -463.87 
29 658.20 702.76 660.29 567.31 692.44 688.99 N.C. -197.84 
30 443.50 449.22 457.76 417.62 461.96 N.C. 443.43 -375.89 

S&P 1,223.08 735.82 668.02 663.63 703.44 N.C. N.C. 364.34 
EW 1,443.23 1,009.04 965.13 913.87 1,006.32 1,007.33 994.99 597.26 
VW 1,170.49 715.19 646.37 643.60 667.61 656.94 N.C. 323.75 

Note: N.C. indicates no convergence. 

1Sequential mixture of normal distributions. 

Note  tha t  the  sequen t ia l  m i x t u r e  of  n o r m a l  d i s t r ibu t ions  m o d e l  es t imates  p a r a m e t e r  shi f t  

dates  w i t h o u t  a p r io r i  k n o w l e d g e  o f  event  dates .  Th i s  m e t h o d o l o g y  m a y  b e  pa r t i cu la r ly  

useful  in  secur i ty  p r i ce  p e r f o r m a n c e  tests. T he  e s t ima ted  c h a n g e  poin ts  ref lec t  i n fo rma t ion  

events.  This  is i m p o r t a n t  in  cap tu r ing  the  effects o f  mul t ip le  a n n o u n c e m e n t s ,  i n f o r m a t i o n  
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leakage, and price revelations from informed traders. These problems arise in a merger 
or acquisition bidding contest or when measuring the effect of tax or regulatory policy 
changes. Furthermore, if  the information also results in a change in equilibrium expected 
returns, tests of abnormal performance require the estimates of the true mean and variance 
for each day surrounding the event to construct appropriate inferences. 

The sequential mixture model may also be useful for option valuation. The Black and 
Scholes (1973) European option pricing model tends to exhibit a systematic bias when em- 
ployed to value American call options. In particular, Geske and Roll (1984) suggest that 
the variance bias in Black and Scholes (1972) could be attributed to nonstationary stock 
volatility. Merton (1976a, 1976b) derives an option pricing model based on a Poisson jump- 
diffusion process. Although Ball and Torous (1985) confirmed the presence of jumps in 
security returns, they did not fiond any operationally significant differences between the 
Black-Scholes and Merton model call option prices. In this paper, we provide evidence 
that the sequential mixture model is considerably more descriptive of the actual distribution 
of stock returns than the jump-diffusion process. Therefore, additional research is required 
to determine whether an estimate of the standard deviation from the current regime of the 
sequential mixture model results in unbiased Black-Scholes option prices. 
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Appendix 

A.1. Derivation o f  the jo in t  posterior distribution o f  change points 

The likelihood function of the sequential mixture of normal distributions model specifica- 
tion is 

L(OIR) = (27r) -r/2 1-Ii=l " ~' ,)/z exp ~ '= ' i -1  +1 (R t - -  /./,i)2)) , 

where r i = 1/a 2, i = 1, . . . ,  K, and R = ( n l ,  . . . ,  RT) is an observed sotck return vec- 
tor. Without loss of generality, we assume ro = 0 and r/~ = T. 

The prior distribution of 0 = (/~1 . . . . .  /zK, ~2, . . . ,  ~2, rl ' . . . ,  < K-l) is 

It(O) o~ lr('~) 
rl r2 . . .  rl¢ ' 
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where xI, = (rl . . . .  , ? ' K - l )  and 7r0I,) is a joint prior distribution of change points. The 
notation ¢c means proportional to. Then, the posterior distribution of O becomes 

- -  - . 7r(OlR) o~ 7r('I') IXi=I (r, ~ ,)/2 1 exp ~ ' = r i - l + l  (A1) 

By using a gamma pdf and a normal pdf, the joint posterior distribution of the change 
points is obtained by integrating out equation (A1) with respect to (/z I . . . . .  /zK, al . . . . .  
tr/c ) to yield 

2 • "/l'(xXr JR) oc ~(~I.t) Hi=I i i F(i 7"i-Ti-l)/2-1 exp - ~t=~ri_l+l 

7r('t~) H I" i --  T i_ l )  -1/2 r 
i=1 2 t=ri_l +l 

"~'i-- ri-1 --1/2 ") 

(A2) 

By setting K = 2, we obtain the posterior distribution of 7" of equation (2). 

A.2. Derivation of the posterior distribution of 6 = ~1 - ~2 and p = o21o 2 

By using the conditionality, the unconditional posterior distribution of 6 is defined as 

Likewise, the unconditional posterior distribution of 0 is also defined as follows; 

r(p JR) = ~ r(p 17., R)r ( r  ]R). (A4) 
T 

Therefore, we need to obtain the conditional posterior distributions of 6 and p for their 
unconditional distributions. 

The joint posterior distribution of 6, P, and r is given by 

7r(r, 6, pIR) = f f 71"2(7" , 6 "]- //'2, /'/'2, Pr2, r2lR) ]rzl dr2d#2, (A5) 
Jg 2 "P2 

where r2 is the functional form of equation (A1) when K = 2. More precisely, the func- 
tional for r2(') is 
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r 2 ( r ,  6 + /42, /42, Pr2, r21R) o¢ z(r) p'fl2-2rT/2-1 exp  

where 

~ ----~-d [Rt - (6 Jr /./,2)] 2 , l~2 = ~-d (Rt - /42) 2. 
t= l  t=~'+l 

r2 ~)) - ~ (P#7 + ~ , 

Now by using an inverted gamma pdf, we simplify the interior integration part of equation 
(A5) as follows: 

fr2 ~Z(~, 6 + /42, /4Z, Pr2, r=lg) Ir2l dr2 = 7r(r)pT/2-1V(n/2)(Pfla + /3~) -"/2. 

Then, the joint posterior distribution of r, 6, and p is given by 

~r(r, 6, plR) ~ rc(r)p¢/Z-lr(nl2) f~z (pB[ + 132)-"/2 d/42 

oc 7 r ( r ) p n l / 2 - 1 F [ ( n  - 1)/2](pnl + n2) - l / 2 (pS1  + $2) -(n-l)/2 

Pnl n2 
4- (PSi -F S2)(Pn 1 4- n2) [6 - (/~1 - g2)] , (A6)  

where nl = r,  n 2 = n - r ,  S1 = C~=I(Rt - R1) 2, and $2 = ~t~=7+l(Rt - / ~ 2 )  2. Note that 
all constants with respect to r,  6, and p are dropped. 

By transforming p '  = P { S J ( n l  - 1 ) } / {$2 / ( n2  - 1)} = p ( ~ 2 / ~ 2 ) ,  t he  joint posterior 
distribution of  6, P, and r in equation (A6) becomes decomposed as follows: 

7r(r, 6, plR) ocT"(7")'r-l/2(n-r)-l/2r Qr----~--2 1~ F ~ n - r -  

r ( ( r  - l ) - ~ ( f i - )  - 1 ) / 2 )  n - r - 1 ~ ° ' ) ( ' - ~ / 2 - ~  

- 7r(rlR) 7r(p ' l r ,  R)  a '(6lp, P, R). 

Therefore, the conditional posterior distribution of ~_ given p and r,  7r(61 r, p ,  R ), is the 
Student t distribution with location parameter g = R1 - RE, scale parameter (pSI + $2) 
(pr + n - r)/[(n - 2)pr(n - r)], and (n - 2) debgrees of freedom, and the conditional 
posterior distribution o fp  given r, a-(p'l z, R),  is an F distribution with (r - 1, n - r - 1) 
degrees of freedom. The posterior distribution of r is defined in equation (2). 
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A.3. HPD interval test f o r  8 = 0 and  p = 1 

The conditional p-value for H01 given p and r is defmed as 

P~=01p,7 = Eel[r(8 [P, r, R)], 

where E~ [r(.)] indicates the area of a posterior pdf r( ' )  over the region C~, and C~ is the 
compliment of C~. C~ is the (1 - a) credible set (i.e., the HPD interval) of ~ defined as 

C b = {8 : 71"~x/2(Slp , T, R )  ~ 8 -< 71"l_cd2(8[p, T, R ) } ,  

where 7r~/2(8 [.) is the od2th quantile of the posterior distribution of 8, a'(8 ].). Therefore, 
the unconditional p-value for H01 is defined as 

where 

=~__~T (f2(1 -- ~Jn-2([t(O)[))Tr(P[T,e)l~" "Ir(TIR), 

8 -- (R1 -- R2) 
t(6) = (PS t  + S2)(p~" + n - r)/[(n - 2)pT(n - ~')]" 

(A7) 

In fact, when ~ = 0 and p = 1, the statistic t(0) is the standard t-test statistic with (n - 2) 
degrees of freedom for the null hypothesis that two means are equal assuming the same 
variance. Basically, 2(1 - 5n-2(1 frO)l)) in equation (A7) is the p-value for the null H01 by 
the t-test given the ratio of two variances, p, and r. That is, it equals P*=01p,7- Based on 
Box and Tiao (1973), the inside bracket of equation (A7) can be approximated as the stan- 
dard Student t-test and we obtain the approximate unconditional p-value of equation (1). 

Likewise, the unconditional p-value for the null//02 is defined as follows: 

Po=l = ~ E¢[Tr(p[r, R)l~r(r [R) 
T 

= Z  2{1 - T¢_I,n_r_I(F(1)) } 7r(TIR). 
T 

Notes 

1. Additional evidence inconsistent with the stable Paretian hypothesis can be found in Hagerman (1978), Akgiray 
and Booth (1988), Lau et al. (1990), and Tucker (1992). 
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2. For some evidence, see Officer (1972), Boness et al. (1974), Hsu et al. (1974), Beaver (1968), Patell and 
Wolfson (1981), Christie (1982), Conrad and Kaul (1988) and Bodurtha and Mark (1991). 

3. The weakness of a day-of-the-weak effect in daily data is also supported by Connolly (1989) and Akgiray (1989). 
4. A posteriori means after classification of observations into each regime, while a prior means before classifica- 

tion of observations. The generalized normal mixture model has one probability density function. The classifica- 
tion of observations into each population is not part of the estimation procedure. If both the generalized discrete 
mixture and its classification praoblem are considered together, this posterior version would contain the se- 
quential mixture of normal distributions model as a subset. 

5. See DeGroot (1970) for further explanation about the generalized maximum likelihood estimator. 
6. The HPD interval is defined as follows: Let r(01 data) be a posterior density function of 0. A region C in 

the parameter space of 0 is called an HPD interval of content (1 - c0 if Pr{0 E C I data} = 1 - ct and, for 
01 E C and 02 ~ C, lr(011 data) _> 7r(021 data). The HPD interval test is different from the traditional Bayes 
testing procedure carried out within a posterior odds framework. The typical Bayes test presumes that the 
null value of a target parameter is believed to be stronger than any other value near the null value, a presump- 
tion which is sometimes true, but in many applications unsupported. Lindley (1965) suggests a Bayesian sig- 
nificance test by the HPD interval and emphasizes that this type of significance test is appropriate only for 
circumstances in which prior knowledge of the target parameter is vague or diffuse, and one of the hypotheses 
is a single point. This method is similar to the sampling theory approach of rejecting a null hypothesis when 
the hypothesized value for a parameter falls outside a confidence interval. The confidence interval corresponds 
to the HPD interval in the HPD interval test. If the posterior distribution of a target parameter is concentrated 
on the hypothesized value of the parameter, then it is hard to reject the null hypothesis. 

7. Although the HPD interval test is similar to the sampling theoretic approach, the concept and results are dif- 
ferent. Kim (1991) shows that the HPD interval test for stationarity of regression parameters outperforms in 
power the conventional non-Bayesian techniques such as the cusum and cusum of squares tests, even if the 
diffuse prior is used. 

8. With our assumption of conditional (on t) multivariate normality, portfolios are stable under addition. That 
is, linear combinations of normally distributed stock returns are also normally distributed. 
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