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Abstract. Using non-relativistic effective theories, new next-to-next-to-leading order
(NNLO) QCD corrections to the total tt̄ production cross section at the Linear Collider
have been calculated recently. In this article the NNLO calculations of several groups
are compared and the remaining uncertainties are discussed. The theoretical prospects
for an accurate determination of top quark mass parameters are discussed in detail.
An outlook on possible future improvements is given.

PACS: not given

1 Introduction

Top–antitop quark pair production close to the threshold will provide an integral
part of the top quark physics program at the Linear Collider (LC). The theo-
retical interest in the top–antitop quark threshold arises from the fact that the
large top quark mass and width (Γt ≈ 1.5 GeV) lead to a suppression of non-
perturbative effects [1, 2, 3]. This makes perturbative methods a reliable tool to
describe the physics of non-relativistic tt̄ pairs, and allows for measurements of
top quark properties directly at the parton level. Due to the large top width the
total tt̄ production cross section line shape is a smooth function of the energy,
which rises rapidly at the point where the remnant of a toponium 1S resonance
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can be formed. From the energy where this increase occurs, the top quark mass
can be determined, whereas shape and height of the cross section near threshold
can be used to determine Γt, the coupling strength of top quarks to gluons and,
if the Higgs boson is not heavy, the top Yukawa coupling [4]. From differential
quantities, such as the top momentum distribution [5, 6], the forward–backward
asymmetry or certain leptonic distributions [7, 8], one can obtain measurements
of Γt, the top quark spin and possible anomalous couplings.

The measurements of the top quark mass and the total top quark width
from a threshold line shape scan are particularly interesting. In contrast to the
standard top mass determination method, which relies on the reconstruction of
the invariant mass of jets originating from a single top quark, the line shape
measurement has the advantage that only colour-singlet tt̄ events have to be
counted. Therefore, the effects of final state interactions are suppressed, and
systematic uncertainties in the top mass determination are small. For the total
top quark width only a few other ways to determine it directly are known.
Simulation studies, which also took into account the smearing of the c.m. energy
from beam effects, have shown that, for a total luminosity of 100 fb−1, statistical
and systematical experimental uncertainties in the top mass determination are
below 50 MeV [9]. The top quark width can be determined with experimental
uncertainties of better than 20% for given top quark mass and αs [10, 11, 12].

With this prospect in view it is obvious that a careful analysis and assess-
ment of theoretical uncertainties in the prediction of the total cross section is
mandatory, in order to determine whether the theoretical precision can meet
the experimental one. Within the last two years, considerable progress has been
achieved in higher order calculations of the total cross section. Using the con-
cept of effective field theories, calculations of NNLO QCD corrections to the total
cross section have been carried out by several groups: Hoang–Teubner [13, 14],
Melnikov–Yelkhovsky [15], Yakovlev [16], Beneke–Signer–Smirnov [17], Nagano–
Ota–Sumino [18] and Penin–Pivovarov [19]. In contrast to previous LO [20] and
NLO calculations [4, 5, 6, 7, 8, 21], the new results at NNLO do not rely on
potential models that need phenomenological input, but represent first-principle
QCD calculations. The results are not just some new higher order corrections,
but have led to a number of surprising and important insights. The NNLO cor-
rections to the location where the cross section rises and the height of the cross
section were found to be much larger than expected from the known NLO calcu-
lations. It was suggested that the large corrections to the location of the rise are
an artifact of the on-shell (pole) mass renormalisation [22]. Several authors real-
ized that the quark pole mass cannot be extracted with an uncertainty smaller
than O(ΛQCD) from non-relativistic heavy quark–antiquark systems [23, 22, 24].
New top quark mass definitions were subsequently employed to allow for a stable
extraction of the top quark mass parameter [17, 14]. The remaining uncertainties
in the normalisation of the cross section seem to jeopardise the measurements
of the top width, the top quark coupling to gluons, and the Higgs boson. The
results obtained by all groups are formally equivalent at the NNLO level. How-
ever, they differ in the use of the calculational methods and the intermediate
regularization prescriptions, and their treatments of higher order corrections.
Apart from analysing the theoretical uncertainties estimated from the result of
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one individual group, a comparison of the results obtained from the different
groups serves as an additional useful instrument to assess the theoretical uncer-
tainties. In this article the results for the NNLO QCD calculations for the total
cross section obtained by the individual groups are compared and an overview of
what has been achieved so far based on the results of all groups is given. As an
outline for possible future work, some remaining open questions are addressed.

The outline of this note is as follows: in Sec. 2 a brief introduction into the
technical issues relevant to the calculation of the total cross section at NNLO
is given, and some aspects of the effective field theory approach are reviewed.
In Sec. 3 the NNLO QCD calculations obtained by the different groups are
compared in the pole mass scheme. In Sec. 4 three alternative mass definitions
tested by Beneke–Signer–Smirnov, Hoang–Teubner and Melnikov–Yelkhovsky
are discussed. Section 5 contains a brief summary and mentions some issues
that should be addressed in the future.

2 Total Cross Section at NNLO and Effective Theory
Approach

For the total cross section close to the threshold, where the velocity v of the
top quarks is small, v � 1, the conventional perturbative expansion in the
strong coupling breaks down, owing to singular terms ∼ (αs/v)n that arise in
the n-loop amplitude. This singularity is caused by the instantaneous Coulomb
attraction between the top quarks, which cannot be treated as a perturbation
if their relative velocity is small. It is therefore mandatory to resum the terms
that are singular in v to all orders in αs. At LO in the non-relativistic expansion
of the total cross section, this amounts to resumming all terms proportional to
v(αs/v)n, n = 0, . . . ,∞. The most convenient tool to carry out this resummation
is the Schrödinger equation(

− ∇2

Mpole
t

− CF αs

|r| − (
√

q2 − 2Mpole
t )− iΓt

)
G(r, r′,

√
q2) =

δ(3)(r − r′) , (1)

where Mpole
t and Γt are the top quark pole mass and width, respectively. The

Schrödinger equation has the simple form shown in Eq. (1) only in the pole mass
scheme. The decay of the top quark is implemented by adding the term i Γt to
the c.m. energy

√
q2 [3]. At LO in the non-relativistic expansion, counting Γt

as being of order Mpole
t α2s, this is the correct way to implement electroweak

effects [17, 14]. The total cross section σtot(e+e− → γ∗, Z∗ → tt̄) reads
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tot (q
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where

σpt =
4π α2

3 q2
, (3)

vf =
T f
3 − 2Qf sin2 θW

2 sin θW cos θW
, (4)

af =
T f
3

2 sin θW cos θW
. (5)

Here, α is the fine structure constant, Qt = 2/3 the electric charge of the top
quark, θW the Weinberg angle, and T f

3 refers to the third component of the weak
isospin; Rv and Ra represent the contributions to the cross section induced by
vector- and axial-vector current, respectively. R ≡ Q2

tR
v is equal to the total

normalised photon-induced cross section, which is usually referred to as the R-
ratio. Close to threshold, σγ,Z

tot is dominated by the vector-current contribution
Rv, which describes top quark pairs in an angular momentum S-wave state.
Higher angular momentum states are suppressed by additional powers of v; P-
wave production, which is associated to the axial-vector current contribution Ra

is suppressed by v2 and needs to be taken into account at NNLO [25, 19, 14, 26].
The absorptive part of G(0,0,

√
q2), obtained from Eq. (1), is the first term of

a non-relativistic expansion of Rv close to threshold:

Rv(q2 ≈ 4M2
t ) =

72π
q2

Im
[
G(0,0,

√
q2)

]
+ . . . . (6)

To determine NLO corrections to the cross section, corresponding to a resum-
mation of all terms ∝ v(αs/v)n × [αs, v], n = 0, . . . ,∞, the one-loop corrections
to the Coulomb potential [27] have to be added in Eq. (1) and a short-distance
correction to the top–antitop production current has to be included [28]. The
latter is implemented by multiplying the Green function of the Schrödinger equa-
tion by a factor C = 1 + c1

αs

π , where c1 is a real number. The NLO corrections
do not pose any conceptual problem, because the short-distance corrections to C
factorise unambiguously, and because the absorptive part of the Green function
does not contain any ultraviolet divergences at this order. The corrections at
NNLO, corresponding to a resummation of all terms ∝ v(αs/v)n × [α2s, αs v, v

2],
n = 0, . . . ,∞, require the inclusion of the kinetic energy term − ∇4

4M3
t
, two-loop

corrections to the static potential [29] and new potentials suppressed by addi-
tional powers of 1/M2

t and αs/Mt into Eq. (1). In addition, the short-distance
factor C has to be determined at the two-loop level [30, 31]. The new potentials
are the generalisation of the Breit–Fermi potential, known from positronium,
in QCD. The determination of the NNLO corrections is non-trivial because the
additional mass-suppressed terms in the Schrödinger equation lead to UV di-
vergences in the absorptive part of the Green function G. This is because they
contain momenta to a high positive power. These divergences are a consequence
of the non-relativistic expansion.

The problem of UV divergences can be conveniently dealt with in the frame-
work of non-relativistic effective theories. All the NNLO calculations performed
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in Refs. [13, 15, 16, 17, 18, 19, 14] have been carried out in this framework.
In the effective field theory approach the top quark and the gluonic degrees of
freedom that are off-shell in the non-relativistic top–antitop-quark system are
integrated out, leaving only those degrees of freedom as dynamical that can be-
come on-shell. The relevant momentum regimes associated with non-relativistic
degrees of freedom have a non-trivial structure [32] and were finally identified
by Beneke and Smirnov [30]. The resulting effective field theory obtained by in-
tegrating out the degrees of freedom that are off-shell has been called “potential
non-relativistic QCD” (PNRQCD) [33]. PNRQCD represents an effective the-
ory of NRQCD; the latter was first proposed by Caswell and Lepage [34] and
is widely used in charmonium and bottomonium physics [35]. As the NRQCD
Lagrangian, the PNRQCD Lagrangian contains an infinite number of operators,
where operators of higher dimension are associated to interactions suppressed
by higher powers in v. The corresponding Wilson coefficients can be determined
perturbatively (as a conventional series in αs) by matching on-shell scattering
amplitudes in PNRQCD and full QCD. The main feature of PNRQCD is the
existence of spatially non-local instantaneous four-quark interactions, which rep-
resent an instantaneous interaction of a quark–antiquark pair separated by some
spatial distance r:

LPNRQCD
non−local =

∫
d3r

(
ψ†ψ

)
(r)V (r)

(
χ†χ

)
(0) . (7)

Here, ψ and χ represent the two-component Pauli spinors describing the top and
antitop quarks after the corresponding small component has been integrated out.
The Wilson coefficients V (r) of these non-local interactions are generalisations of
the concept of the heavy quark potential. We emphasise that these Wilson coeffi-
cients are strict short-distance quantities that can be calculated perturbatively.
In addition, PNRQCD contains the interactions of dynamical gluons (having
energies and momenta of the order of the top quark kinetic energy) with the
top quarks. These dynamical gluons lead to top–antitop quark interactions that
are not only non-local in space but also in time. These interactions are called
“retardation effects”. External electroweak currents, which describe production
and annihilation of a top quark pair are rewritten in terms of PNRQCD currents,
providing a systematic small-velocity-expansion of the corresponding relativis-
tic current–current correlators. The Wilson coefficients of the PNRQCD currents
contain short-distance information specific to the corresponding electroweak cur-
rent producing or annihilating the top–antitop-quark pair. The short-distance
factor C is the modulus square of the Wilson coefficient of the first term in the
non-relativistic expansion of the vector current. PNRQCD provides so-called
“velocity counting rules” that unambiguously state which of the operators have
to be taken into account to describe the quark–antiquark dynamics at a certain
parametric precision. For the description of a non-relativistic tt̄ pair at NNLO,
these rules show that the interactions of dynamical gluons can be neglected.
The resulting equation of motion for a heavy quark–antiquark pair has the form
of Eq. (1), supplemented by corrections up to NNLO. UV divergences in the
calculation of the absorptive part of the Green function are subtracted and in-
terpreted in the context of a particular regularization scheme for PNRQCD. The
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absorptive part of the Green function then contains a dependence on the regu-
larization scheme parameter. This dependence on the regularization parameter
is cancelled by that of the two-loop corrections to the short-distance factor C.

We note that, strictly speaking, the new NNLO calculations represent true
NNLO results only for the case of a stable top quark. None of the new NNLO
calculations contains a consistent treatment of electroweak effects at NNLO. All
groups took into account the top quark width by adding i Γt to the c.m. energy
in the Schrödinger equation, as shown in Eq. (1)1. However, we do not expect
that the neglected electroweak corrections will exceed several per cent for the
total cross section.

3 NNLO Results for the Total Cross Section
in the Pole Mass Scheme

Six groups have calculated the NNLO QCD corrections to the total cross section
close to threshold: Hoang–Teubner [13, 14], Melnikov–Yelkhovsky [15], Yakovlev
[16], Beneke–Signer–Smirnov [17], Nagano–Ota–Sumino [18] and Penin–Pivovarov
[19]. In this section the methods of the different groups are briefly summarised
and differences are pointed out. The results are compared numerically in the
pole mass scheme. Because NNLO corrections are only relevant to the vector-
current-induced total production cross section, we will only compare the nor-
malised photon-induced cross section R. Results for the cross section including
also the full Z-exchange contributions can be found in Refs. [26, 19, 14]. The
methods for the NNLO results from the groups Melnikov–Yelkhovsky, Yakovlev
and Nagano–Ota–Sumino are identical. Because the numerical results provided
by these groups for this comparison agree with each other to better than one
per mille, they will be treated as belonging to a single group.

The different groups have used the following methods in their NNLO calcu-
lations:

• Hoang–Teubner (HT) [14] have solved the NNLO Schrödinger equation
exactly in momentum space representation. As ultraviolet regularization
they restricted all momenta to be smaller than the cutoff Λ, which is of
the order of the top quark mass. The short-distance coefficient C was
determined by using the “direct matching procedure” [36], where the total
cross section in the effective field theory is matched to the total cross
section in QCD in the limit αs � v � 1 and for Γt = 0. The result for the
total cross section depends on two scales, µsoft, the renormalisation scale
of the strong coupling in the static potential and the cutoff scale Λ. The
renormalisation scale in the short-distance coefficient C is also µsoft. The
sensitivity to Λ is considerable at LO and has been shown to be small at
NLO and NNLO.

• Melnikov–Yelkhovsky–Yakovlev–Nagano–Ota–Sumino
(MYYNOS) [15, 16, 18] solved the NNLO Schrödinger equation exactly

1Some NNLO corrections proportional to the top width have been determined in Refs. [19,
14].
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in coordinate space representation. As regularization prescription they de-
termined the Green function at a finite distance r0 from the origin and
expanded in r0. Only logarithms of r0 were kept and inverse powers of r0
were discarded. The value of r0 was chosen of the order of the inverse top
quark mass. The short-distance coefficient C was determined by using the
“direct matching procedure”. The result for the total cross section depends
on three scales, µsoft, the renormalisation scale in the static potential, 1/r0,
the cutoff scale, and µhard, the renormalisation scale in the short-distance
coefficient C. The scale µhard was set equal to the top quark mass. The
sensitivity to r0 has been shown to be small.

• Penin–Pivovarov (PP) [19] solved the Schrödinger equation perturba-
tively in coordinate space representation. They started from the analyti-
cally known solution of the LO Coulomb problem and determined NLO and
NNLO corrections analytically via Rayleigh-Schrödinger time-independent
perturbation theory. As regularization prescription they determined the
Green function at a finite distance to the origin, discarding all power-like
divergences. In order to avoid multiple poles in the energy denominators of
the Green function, which naturally arise in a perturbative determination
of the Green function and which lead to instabilities in the cross-section
shape, PP supplemented their calculation by reabsorbing the corrections
to the energy eigenvalues into single-pole energy denominators. The short-
distance coefficient C was determined by using the “direct matching proce-
dure”. The result for the total cross section depends on three scales, µsoft,
the renormalisation scale in the static potential, µfac, the cutoff scale, and
µhard, the renormalisation scale in the short-distance coefficient C. The
scales µfac and µhard have been chosen of the order of the top quark
mass. The sensitivity to variations of µfac and µhard has been shown to
be small.

• Beneke–Signer–Smirnov (BSS) [17] solved the Schrödinger equation
perturbatively using dimensional regularization as a regularization pre-
scription. They started from the analytically known solution of the LO
Coulomb problem and determined all corrections analytically via Rayleigh–
Schrödinger time-independent perturbation theory. At NLO BSS included
the second iteration of the one-loop corrections to the static potential.
The short-distance coefficient C was determined by extracting the hard
momentum contribution in the two-loop amplitude for γ → tt̄ close to
threshold for Γt = 0 [31], using the “threshold expansion” [30], which is
an algorithm to calculate the asymptotic expansion of diagrams describ-
ing processes involving massive quark–antiquark pairs in the kinematic
region close to the two-particle threshold. In order to avoid the destabil-
ising effects of multiple poles in the energy denominators of the Green
function, BSS supplemented their result by reabsorbing the corrections to
the two lowest lying energy eigenvalues into single-pole energy denomina-
tors. In contrast to all other groups, BSS have not implemented the short-
distance coefficient C as a global factor, but have expanded C together
with the non-relativistic corrections to the Green function up to NNLO.

http://link.springer.de/link/service/journals/10105/index.htm
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The result of BSS depends on the scale µsoft and on the QCD/NRQCD
matching scale µh. The dependence on the scale µh has been shown to be
small.

In Figs. 1 the total normalised photon-induced cross section R obtained from
HT (Λ = Mpole

t ), MYYNOS (r0 = e2−γ/2Mpole
t , µhard = Mpole

t ), PP (µfac =
µhard =Mpole

t ) and BSS (µh =Mpole
t ) are displayed at LO (dotted lines), NLO

(dashed lines) and NNLO (solid lines) in the non-relativistic expansion in the
pole mass scheme for Mpole

t = 175.05 GeV, αs(MZ) = 0.119, Γt = 1.43 GeV
and µsoft = 15, 30, 60 GeV. The value for the top quark pole mass is the
highest-order entry of Table 3, taking mt(mt) = 165 GeV as a reference value.
The range 15–60 GeV for µsoft is chosen, because it covers the typical top quark
three momentum in the tt̄ system. The effects of the beam energy spread due
to initial-state radiation and beamstrahlung, which lead to a smearing of the
effective centre-of-mass energy and a loss of luminosity, are not included in this
comparison. In Table 1 the values of R (upper numbers) at the visible maximum
(lower numbers in units of GeV) at LO, NLO and NNLO in the pole mass
scheme are displayed using the same set of parameters as in Figs. 1. The various
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Fig. 1. The total normalised photon-induced tt̄ cross section R at the LC versus
the c.m. energy in the threshold regime at LO (dotted curves), NLO (dashed) and
NNLO (solid) in the pole mass scheme forMpole

t = 175.05 GeV, αs(MZ) = 0.119,
Γt = 1.43 GeV and µsoft = 15, 30, 60 GeV. The plots have been generated
from results provided by the groups Hoang-Teubner (HT), Melnikov-Yelkhovsky-
Yakovlev-Nagano-Ota-Sumino (MYYNOS), Penin-Pivovarov (PP) and Beneke-
Signer-Smirnov (BSS).

http://link.springer.de/link/service/journals/10105/index.htm



EPJdirect C3, 1–22 (2000) Springer-Verlag 9

Order LO NLO NNLO
µsoft[GeV] 15 30 60 15 30 60 15 30 60

HT
1.22 0.96 0.80 0.86 0.90 0.88 1.14 1.08 1.04
348.06 348.69 349.26 347.75 347.93 348.17 347.12 347.34 347.55

MYYNOS
1.70 1.28 1.03 0.80 0.86 0.87 1.33 1.15 1.06
348.14 348.79 349.36 347.83 348.03 348.27 347.22 347.48 347.68

PP
1.70 1.28 1.03 0.77 0.87 0.89 1.56 1.16 1.04
348.14 348.79 349.36 347.96 348.04 348.29 347.12 347.46 347.71

BSS
1.70 1.28 1.03 1.08 1.02 0.95 1.53 1.23 1.12
348.15 348.79 349.36 347.81 348.03 348.26 347.14 347.46 347.70

Table 1. The values of R (upper numbers) at the respective peak position
(lower numbers in units of GeV) at LO, NLO and NNLO in the pole mass
scheme for Mpole

t = 175.05 GeV, αs(MZ) = 0.119, Γt = 1.43 GeV and µsoft =
15, 30, 60 GeV. The values have been determined from results provided by
the groups Hoang-Teubner (HT), Melnikov–Yelkhovsky–Yakovlev–Nagano–Ota–
Sumino (MYYNOS), Penin–Pivovarov (PP) and Beneke–Signer–Smirnov (BSS).

results presented in Figs. 1 and Table 1 are of the same order and only differ
with respect to the treatment of higher order corrections, and with respect to
the regularization scheme.

As far as the position of the maximum, called “peak position” in the rest of
this article, is concerned the results of all groups are consistent: they all show
that the position of the peak receives large NNLO corrections and that the peak
is moved to smaller c.m. energies at higher orders. For µsoft = 15/30/60 GeV,
the NLO shift is around 300/800/1200 MeV versus 600–800/600/600 MeV at
NNLO. The convergence is better for higher renormalisation scales, but the
size of the overall shift is also increasing. In addition, the dependence of the
peak position on the renormalisation scale is not reduced when going from NLO
to NNLO2. At LO, NLO and NNLO, the variation is around 1200, 400 and
400 MeV respectively. An extraction of the top quark pole mass based on the
location of the peak would result in a theoretical uncertainty of around 300
MeV, although an exact estimate based on the results given above is difficult.
(The uncertainty coming from the use of different calculational methods by the
various groups, for the same input parameters, is only around 50 MeV at LO
and NLO, and around 80 MeV at NNLO.) The rather bad behaviour of the peak
position is not unexpected, because it is known that the pole mass definition
suffers from a sensitivity to low scales (i.e. scales that are smaller than the
physical scales relevant to the problem), which increases for higher orders in
perturbation theory. This leads to large artificial corrections in larger orders
of perturbation theory. The problem is known as the “renormalon problem” of
the pole mass definition [37] and exists even in the presence of the large top
quark width. (A formal proof can be found in Ref. [38].) In practice, this means
that, as a matter of principle, the top quark pole mass cannot be determined
to better than O(ΛQCD). The pole mass definition could, at least in principle,

2There is also a rather strong correlation of the peak position to the choice of αs, which arises
from a quadratic dependence of the peak position on the strong coupling, Mpeak − 2Mpole

t =
− 4

9α2
sMpole

t [1 + . . .]. The ellipses denote electroweak and higher order QCD corrections.
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still be used as a correlated parameter that would depend on the order of the
calculation and the choice of the theoretical parameters, such as the strong
coupling, the renormalisation scale, etc., but it is wise not to put this option
into practice. A way that avoids the problem of large higher order corrections
to the peak position is to use top quark mass definitions that do not have the
same strong sensitivity to low scales as the pole mass. Such masses can also be
defined in a way that the correlation of the peak position on the value of the
strong coupling is small. Some suggested alternative mass definitions [22, 14, 39],
called “threshold masses” in this article, are discussed in Sec. 4.

As far as the normalisation of the cross sections obtained by the differ-
ent groups is concerned, all results clearly show that the sensitivity of the
NLO total cross section with respect to changes in µsoft does not give an es-
timate for the true size of the NNLO corrections. However, for the actual size
of the NNLO corrections the situation is less coherent. Compared to the other
groups, the normalisation of the cross sections from HT has the smallest sen-
sitivity to variations of µsoft, and the smallest size of NLO and NNLO cor-
rections. At the peak position, the value of R from HT varies by (40,4,10)%
at (LO,NLO,NNLO) for a variation of µsoft from 15 to 60 GeV, compared to
(50,8,23)% for MYYNOS, (55,14,45)% for PP and (52,6,33)% for BSS. The NLO
and NNLO corrections to R at the peak position for µsoft = (15, 30, 60) GeV
amount to (0.36, 0.06, 0.08) and (0.28, 0.18, 0.16) for HT, (0.90, 0.42, 0.16) and
(0.53, 0.29, 0.19) for MYYNOS, (0.93, 0.41, 0.14) and (0.79, 0.29, 0.15) for PP,
and (0.62, 0.26, 0.08) and (0.45, 0.21, 0.17) for BSS. Note that the NLO results of
BSS for different µsoft differ qualitatively from all others. This is a consequence
of a different treatment of the short-distance coefficient C as explained above.
The stability of the results from HT is mainly a consequence of the use of a cutoff
regularization scheme, which does not allow for any momenta larger than the
cutoff Λ in the Green function of Eq. (1), and of the fact that they solved Eq. (1)
exactly rather than treating higher order corrections perturbatively. All other
groups use regularization schemes that allow for infinitely large (i.e. relativistic)
momenta in Eq. (1), in particular when their contributions do not lead to ultra-
violet divergences. The existence of this cutoff in the result of HT implies that
the meaning “LO approximation” is modified. (See Ref. [14] for a discussion of
the cutoff-dependence of the results obtained by HT.) While LO approximation
for all other groups means that all terms v(αs/v)n in the full QCD cross section
are summed and no others are included, the LO approximation of HT contains
cutoff-dependent terms that represent higher order short-distance corrections.
The difference between the results obtained by HT and the others indicates the
size of these higher order terms. Solving the Schrödinger equation (1) exactly
rather than perturbatively, on the other hand, has the most impact at NNLO,
which can be seen from the NNLO scale variation in the results from MYYNOS
compared to the results from PP and BSS. The results show that the resumma-
tion of the corrections of the NNLO contributions in the Schödinger equation (1)
to all orders leads to a partial compensation of the large (fixed order) NNLO
corrections. However, we are not aware of any formal argument that the exact
solution of an approximate equation of motion in the framework of an effective
theory should a priori lead to a more reliable result than the perturbative one.
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Which of the scale dependences provides a more realistic estimate of yet higher
order corrections can only be answered when the full NNNLO corrections have
been calculated.

The introduction of “threshold masses” does not lead to a reduction of the
large NNLO normalisation corrections (see the discussion in Sec. 4.) At the
present stage, a final estimate for the normalisation uncertainty of the total cross
section at NNLO is difficult. In view of the different behaviour of the NNLO cor-
rections calculated by the various groups, the variation of the normalisation with
respect to changes in µsoft seems not to be a reliable estimator. We take the size
of the NNLO correction to R at the peak position at µsoft = 30 GeV as an esti-
mate for the current normalisation uncertainty of the NNLO total cross section,
which amounts to about 20%. This estimate is consistent with the variation of
the NNLO peak cross section with the used different calculational methods by
the various groups at µsoft = 30 GeV. Just recently, some NNNLO corrections to
the zero-distance wave function of a (stable) toponium 1S state have been deter-
mined [40, 41]. Because the value of R at the peak is proportional to the square
of the toponium 1S wave function at the origin, these corrections can be used
as a consistency check for the error estimate based on the NNLO corrections
alone. In Ref. [40] the ultrasoft corrections (coming from the interactions of the
top quarks with dynamical gluons) were calculated, and in Ref. [41] the leading
logarithmic contributions proportional to ln2(αs). Both contributions are below
10%, which seems to support the error estimate of 20% given above. However,
a concrete statement about the true size of the NNNLO corrections can only
be drawn once the full NNNLO corrections have been determined. In Ref. [42]
non-perturbative corrections originating from the gluon condensate have been
calculated. These corrections amount to less than a per cent in the normalisation
and are negligible compared to the current perturbative uncertainties.

Simulation studies [9] have shown that the normalisation uncertainty does
not seem to affect significantly the determination of the top quark mass. How-
ever, it jeopardises the measurements of top quark couplings from the threshold
scan.

4 Threshold Masses

The pole mass definition seems to be the natural choice to formulate the non-
relativistic effective theory that describes the tt̄ dynamics close to threshold. The
heavy quark pole mass is IR-finite and gauge-invariant. In the pole mass scheme
the equation of motion for the non-relativistic tt̄ pair has the simple form of
Eq. (1), which is well known from non-relativistic problems in QED. Intuition
also seems to favour the pole mass definition, because close to threshold the top
quarks only have a very small virtuality of order M2

t v
2. However, it is known

that the use of the pole mass can lead to (artificially) large high order correc-
tions, because of its strong sensitivity to small momenta [37]. The results for the
corrections to the peak position obtained by all groups show that this is also
the case for the total tt̄ production cross section. Technically, in the calculations
for the total cross section, the origin of the large corrections to the peak posi-
tion is the heavy quark potential (which is traditionally always given in the pole

http://link.springer.de/link/service/journals/10105/index.htm



EPJdirect C3, 1–22 (2000) Springer-Verlag 12

mass scheme). At large orders of perturbation theory the potential causes large
corrections from momenta smaller than Mtαs, the relevant momentum scale for
the non-relativistic dynamics of the tt̄ system [43]. This can be visualised by
considering the small momentum contribution to the heavy quark potential in
configuration space representation for distances of the order of the inverse Bohr
radius 1/Mtαs:

[
V (r ≈ 1/Mtαs)

]IR
∼

|q|<µ�Mtαs∫
d3q

(2π)3
Ṽ (q) exp(−i qr) (8)

≈
|q|<µ�Mtαs∫

d3q

(2π)3
Ṽc(q) + . . . . (9)

Here, Ṽc is the static potential in momentum space representation. At large or-
ders of perturbation theory the RHS of Eq. (9) is dominated by r-independent
corrections, which grow asymptotically like −µαn

sn!. It has been shown that
the total static energy 2Mpole

t + Vc(r) does not contain these large correc-
tions [23, 22, 24]3. Thus the large high order corrections can be avoided if a
top quark mass definition is adopted that does not contain the same strong
sensitivity to small momenta as the pole mass. Such masses are called “short-
distance” masses. With a careful definition their ambiguity is parametrically of
order Λ2QCD/Mt or smaller. However, in the context of the non-relativistic ef-
fective theory only those short-distance masses are useful that differ from the
pole mass by terms that are at most of the order of the non-relativistic en-
ergy of the top quarks in the tt̄ system, i.e. of order Mtα

2
s. A difference that

is parametrically larger than Mtα
2
s (such as Mtαs) would formally break the

“power counting” of the non-relativistic effective theory [22]. This breakdown
can be visualised in the Schrödinger equation (1), where all terms are of or-
der Mtv

2 ∼ Mtα
2
s: expressing the pole mass by a short-distance mass msd

t plus
δmsd

t ≡ Mt − msd
t ∼ msd

t αs would make δmsd
t the dominant term in Eq. (1).

From the formal point of view, this excludes the MS mass from being a useful
threshold mass.

Three threshold mass parameters have been proposed so far: Beneke sug-
gested the “potential-subtracted mass” (mPS

t ) [22], Hoang–Teubner suggested
the “1S mass” [14], and Bigi et al. the “kinetic mass” [39] (also called “low-scale
running mass” in some publications). The latter has originally been devised to
improve the perturbation series of semileptonic B decay partial widths, but can
be equally well applied to heavy-quark–antiquark systems, because the large

3In Refs. [44], in the framework of potential models, it had already been noted that the small
momentum part of the static heavy-quark–antiquark potential corresponds to a constant in the
potential in configuration space representation. This constant was considered as an arbitrary
and incalculable number universal to all heavy-quark–antiquark systems, which would cancel
for example in the difference between the top and the bottom quark pole mass, up to mass-
suppressed corrections. It was not realized, however, that the corresponding ambiguity does
not exist in the total static energy.
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order behaviour of the RHS of Eq. (9) is universal. The PS mass is defined by

mPS
t, µPS

f
= Mpole

t +
1
2

|q|<µPS
f∫

d3q

(2π)3
Ṽc(q)

= Mpole
t − 4

3
αs

π
µPSf + . . . , (10)

and can be regarded as the minimalistic way to eliminate the large order correc-
tions in Eq. (9). The 1S mass is defined as one half of the mass of the perturbative
contribution of a fictitious n = 1, 3S1 toponium bound state, assuming that the
top quark is a stable particle:

m1S
t =

1
2

[
MΥtt̄(1S)

]
pert

= Mpole
t − 2

9
α2s M

pole
t + . . . . (11)

The NNLO expression for the RHS of Eq. (11) was first calculated in Ref. [45].
The 1S scheme is motivated by the fact that twice the 1S mass is equal to
the peak of the total cross section up to corrections coming from the finite top
width. By construction, the 1S scheme strongly reduces the correlation of the
mass parameter to other theoretical parameters. The kinetic mass is defined as

mkin
t, µkin

f
= Mpole

t − [
Λ̄(µkinf )

]
pert

−
[
µ2π(µ

kin
f )

2Mpole
t

]
pert

+ . . .

= Mpole
t − 16

9
αs

π
µkinf + . . . , (12)

where
[
Λ̄(µkinf )

]
pert

and
[
µ2π(µ

kin
f )

]
pert

are perturbative evaluations of matrix

elements of operators (defined in “heavy quark effective theory”, an effective
theory widely employed in the theory of B meson decays) that describe the
difference between the pole and the B meson mass. The two-loop contributions to
the kinetic mass have been calculated in Ref. [46]. In the first line of Eq. (12) the
ellipses indicate matrix elements of higher dimension operators, which have not
been taken into account for this comparison. In Eqs. (10–12) the respective first
order corrections have also been displayed. The PS and the kinetic masses depend
on the scales µPSf and µkinf , respectively. These scales are used as a cutoff for
the corresponding momentum integrations and cannot be chosen parametrically
larger thanMtαs to preserve the non-relativistic power counting rules. For µPSf =
µkinf = 0 the PS and the kinetic masses are equal to the pole mass. The 1S mass
is cutoff-independent.

The three threshold masses eliminate the large higher order corrections to
the peak position mentioned above. In addition, they can reduce the correlation
of the peak position to the value of the strong coupling and theoretical param-
eters, such as the renormalisation scale µsoft. For the 1S mass this is achieved
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mt(mt) [GeV] mPS
t,20GeV [GeV] m1S

t [GeV]
1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop

αs(Mz) = 0.116 [αs(165 GeV) = 0.1066]
160.00 166.36 167.49 167.75 167.82∗ 166.86 168.03 168.25 –
165.00 171.56 172.72 172.99 173.06∗ 172.05 173.24 173.46 –
170.00 176.76 177.96 178.23 178.31∗ 177.23 178.45 178.68 –

αs(Mz) = 0.119 [αs(165 GeV) = 0.1091]
160.00 166.51 167.69 167.97 168.05∗ 167.02 168.23 168.46 –
165.00 171.72 172.93 173.22 173.30∗ 172.21 173.45 173.68 –
170.00 176.92 178.17 178.47 178.55∗ 177.39 178.67 178.91 –

αs(Mz) = 0.122 [αs(165 GeV) = 0.1117]
160.00 166.66 167.90 168.20 168.28∗ 167.17 168.43 168.68 –
165.00 171.87 173.15 173.45 173.54∗ 172.36 173.65 173.90 –
170.00 177.08 178.39 178.70 178.80∗ 177.55 178.88 179.13 –

Table 2. Top quark PS and 1S mass values for a given value of the top quark
MS mass mt at the scale mt for αs(MZ) = 0.116, 0.119 and 0.121. Large-β0
estimates are indicated by a star.

mt(mt) [GeV] mkin
t,15GeV [GeV] Mpole

t [GeV]
1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop

αs(Mz) = 0.116 [αs(165 GeV) = 0.1066]
160.00 166.33 167.38 167.63∗ – 167.27 168.80 169.28 169.50∗

165.00 171.53 172.62 172.87∗ – 172.47 174.03 174.52 174.74∗

170.00 176.73 177.85 178.12∗ – 177.66 179.26 179.75 179.98∗

αs(Mz) = 0.119 [αs(165 GeV) = 0.1091]
160.00 166.48 167.58 167.85∗ – 167.44 169.05 169.56 169.80∗

165.00 171.68 172.83 173.10∗ – 172.64 174.28 174.80 175.05∗

170.00 176.89 178.07 178.35∗ – 177.84 179.52 180.05 180.30∗

αs(Mz) = 0.122 [αs(165 GeV) = 0.1117]
160.00 166.63 167.79 168.07∗ – 167.61 169.29 169.84 170.11∗

165.00 171.84 173.03 173.32∗ – 172.82 174.53 175.09 175.36∗

170.00 177.05 178.28 178.58∗ – 178.02 179.77 180.34 180.61∗

Table 3. Top quark kinetic and pole mass values for a given value of the top
quark MS massmt at the scalemt for αs(MZ) = 0.116, 0.119 and 0.122. Large-β0
estimates are indicated by a star.

automatically; for the PS and the kinetic mass this is achieved by setting µf to
a value of orderMtαs ≈ 15–20 GeV. (Choosing µf much smaller thanMtαs also
eliminates the large corrections at high orders, but does not reduce the correla-
tion to µsoft and αs in a significant way [18].) In Tables 2 and 3 numerical values
of the top quark PS mass for µPSf = 20 GeV, the 1S mass, and the kinetic mass
for µkinf = 15 GeV are given, taking the MS mass mt(mt) = 160, 165, 170 GeV
as a reference point and using αs(165 GeV) = 0.1066, 0.1091, 0.1117. As a com-
parison, also the corresponding values for the top quark pole mass have been
displayed in Table 3. The knowledge of the two- [47] and three-loop correc-

http://link.springer.de/link/service/journals/10105/index.htm



EPJdirect C3, 1–22 (2000) Springer-Verlag 15

tions [48, 49]4 in the relation between the pole and the MS mass are required to
obtain the two- and three-loop values of the PS, 1S and kinetic mass. For the
PS, 1S and pole masses the relation to the MS mass is known at three loops
and for the kinetic mass at two loops. For the PS mass the four-loop contribu-
tions in the “large-β0” limit have been derived from the expression for the Borel
transform of the static potential [43] and of the difference between the pole and
the MS mass [50]. The same information is in principle sufficient to determine
the four-loop “large-β0” correction in the difference between the 1S and the MS
mass. For the kinetic mass the three-loop contributions in the “large-β0” limit
have been determined in [46]. (The three-loop “large-β0” corrections in the re-
lation between the kinetic and the MS mass have been obtained using Eq. (21)
in the preprint version of Ref. [46].) In Tables 2 and 3 the large-β0 corrections
are indicated by a star. We emphasise that the numbers shown in these tables
do not contain any electroweak corrections. The latter can amount to shifts at
the 1 GeV level [51].

The numbers displayed in the tables show an excellent convergence of the per-
turbative relation between the threshold masses and the MS mass. For αs(MZ) =
0.119 and mt(mt) = 165 GeV the one-, two-, three- and the available four-
loop large-β0 corrections for the threshold masses are 6.7–7.2, 1.2, 0.2–0.3 and
0.1 GeV, respectively. The corresponding corrections in the relation between the
pole mass and mt(mt) read 7.6, 1.6, 0.5 and 0.3 GeV. For the pole mass the
three-loop corrections are about a factor two and the four-loop large-β0 correc-
tions a factor three larger. This behaviour is caused by the infrared-sensitivity
of the pole mass and corresponds to the ambiguity of the pole mass of order
ΛQCD. The numbers displayed in the tables also show that a shift in αs(MZ) by
0.001 corresponds to a shift of about 70 MeV in the threshold masses.

In the framework of the Linear Collider Workshop several presentations
were given by M. Beneke, A. H. Hoang, K. Melnikov, Y. Sumino, T. Teub-
ner and O. Yakovlev of, in part, preliminary results for the cross section using
threshold masses. The following discussion provides a summary of these results,
choosing one representative example for each of the three threshold mass def-
initions. The results for the discussion have been provided by HT in the 1S
scheme for m1S

t = 173.68 GeV, by Melnikov–Yelkhovsky (MY) in the kinetic
mass scheme for mkin

t,15GeV = 173.10 GeV, and by BSS in the PS mass scheme
for mPS

t,20GeV = 173.30 GeV. The numerical values of the respective thresh-
old masses are the known highest order entries in Tables 2 and 3 for common
αs(MZ) = 0.119 and mt(mt) = 165 GeV. HT and BSS used the codes devel-
oped for Refs. [14] and [17], respectively. Yakovlev and NOS have also provided
results in the PS mass scheme. Their results are in qualitative agreement with
those of BSS. In Figs. 2 the total normalised photon-induced cross section R is
displayed at LO (dotted lines), NLO (dashed lines) and NNLO (solid lines) using
the three threshold masses mentioned above for αs(MZ) = 0.119 and µsoft = 15,
30, 60 GeV, and ignoring the effects of beamstrahlung and initial state radiation.
The values of R (upper number) at the respective peak position (lower number
in units of GeV) are given in Table 4.

4To obtain the numerical values given in Tables 2 and 3 we used Eq. (6) of the first publi-
cation of Ref. [48].
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Fig. 2. The total normalised photon-induced tt̄ cross section R at the LC
versus the c.m. energy in the threshold regime at LO (dotted curves), NLO
(dashed) and NNLO (solid). Hoang–Teubner used the 1S mass scheme with
m1S

t = 173.68 GeV, Melnikov–Yelkhovsky the kinetic mass at 15 GeV with
mkin

t,15GeV = 173.10 GeV, and Beneke–Signer–Smirnov and Yakovlev the PS mass
at 20 GeV with mPS

t,20GeV = 173.30 GeV. The plots have been generated from re-
sults provided by the groups Hoang–Teubner (HT), Melnikov–Yelkhovsky (MY)
and Beneke–Signer–Smirnov (BSS) and Yakovlev.

Order LO NLO NNLO
µsoft[GeV] 15 30 60 15 30 60 15 30 60

HT (m1S
t )

1.22 0.96 0.80 0.86 0.90 0.88 1.14 1.08 1.04
347.51 347.65 347.88 347.53 347.56 347.57 347.53 347.48 347.46

MY (mkin
t,15 GeV)

1.70 1.28 1.03 0.80 0.86 0.87 1.33 1.15 1.06

347.05 347.33 347.63 347.69 347.59 347.58 347.50 347.54 347.54

BSS (mPS
t,20 GeV)

1.69 1.27 1.03 1.09 1.03 0.96 1.53 1.23 1.11

347.47 347.74 348.05 347.69 347.71 347.73 347.33 347.51 347.59

Table 4. The values of R (upper numbers) at the respective peak position (lower
numbers in units of GeV) at LO, NLO and NNLO. Hoang-Teubner used the 1S
mass scheme with m1S

t = 173.68 GeV, Melnikov–Yelkhovsky the kinetic mass
at 15 GeV with mkin

t,15GeV = 173.10 GeV, and Beneke-Signer-Smirnov the PS
mass at 20 GeV with mPS

t,20GeV = 173.30 GeV. The values have been determined
from results provided by the groups Hoang–Teubner (HT), Melnikov–Yelkhovsky
(MY) and Beneke–Signer–Smirnov (BSS).
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The threshold masses have been implemented employing the non-relativistic
power-counting rules for the perturbative series describing the difference between
threshold and pole mass. This means that for all threshold masses the one-
loop corrections displayed in Eqs. (10–12) have been treated as LO in the non-
relativistic expansion, the two-loop corrections as NLO and so on. The results
in Figs. 2 and Table 4 show that the peak positions obtained with different
threshold masses converge when higher orders are included. This is a consequence
of the fact that the numerical values of all the threshold masses have been
determined from mt(mt) = 165 GeV as a reference value. Compared to the
results in the pole mass scheme displayed in Sec. 3, the results in Figs. 2 and
Table 4 show an improved stability of the peak position with respect to the size of
higher order corrections, and with respect to the sensitivity to changes in µsoft.
For µsoft = 15/30/60 GeV, the NLO (NNLO) shifts of the peak position are
20/−90/−310 MeV (0/−80/−110 MeV) for HT in the 1S scheme, 640/260/−
50 MeV (−190/−50/−40 MeV) for MY in the kinetic mass scheme and 220/−
30/ − 330 MeV (−360/ − 200/ − 140 MeV) for BSS in the PS scheme. The lack
of convergence that can be observed for some numbers is not an indication of
large unknown higher order corrections, but a consequence of the fact that the
threshold masses that have been used for the analysis partially lead to NLO shifts
that are much smaller than the parametric accuracy that can be achieved at the
NLO level. A better quantification is obtained by comparing the shift from LO
directly to NNLO with the corresponding shift, when the cross section is plotted
for fixed pole mass as in Figs. 1. The variation of the peak position when µsoft
is varied between 15 and 60 GeV at LO/NLO/NNLO is 370/40/70 MeV for
HT in the 1S scheme, 580/110/40 MeV for MY in the kinetic mass scheme
and 580/40/260 MeV for BSS in the PS scheme. The scale variation of the
peak position at NNLO obtained by BSS in the PS mass scheme is by a factor
of 4–5 larger than the corresponding variation obtained by HT in the 1S and
by MY in the kinetic mass scheme. The fact that the stability of the results
in the PS mass scheme is worse than in the 1S and the kinetic mass scheme
might originate from the fact that the difference between the PS and the pole
mass contains only corrections from the static potential. The 1S and the kinetic
mass contain additional corrections, which are subleading in the non-relativistic
velocity counting. However, it should be noted that the stability of the peak
position for a fixed threshold mass is not necessarily a useful quantification of
the theoretical error. A mass definition that would be equal to the peak position,
for example, would lead to no variation at all. The shifts of the peak position
quoted above should therefore be considered in conjunction with the variation of
the threshold mass values with the order of perturbation theory given in Tables 2
and 3.

From the size of the NNLO corrections to the peak positions and from the
scale variation of the peak positions at NNLO, we estimate that the current the-
oretical uncertainty of a determination of the threshold masses from the peak
position based on the NNLO calculations is about 100 MeV. (The uncertainty
coming from the different calculational methods used by the various groups has
been estimated in Sec. 3 and is included in this number.) In Refs. [52, 40, 41] the
ultrasoft corrections and the leading logarithmic contributions proportional to
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lnαs were calculated for the mass of a fictitious toponium 1S state at NNNLO.
Up to corrections coming from the top width (and other electroweak correc-
tions), the toponium 1S mass is equal to the location of the peak of R. As
for the normalisation, these corrections can be used as a consistency check for
the error estimate of the top mass extraction based on the NNLO corrections
alone. Both types of corrections amount to about 200 MeV, corresponding to
a shift of 100 MeV in the top quark mass. This supports the error estimate
based on the NNLO calculations alone. However, as for the case of the normali-
sation, a concrete statement about the true size of the NNNLO corrections can
only be drawn once the full NNNLO corrections have been determined. Taking
into account four-loop corrections in the relation between the threshold masses
and the MS mass, mt(mt) can be determined with comparable precision for an
uncertainty in αs(MZ) of around 0.001–0.002. Realistic simulation studies [9]
have shown that these conclusions remain valid if beam effects from initial state
radiation or beamstrahlung are taken into account.

The threshold masses do not lead to an improvement of the stability in the
normalisation of R because their main effect is to redefine the binding energy of
the tt̄ system. An energy shift leaves the wave function of the tt̄ system unaffected
and, therefore, cannot affect higher order corrections to the normalisation.

5 Summary and Open Issues

In this article the results for the NNLO QCD calculations for the total photon-
mediated tt̄ production cross section obtained by different groups have been
compared. A detailed assessment of the dependence of the individual results on
the calculational techniques, the intermediate regularization prescriptions and
the treatment of higher order corrections has been carried out. As far as the
determination of the top quark mass from the position of the peak in the total
cross section is concerned, the uncertainty caused by the use of different methods
is around 50–80 MeV. Using the top quark pole mass to parameterise the total
cross section, the latter uncertainty is negligible with respect to the perturba-
tive uncertainty in an extraction of the pole mass parameter, which is estimated
to be around 300 MeV. This estimate matches formal arguments based on the
analysis of the large order behaviour of perturbation theory, which state that
the pole mass cannot be determined to a precision better than O(ΛQCD). Using
so-called “threshold masses”, which lead to a much better high order behaviour
and which preserve the non-relativistic velocity counting, the uncertainty in the
mass extraction is around 100 MeV. The top quark MS mass mt(mt) can be
determined with comparable precision if αs(MZ) is known with an uncertainty
of 0.001–0.002. (An uncertainty in αs(MZ) of 0.001 corresponds to an uncer-
tainty of 70 MeV in mt(mt).) Realistic simulation studies have shown that these
conclusions remain valid if realistic beam effects are taken into account. For
the normalisation of the total cross section, we find that the NNLO corrections
are much larger than indicated by the renormalisation scale dependence of the
NLO results. The normalisation at NNLO also has a considerable dependence on
calculational methods and the renormalisation scale µsoft. We estimate the un-
certainty of the normalisation of the NNLO cross section as around 20%, which
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seems to jeopardise accurate measurements of top quark couplings or the total
top quark width. The calculation of NNNLO corrections will be mandatory to
reduce the current uncertainties in the normalisation of the total cross section.
At present, the most difficult parts of a complete NNNLO QCD calculation of
the total cross section seem to be the three-loop corrections to the static poten-
tial and the short-distance coefficient C. Another way to get information about
the size of higher order corrections is to resum logarithmic contributions to all
orders in perturbation theory using the renormalisation group evolution of the
operators in the non-relativistic effective theory for tt̄ close to threshold. First
attempts at carrying out such a resummation consistently have been made in
Refs. [17, 53].

Except for the NNLO calculations of the top three momentum distribution
in Refs. [18, 14], practically nothing is known about the size of NNLO correc-
tions to differential observables. In view of the large NNLO QCD corrections
to the total cross section, calculations of the complete NNLO corrections to
differential observables, such as the top momentum distribution, the forward–
backward asymmetry and certain leptonic spectra, are needed to obtain realistic
estimates of the theoretical uncertainties. A first step toward this aim is the
development of a consistent and systematic approach to account for electroweak
effects. The present calculations of the total tt̄ cross section at NNLO have only
taken into account relativistic corrections in the framework of QCD. So far, elec-
troweak effects have been taken into account, mainly by shifting the energy in
the Schrödinger equation (1) into the upper complex plane by iΓt. This treat-
ment accounts for all electroweak effects at LO in the non-relativistic expansion.
At NLO electroweak effects lead to final state interactions originating from the
exchange of gluons between the top quarks and their decay products. These
corrections are called “non-factorisable” (or “rescattering”) corrections because
they can in general not be unambiguously considered as being either correc-
tions to tt̄ production or to top quark decay. For the total cross section it has
been shown that the non-factorisable corrections cancel at NLO and that the
net effect of the electroweak corrections reduces to shifting the c.m. energy by
i Γt [54]. For a number of differential observables, such as the top quark momen-
tum distribution and the energy spectrum of leptons originating from the decay
of a W-boson, NLO non-factorisable corrections have been calculated [8] and
shown to be of order 10%, as can be expected for O(αs) corrections. No con-
sistent and systematic prescription to implement electroweak effects at NNLO
has been developed yet, and practically nothing is known about the size of the
non-factorisable corrections beyond NLO.
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1. J.H. Kühn, Act. Phys. Pol. B 12 (1981) 347.
2. I.I. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kühn and P. Zerwas, Phys. Lett. B
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