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Role of the Polymorphonuclear Leukocyte: Interaction with Nosocomial 
Pathogens 

Advances in our understanding of the role of neu- 
trophils in lung defense have occurred in several 
cycles over the past century. By the turn of the cen- 
tury, the concept of an antibacterial defense mech- 
anism intrinsic to the lung was well established. Al- 
though it was recognized by the early 1900s that 
polymorphonuclear leukocytes were prominent pha- 
gocytes in the lungs of persons dying of bacterial 
pneumonia, these cells were widely believed to play 
no role in the eradication of most bacterial chal- 
lenges. The pulmonary antibacterial defenses were 
believed to be dependent on large, phagocytic mono- 
nuclear cells recruited to the air spaces from alveolar 
walls in response to bacteria. The phagocytic activity 
of mononuctear cells was believed to be sufficient 
for most challenges; circulating leukocytes were in- 
volved only when mononuclear cells were unable to 
handle the challenge (1). 

Phagocytic Cells Involved in Pulmonary Bacterial 
Clearance 

The concept of a pulmonary defense mechanism 
against bacteria was extended in a series of elegant 
studies on the histogenesis of pneumonia (2-11). 
While quantitative bacteriologic methods were not 
utilized in these studies, large numbers of poly- 
morphonuclear leukocytes were demonstrated in 
alveolar spaces 1.5 hours after bacterial inoculation. 
The importance of these polymorphonuctear teuko- 
cytes in lung defense against bacteria was suggested 
by photomicrographs showing free polymorpho- 
nuclear leukocytes phagocytosing organisms in al- 
veolar spaces (10, 11). With the development of 
quantitative aerosol inoculation techniques, it became 
possible to study the ability of the lung to clear bac- 
teria over time (12-14). Aerosolized Staphylococcus 
aureus (5 x 104) did not evoke a polymorphonuclear 
leukocyte response. All intracellular organisms identi- 
fied by Iight microscopy within 4 hours of inocuIa- 
tion were found inside alveolar macrophages (13, 15). 
Similar results were reported for Proteus rnirabilis 
(13). These investigations concluded that the alveolar 
macrophage was the principle defender of the lung 
against bacteria. 

The first observation that aerosol inoculation of bac- 
teria could result in a polymorphonuclear leukocyte 
response was made in experiments in which ap- 
proximately 8 x 104 Pseudomonas aeruginosa were 

inoculated into the lung (16). The phagocytic response 
has subsequently been quantified in studies using 
both histological and bronchoalveolar lavage techni- 
ques (17, 18). While polymorphonuclear leukocytes 
played no role in the pulmonary clearance of inocula 
of up to 4 x 106 Staphylococcus aureus, aerosols of 
gram-negative bacteria elicited an impressive poty- 
morphonuclear leukocyte inflammatory response in 
bronchi and alveoli. An additional determinate of a 
polymorphonuclear leukocyte response was the ino- 
cuium size (18, 19). Following aerosol and bolus 
inoculation, both bacterial clearance and the magni- 
tude of the polymorphonuclear leukocyte response 
were related to the number of bacteria deposited in 
the lung. Thus, the generation of a polymorpho- 
nuclear leukocyte response following bacterial in- 
oculation was dependent on the bacterial species 
and the inoculum size. These studies indicated that 
both alveolar macrophages and polymorphonuclear 
leukocytes were involved in lung defense against 
pathogenic organisms. The relative importance of 
each phagocyte was uncertain. The functional signi- 
ficance of the recruited polymorphonuclear leuko- 
cytes was demonstrated by selective depletion of 
polymorphonuclear teukocytes. Neutropenic animals 
cleared inocuia of Streptococcus pneumoniae, Pseu- 
domonas aeruginosa, Klebsiella pneumoniae and 
Haemophilus influenzae (20-22). Neutropenic ani. 
reals could not clear gram-negative organisms, even in 
the presence of antibiotics (20). 

These observations demonstrate that a dual phago- 
cytic system is involved in pulmonary antibacterial 
responses. While alveolar macrophages can clear cer- 
tain inocula of bacteria, an inflammatory response is 
usually generated by pathogenic organisms. Following 
an inoculation with virulent organisms, polymorpho- 
nuclear leukocytes recruited from the circulation 
are required for effective clearance of the organisms. 
Thus, the ability to rapidly recruit polymorpho- 
nuclear leukocytes into the pulmonary parenchyma 
represents a major component of the early defense 
against most bacteria. 

Recruitment of Polymorphonudear Leukoeytes 

Polymorphonuclear leukocytes are rare in the air 
spaces of normal lungs (23) and represent less than 
2% of the cells present in normal bronchoalveolar 
lavage fluid. It is likely that the presence of bacteria 
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in alveolar spaces triggers the generation of chemo- 
tactic factors, which are responsible for polymorpho. 
nuclear leukocyte accumulation in the lung within 
the air spaces or the interstitium of the lung. Chemo- 
tactic activity has been demonstrated in broncho- 
alveolar lavage fluids following intrapulmonary in- 
oculation of both gram-positive and gram.negative 
organisms (22, 24, 25). Increases in chemotactic activi. 
ty preceded the accumulation of polymorphonuclear 
leukocytes. Furthermore, the number of polymor. 
phonuclear leukocytes and the amount of ehemo- 
tactic activity in bronchoaiveolar lavage fluids could 
be correlated. Thus, the generation of chemotactic 
factors in the pulmonary air spaces appears to mediate 
the rapid recruitment of polymorphonuclear leuko- 
cytes. 

Potential chemotactic factors are shown in Table 1. 
The role of the complement system in polymorpho. 
nuclear leukocyte recruitment has been evaluated 
using congenic C5 sufficient (C5 +) and C5 deficient 
(C5-) mice, which differ only at the locus that de. 
termines the presence or absence of the C5 molecule 
(26). Products of the C5 molecule have been shown 
to be important in polymorphonuclear leukocyte 
recn~tment in murine lungs following inoculation 
with gram-positive and gram-negative bacteria (27, 
28). The mechanism responsible for cleavage of C5 
in the lung is unknown. Bacteria might generate C5 
fragment by activation of an alternative pathway. 
Alternatively, proteinases derived from alveolar 
macrophages or neutrophil granules might cleave C5 
without activation of the remainder of the comple- 
ment pathway (29, 30). 

Chemotaxins other than C5 fragments have also been 
demonstrated to be important in polymorphonuclear 
leukocyte recruitment following bacterial challenge. 
No differences in polymorphonuclear leukocyte 
recruitment were found in C5 + and C5- mice follow- 

Table 1 : Potential chemotactic factors involved in neutrophil 
recruitment. 

Complement pathway 
C5A, C5A des Arg 

Fibrinolytic/kinin pathway 
kallikrein 
plasminogen activator 

Macrophages 
AMCFN 
5-HETE 
1 I-HETE 
leukotriene B4 
platelet activating factor 

Granuloeyte products 
cell-derived, stable 
conversion of C5 to C5a 

Products of bacterial growth 

ing inoculation of 10 6 o r  107 Staphylococcus aureus 
(25). Additionally, following gram-negative bacterial 
challenge C5-mice generated significant but delayed 
polymorphonuclear leukocyte responses that were 
associated with significant levels of chemotactic ac- 
tivity in bronchoalveolar lavage fluid (22, 28). The 
chemotaxin(s) involved in the recruitment of poly- 
morphonuclear leukocytes following challenge with 
Staphylococcus aureus probably include alveolar 
macrophage-derived chemotactic factor for neutro- 
phils activity (31, 32) and/or macrophage-generated 
products of the lipoxygenase pathway (33-36). 
Additionally, alveolar macrophages generate platelet- 
activating factor (37, 38) and plasminogen activator 
(39), which may function as chemotaxins. Secreted 
products from recruited polymorphonuclear leuko- 
cytes may also have important roles (40-43), parti- 
cularly in the later phases of the response. Finally, 
chemotaxins generated by bacteria might be also 
involved (44-46). 

In summary, recruitment of polymorphonuclear 
leukocytes following bacterial challenge to the lung 
involves multiple chemotaxins. The importance of 
these chemotaxins likely varies for differing bacterial 
species. Additionally, it is likely that more than one 
pathway is involved for any given bacterium. Comple- 
ment components are important in the initial 4 to 
6 hours of the response for most but not all bacteria. 
Chemotactic factors other than complement are 
present in the air spaces. These factors are important 
in the later (12-24h) phases of the response and are 
probably involved in the early responses as well. 

While the major components involved in the genera- 
tion of the inflammatory response are being identi- 
fied, large gaps in our knowledge exist. Little is 
known about the regulatory events that control 
cell.secreted chemotaxins. Further studies of the 
genetic regulation of these chemotactic factors as 
well as other amplifying and inhibiting factors are 
required. Additionally, the physical properties of 
chemotaxins have not been studied. Studies to 
assess lipid solubility, molecular size, charge and 
diffusability are needed. Until these studies are 
performed, it will be difficult to determine whether 
chemotactic factors can actually cross the alveolar 
epithelium and pulmonary interstitium and reach 
the circulation to attract inflammatory cells. 
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