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Murty in a recent paper has shown that the computational effort required to solve a linear
complementarity problem (LCP), by either of the two well known complementary pivot
methods is not bounded above by a polynomial in the size of the problem. In that paper, by
constructing a class of LCPs—one of order n for n =2—he has shown that to solve the
problem of order n, either of the two methods goes through 2" pivot steps before termination.

However that paper leaves it as an open question to show whether or not the same property
holds if the matrix, M, in the LCP is positive definite and symmetric. The class of LCPs in
which M is positive definite and symmetric is of particular interest because of the special
structure of the problems, and also because they appear in many practical applications.

In this paper, we study the computational growth of each of the two methods to solve the
LCP, (g, M), when M is positive definite and symmetric and obtain similar results.
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1. Background

1.1. Preliminaries

Given a real n by n matrix M, and a real n-vector g, the Linear Com-
plementarity Problem (LCP), denoted by (g, M), is to find column vectors w and z
in R" such that

w— Mz =gq, (1.1
w=0, z=0, (1.2)
wiz;=0 foralli=1ton 1.3)

(see [1,3,4,7, 12]).

(wj, z;) is called a complementary pair of variables, and their corresponding
column vectors, (I;, —M;), is called a complementary. pair of columns in this
problem.

Throughout this paper if D is any matrix, we denote its jth column by D, and
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336 Y. Fathi/ Computational complexity of 1.CPs

its ith row by D. Let A,; € {I;, —M.;}; then the ordered set (A., ..., A.,) is called
a complementary set of vectors and Pos{A., ..., A,} = {y: y=aA; + = +
@A,y o;=0 for all i =1 to n} is a complementary cone, in the class $(M) of
complementary cones corresponding to the given matrix M. (Notice that the
class €(M) consists of 2" complementary cones).

A square matrix is called a P-matrix if all its principal subdeterminants are
strictly positive. (See [11].)

Let {A4, ..., A.,} be a complementary set of column vectors and H; the
hyperplane that is the linear hull of {A., ..., A,j_1, Ajs1, ... , A} in R”, for j=1to
n. It has been shown that if M is a P-matrix, then the vectors I; and —M,; are
strictly on opposite sides of H; for all j = 1 to n. This property is called the strict
separation property [8). It has also been shown that the LCP, (g, M), has a
unique solution corresponding to every g €R" if and only if M is a P-matrix
[8, 13].

Lemke and Howson developed a complementary pivot method for solving an
LCP corresponding to the problem of computing an equilibrium strategy in a
bimatrix game problem, and later on Lemke extended this into a method for
solving a general LCP [5]. Here we will refer to it as complementary pivot
method I.

Another complementary pivot method for solving LCPs is developed by
Murty in [10] and we will refer to it as complementary pivot method II. See [1], [4]
and [7] for a detailed discussion of these methods.

1.2. Parametric LCP

Consider the LCP, (q(y), M) where q;(y)=b;+ yb¥ for i =1 to n. b; and b¥
are given real numbers, vy is a real valued parameter and M is a given P-matrix
of order n. The problem of finding its solution as a function of y is known as the
parametric LCP.

An algorithm to solve this problem is discussed in [9] and {2]. Here we briefly
explain this algorithm.

Solve the LLCP, (g(v), M) for a fixed value of v, say -y, and find the range of
values of y for which the current complementary basis remains feasible; say
Y = vy = ¥. Let r be the index of the variable which violates nonnegativity constraint
if v exceeds . Replace the present basic variable from the rth complementary pair
{w,, z,} by its complement. The new basis would be feasible for y > y. Apply a
similar technique to find a feasible basis for y <y and repeat this process until the
solution of the LCP for all values of vy is found. For a detailed discussion of this
algorithm see {9], or Problem 16.30 in {6, p. 515].

This algorithm is in fact following the line b+ b*y in R" by continuously
changing the value of y. By the strict separation property it is clear that if this
line leaves the complementary cone Pos(A.,...,A,) through the facet
Pos(A., ..., Aj1, Ay, ..., A,), then it enters the complementary cone
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Pos(A., ..., Ay, Dy A, ..., Ay) where D, is the complement of A; in the
complementary pair of columns {I;, —M.;}. See Fig. 1. Hence this algorithm finds
all complementary cones that the line b + b*y cuts across as y varies from —x
to +oo.

origin
Fig. 1. Tllustration of the situation in the Parametric LCP algorithm. As y increases through ¥, the
point g(vy) travels along the straight line L in the direction of the arrow, leaves the complementary

cone K, =Pos(A.i, ..., A,) through F =Pos(A., ..., A1, Aj, ..., A.,) and enters the complemen-
tary cone K =Pos(A., ..., A1, Dy, Ay, ..., Ay), where D, is complement of A

1.3. Geometric interpretation of complementary pivot method I

It is discussed in [7] that when complementary pivot method I is applied on
LCP, (g, M), where M is a P-matrix of order n, the consecutive tableaux
obtained during the algorithm represent intersections of the line L(n)=
{x:x=q+2z0,;20 a real valued parameter} with facets of different com-
plementary cones in the class ¥(M). In this context, complementary pivot
method I may be interpreted as a walk along a straight line cutting across
different complementary cones. The sequence of cones to be crossed by this
method is exactly the same as the sequence discussed in 1.2, where the initial
value of y is —. The algorithm stops when the line L(n) enters the com-
plementary cone containing q.

1.4. Notations and properties

The following notation is used throughout the rest of the paper:
1.4.1. M(n) denotes a n by n matrix whose diagonal entries are all 1; entries
below the principal diagonal are all 2; and entries above the principal diagonal
are all zero. This matrix is introduced by Murty in [7]. Notice that M(n) is a
P-matrix. It also is positive semidefinite, hence copositive plus.
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1.4.2. M(n) denotes a n by n matrix such that M(n) = M(n)M(n)". It looks like
the following:

1 2 2 2

25 6 6
OR ;

2 6 10

(2 6 10 « 4n-1+1]

It is very important to notice that this matrix is symmetric and positive definite,
hence also a P-matrix.

1.4.3. M(n) denotes a n by n matrix such that M(n) = M(n) + E(n); where E(n)
is another n by n matrix whose entries are all 4. This matrix can also be verified
to be a P-matrix.

1.4.4. M(n) denotes a n by n matrix such that M(n) = M(n) + F(n), where F(n)
is another n by n matrix whose entries are all (—4), except in the first column.
All entries in the first column of F(n) are identically zero. M(n) can also be
verified to be a P-matrix.

2. Computational complexity of complementary pivot method II on LCPs
associated with positive definite symmetric matrices

Consider the LCP, (—e,, M(n)). It can be verified that z,=1, z,=0 (i=

2,..., 1), W =0, wi=1@G=2,.., n) is the unique solution to this problem. So
(z;, Wy, ..., w,) is the unique complementary feasible basic vector for the LCP
(—e,, M(n)). It can also be verified that (z;, w, ..., w,) is the unique com-

plementary feasible basic vector for the LCPs, (—e,, M(n)), and (—e,, M(n)).

Lemma 2.1. Consider the LCPs, (—e, M(n)), (—e, M(n)) and (—e,, M(n)).
Select a complementary basic vector for these problems and let (w*, z¥%), (W*, Z%)
and (W*, Z*) be the basic solutions with respect to that same complementary
basic vector in these problems. Then (W*, z¥) and (W*, Z*) are constant multiples of
(w*, z%).

Proof. By doing straightforward manipulations one can show that (w*, z*) =
a(w*, z*) and (W*, Z¥) = B(w*, z*), where

o= (1+4§"I z,*>_1 and B = (1—4§"j z,*)fl.

i=2
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Corollary 2.2. Complementary pivot method Il goes through the same sequence
of pivot steps when applied on either of the three LCPs (—e,, M(n)), (—e,, M(n))
and (—e,, M(n)).

Proof. All the three problems start with the same complementary basic vector
and the same basic solution. Consequently, by the manner in which the al-
gorithm progresses, the first pivot row would be the same (nth row); resulting in
the same complementary basic vector after the first pivot step in all these
problems. By Lemma 2.1, the updated right hand side column vector of the two
problems, (—e,, M(n)), and, (—e,, M(n)) after the first pivot step would be
constant multiples of the corresponding column in the updated tableau of
(—e,, M(n)) after the first pivot. These multiplying constants must be positive
since after pivoting on the nth row, the value of the nth component of the
updated right hand side in each of their respective tableaux would be positive.
Therefore the right hand side column vectors in all the three updated tableaux
will have the same sign pattern, resulting in selection of an identical pivot row in
the next pivot step. This argument can be repeated for all the consecutive steps
as well. The corollary follows.

Theorem 2.3. For every n =2, complementary pivot method II applied to
(—e,, M(n)) goes through 2" — 1 pivot steps before termination.

Proof. It can be verified that this statement is true for n = 2. We now make the
following induction hypothesis:

Induction Hypothesis: The theorem is true for the LCP of order n—1,
(—en-1, M(n - 1)).

Using the induction hypothesis, we will now prove that the statement of the
theorem also holds for the LCP (—~e,, M(n)) which is of order n.

If the first constraint in (—e,, M(n)) is eliminated, as also the column vectors
of w, and z,, we are left with another LCP of order n — 1, called the reduced
problem which is the same as (—e,;, M(n — 1)), with the exception that its
variables are called w,, ..., W,; 22, ... , Zn.

It should be noted that when complementary pivot method II is applied on
(—e,, M(n)), it does not select the first row as the pivot row until it finds the
unique solution of the reduced problem. By the Induction Hypothesis along with
Corollary 2.2, and since the reduced problem is nothing but (—e,_;, M(n — 1)), it
is clear that the algorithm goes through 2" '—1 pivot steps to find a com-
plementary feasible basic vector for the reduced problem, before a pivot occurs
in the first row. So during these 2" '— 1 pivot steps, the first row is never the
pivot row, and by our knowledge about the unique complementary feasible basic
vector for the reduced problem, it is clear that (w,, z,, ws, ..., w,) is the com-
plementary basic vector obtained after the first 2"7' — 1 pivot steps. It can be
easily verified that in the corresponding canonical tableau, the element of the
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updated right hand side constant in the first row is strictly negative, hence by the
nature of the algorithm the next pivot row would be the first row, and z, replaces
wy, resulting in the canonical tableau shown in Table 1.

Table 1

An intermediate tableau, corresponding to the basic vector (zy, z,, ws, ..., w,), when the

LCP (—e,, M(n)), is solved by complementary pivot method II

Basic

variable Wy W, Wiy Wy o WolZy oz oz oz o Zy
Z -5 2 0 0 o1 0 -2 -2 . =2 3
2 2 -1 0 0 010 1 2 2 2 -1
W 2 -2 1 0 0}j0 0 -1 -2 - =2 -1
Wy 2 -2 0 1 ofo 0 -2 -5 . -6 -1
Wy 2 -2 0 0 -« 110 0 -2 -6 - —@n-3+1 -1

If the first row and columns corresponding to w; and z, are eliminated from
Table 1, we are left with a LCP of order n — 1, called the new reduced problem,
which is the same as (—e,_;, M(n — 1)), with the exception that its variables are
called z,, ws, ..., Wp3 W, 23, ..., Zne

Thus by Induction Hypothesis, along with Corollary 2.2, the algorithm now
goes through another 2" ' — 1 pivot steps to find the solution to this new reduced
problem (—e, |, M(n - 1)).

Since the unique complementary feasible basic vector for the new reduced
problem is (w,, ws, ..., w,), after all the pivot steps we will reach the com-
plementary basic vector (z;, wy,..., w,), which is the unique complementary
feasible basic vector to (—e,, M(n)). So the algorithm terminates then.

The total number of pivot steps the algorithm goes through is therefore
@ '-D+1+Q7'-1D=2"—-1.

Hence if the result of the theorem holds for n — 1, it must also hold for n. The
statement of the theorem can be easily verified for n =2, thus by induction it
must hold for every n = 2.

3. Computational complexity of complementary pivot method I on LCPs
associated with positive definite symmetric matrices

In order to demonstrate exponential growth of computational requirements of
this algorithm, a line in R" is constructed which cuts across all the 2" com-
plementary cones in the class €(M(n)) for every n =2. Then using this line a
proper linear complementarity problem can be constructed, for which com-
plementary pivot method I goes through 2" pivot steps before termination.

For notational convenience, let g(n) denote a column vector in R" such that

q(n) = (q.(n), gu-1(n), ..., @:(n))".
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Lemma 3.1. If (w*, z*) solves (q(n) — y*e,, M(n)), then there exists a real value
A*® such that (w*, z*) also solves (q(n) — A*e,, M(n)+ G(n)), where G(n) isan
by n matrix with identical rows (gi,....8:) and g, ...,g, are arbitrary real
numbers.

Proof. It can be verified that the statement of the lemma is true for A* =
y*+ X gz

Remark 3.2. Let L(n) ={x: x = q(n) — ye,; vy a real valued parameter} be a line
in R"; and let M(n) be a P-matrix of order n. Then as the value of y varies from
—o to +, the line L(n) cuts across a sequence of complementary cones in the
class €(M(n)) which is the same as the sequence of complementary cones
associated with the sequence of complementary basic vectors encountered when
the parametric LCP (q(n) — ve,, M(n)) is solved for the values of the parameter
v varying from —o to +. This follows from the discussion in Section 1.2.

Corollary 3.3. If the line L(n)={x: x = q(n)— ve,; v a real valued parameter}
cuts across all the complementary cones in the class €(M(n)), then it also cuts
across all the complementary cones in the classes €(M(n)) and €(M(n)).

Proof. We prove the statement of the corollary for the class €(M(n)). A similar
proof can be repeated for the class €(M(n)).

By Lemma 3.1, when the two parametric LCPs (q(n)-— ye., M(n)) and
(g(n) — ye,, M(n)) are solved for the values of y varying from —o to +, the
same sequence of complementary basic vectors are encountered. Hence, by
Remark 3.2, the line L(n) cuts across the complementary cones associated with
the same sequence of complementary basic vectors in the two classes €(M(n))
and €(M(n)). The result in the corollary now follows.

Theorem 3.4. There exists a q(n) such that the line L(n)={x: x = q(n) — ye,;
v a real valued parameter} cuts across all the 2" complementary cones in the
class €(M(n)) for every n =2.

Proof. Considering Remark 3.2, here we have to show that there exists a column
vector g(n) €ER" such that when the parametric LCP (q(n)— ye,, M(n)) is
solved for the values of y varying from — to +, all the 2" complementary
basic vectors are encountered. We do this inductively.

It can be verified that for n =2 there exists such a q(2) by simply letting
q(2) = (4, 1)T and applying the parametric LCP algorithm, discusssed in 1.2. Now
we make the following induction hypothesis:

Induction Hypothesis. There exists a q(n — 1) such that the parametric LCP,
(g(n —1)— ve,, M(n — 1)), goes through 2"' — 1 pivot steps before termination.
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Using this induction hypothesis, along with Corollary 3.3, in the rest of the
proof we will show that there exists a value v such that for every g,(n)> v and

q.(n)
q(n)=
qn—1)

the parametric L.CP, (q(n) — ye,, M(n)) goes through 2" — 1 pivot steps before
termination. Then by induction, the statement of the theorem must hold for
every n=2.

To show the existence of such a v, let us consider the first canonical tableau
for the parametric LCP, (q(n) — ye,, M(n)), corresponding to vy = —c, If the first
constraint here is eliminated, as also the column vectors of w, and z;, we are left
with a parametric I.CP of order n —~ 1, called the reduced problem which is the
same as the parametric LCP (q(n — 1) — ye,_;, M(n — 1)) with the exception that
its variables are called w,, ..., W,; 23, ..., Z,. By the Induction Hypothesis and the
result of Corollary 3.3, it is clear that as the value of vy increases from —«, the
reduced problem goes through 2"~' — 1 pivot steps until it finds a value for vy, (say
8), such that for every y > 8 the corresponding tableau for the reduced problem
remains feasible. If the value of q,(n) is chosen large enough (say greater than v)
the first row never becomes the pivot row during these first 2" ' — 1 pivot steps.

After the first 2"'—1 pivot steps the set of basic variables would be
(wy, 5, W3, ..., w,) and, as mentioned in Theorem 2.3, in the corresponding
updated canonical tableau, the coefficients of vy in rows 2 to n would be positive,
while its coefficient in the first row is negative. Thus regardless of how large the
value of g,(n) is chosen, there exists a value A such that for y > A the value of
the updated right hand side (RHS) in the first row becomes negative. Hence the
next pivot row would be the first row. Replacing w; with z, leads to a basic
vector whose updated canonical tableau is shown in Table 2.

Table 2

An intermediate tableau corresponding to the basic vector (z,, z;, w3, ... , w,,) obtained while solving

the parametric LCP, (g(n) — ve,, M(n)) as the parameter y increases from —=. ¢ = 2(g,(n) — g,-1(n)).
= RHS

98

M > w Wy Wi Wy ot W, | 2y 2y Z3  Zy tt Zy q(n) Y

z; -5 2 0 0 o1 0 -2 -2 - =2 -5q,(n)+2q, (n); 3

Z; 2 -1 0 0 010 1 2 2 - 2 ¢+ gn-1(n) -1

Wy 2 -2 1 0 o0 0 -1 -2 - =2 €+ gno(n) -1

Wy 2 =2 0 1 {0 0 -2 -5 - -6 ¢+ q,-3(n) -1

Wy 2 -2 0 0 - 1[0 0 -2 -6 - —(4n-3)+1 c+q -1
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If the first row, and the columns corresponding to w, and z, are eliminated
from Table 2, we are left with a parametric LCP of order n — 1, called the new
reduced problem, which is the same as the parametric LCP (g(n — 1) — ve,_ +
ce,1, M(n — 1)), where ¢ = 2(q.(n) — q.-1(n)). Thus, by Corollary 3.3 as the value
of v increases, this parametric LCP goes through another 2"~'— 1 pivot steps
before finding a value 6, such that for every y > ¢ the final updated tableau
remains feasible. Notice that by the results of Section 2, the coeflicient of y in
the first row during these last 2" ' — 1 pivot steps remains positive, hence the first
row does not become the pivot row in any of these last 2"~ — 1 pivot steps.

The final tableau will have (z;, w,, ... , w,) as its complementary basic vector
and it would be the complementary basic feasible vector for all values of y > 6.

Therefore the total number of steps this algorithm goes through for the
problem of order n adds up to 2" '— D)+ 1+@2"'—=1)=2"—1.

This result can be verified for n = 2 as mentioned earlier. Hence, by induction,
the result must hold for every n = 2.

Definition. Let §(n) = q(n)— fe,, where g(n) is a column vector in R” and 0 is a
real valued constant as defined in Theorem 3.4. Notice that for every value of v,
there exist a real value z,= 6 — vy such that §(n) + zee, = q(n) — ye,.

Theorem 3.5. Complementary pivot method I goes through 2" pivot steps before
termination when applied to the 1.CP (4(n), M(n)).

Proof. As discussed in 1.3, we know that the consecutive tableaux obtained in
this algorithm represent intersections of the line L(n) = {x: x = §(n) + zpe,; 2o 2
real value parameter} with facets of different complementary cones in the class
€(M(n)). This line is exactly the same as the line L(n), defined in previous
sections.

If we apply complementary pivot method I on this LCP, we observe that in
the initial tableau, the value of z, would be 6 — gq,(n), which corresponds to
v = q,(n). In other words this tableau represents the end of the first portion of
the line L(n), corresponding to y = g:(n) as discussed in Theorem 3.4. As the
algorithm goes on it keeps finding intersections of the line L(n) with the facets
of different complementary cones, cutting across these complementary cones
along with L(n) in exactly the same sequence as parametric LCP (q(n)— ye,,
M(n)) does when the value of y varies from — to +%. We know that G(n) lies
in the complementary cone containing the last portion of L(n), corresponding to
y = 0. Hence this algorithm goes through 2" pivot steps before finding the
solution.
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