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We give a short proof that in a convex minimax optimization problem in k dimensions there 
exist a subset of k + 1 functions such that a solution to the minimax problem with those k + 1 
functions is a solution to the minimax problem with all functions. We show that convexity is 
necessary, and prove a similar theorem for stationary points when the functions are not 
necessarily convex but the gradient exists for each function. 
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1. I n t r o d u c t i o n  

We general ize  a minimax theorem for  convex  func t ions  to n o n - c o n v e x  

differentiable funct ions .  We prove  two theorems ,  and present  two examples .  

One example  shows  that  convex i ty  is neces sa ry  for  the first theorem,  and the 

second  shows  that  the second  theorem mus t  be fo rmula ted  with non-negat ive  

s ta t ionary  points  ra ther  than with local min imum points.  

2. The convex case 

In this sect ion we assume that  the func t ions  involved  are convex .  Le t  fi(x) 
for  i -- 1 . . . . .  n be c o n v e x  funct ions .  Cons ider  the fo l lowing minimax opt imiza-  

tion problem.  

minimize {max  {.fi(x)}} (1) 

where  

x - -  ( x l  . . . . .  x k ) .  

Let  f*  be the minimal value of  the ob jec t ive  func t ion  in problem (1). By  the 

convex i ty  of  fi(x) the set {x ]fi(x)<-fo} is ei ther  emp ty  or a convex  set. Le t  
N = {1 . . . . .  n} and let I C N. L e t  F1(f0) be the in tersect ion of  all sets {x I fi(x) < 
/o} for  i E I. N o t e  that  f*  is the minimal  value o f  f0 such that  FN(f0) ~ ff 
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The following theorem is proved in [3] via a transformation to a regular 
mathematical programming problem. We present here a short and direct proof. 

Theorem 1. There exists a subgroup I C N of cardinality less than or equal to 
k + 1 such that the problem 

minimize {max~f,(x)}} ~ (2) 

has an optimal value of f*. Furthermore, at least one of the solution points to 
problem (2) is also a solution point to problem (1). 

Proof. The case n --- k + 1 is trivial, so let us assume n > k + 1. Consider all 
possible sets of k + 1 members out of N. Let  them be I1 . . . . .  Ir where r = (~+0. 
Calculate 

FIj = min (max{fi(x)}/. (3) 
t, i~Ij ) 

Since FN(f*) ~ ~, Fii(f*) ~ ~. Therefore, f1 i ---f*. Let  f~ = maxj{flj}. Since ftj -< 
f*, then f "  -< f*. Since flj - fro, for every Ij, Fri(f m) ~ 0. By Helly's Theorem [2, 
4], F s q  m) ~ 0 and therefore f* <fro. Therefore, f~ = f*. If f ro= f , ,  then there 
exists I i such that f1~ -- f*. Therefore, the solution to problem (2) with I = Ii has 
the optimal value f*. Now, since FN(f*)C Fib(f*), at least one of the solution 
points to problem (2) is also a solution point to problem (1). 

Note that if f~(x) are strictly convex, then the solution point to problem (1) is 
unique. Therefore, the unique solution for group I in the theorem must be the 
unique solution to problem (1). 

3. T h e  n o n c o n v e x  case  

One may suggest that Theorem 1 can be true for nonconvex functions and 
local minima. In this section we show that such modification of the theorem is 
false. However, we present another generalization to Theorem 1 for nonconvex 
differentiable functions. In this section we assume that fi(x) are not necessarily 
convex. 

To show that convexity is essential for the theorem, consider the following 
example: 

fl(x, y) = 2 -  I x -  11- lyl, f2(x, y) = 2 -  Ix + l l - l y l ,  

f3(x, y) = 2 -  Ix l -  lY - 11, fa(x, y) = 2 -  Ix I - lY + 1], (3) 

fs(x, y) = Ixl + lYl- 

A simple check shows that (0, 0) is a global minimum. However, removal of 
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any of the first four functions creates a descent  direction. For  example, by 

removing f l (x ,  y) from (3) the objective function decreases as x increases. 
Therefore ,  there is no set of three functions with a local minimum at (0, 0). 

Geometrically,  every f~(x, y) for  i =  1 . . . . .  4 'covers '  a section of angle ~r/2 

inside which f~(x, y) is increasing. We have arranged the four functions to cover  
all possible directions, Removing one function creates a direction in which the 
objective function is decreasing. One can construct  functions that increase 
inside a section of angle 2"MK for  K > 4 getting a counterexample for any K > 4. 

When f i (x)  are convex the angle of such sections must be at least -rr. Note  that 
when the gradient of f~(x) exists, that angle must be exactly ~r. This observation 
leads to the following theorem. 

Le t  us first present  a new concept  similar to definitions in [1]. Le t  us have a 
function f ( x )  with directional derivatives at every  point. A stationary point is a 
point such that the directional derivative is zero in every  direction. Let  us define 
a non-negat ive  s tat ionary point  as a point such that the directional derivative is 
non-negative in every direction. Similarly, a non-positive stationary point pos- 
sesses non-positive directional derivatives. 

Two trivial properties of the new concepts:  

(i) If a point is a non-negative stationary point and a non-positive stationary 
point, then it must be a stationary point. 

(ii) If the gradient of f ( x )  exists at a certain point, then non-negative sta- 
t ionary point, non-positive stationary point, and stationary point are equivalent at 
that point. 

Let  f i ( x )  = maxi~1{fi(x)}. Let  x s be a non-negative stationary point of fN(x) ,  

and let S = {i I f i (x  s) = fN(xS)}.  Note  that fi(x) are not necessarily convex.  

Theorem 2. I f  the gradient  o f  fg(x) at x s exists  f o r  i E S, then there exists  a subset  

I C N o f  cardinali ty  less than or  equal to k + 1 such that x s is a non-negat ive  

s ta t ionary  point  o f  f i ( x ) .  

Proof. The case n < k  + 1 is trivial, so let us assume n > k + 1. Let  0 be a 
direction vector.  Since x s is a non-negative stationary point of fN(x) ,  there exist 
i @ S such that Vfi (x  s) • 0 >- 0 in this direction. Le t  gi(x) = Vf i (x  s) • (x - x s) for 

i U S. g i ( x ) = O  is the tangent hyperplane to f i (x)  at x = x s. Since for any 
direction 0 there exists an i E S for which gi(x + ;tO)>-0 for )t---0, x s is the 
optimal point for  the problem: 

minx {max {gi(x)}}. 

Since gi(x) are convex for i ~ S, there exist by Theorem 1 a subset I, I C S C N, 
of cardinality less than or equal to k + 1 such that x s is optimal for  the problem: 

minx [max{gi(x)}}. 



230 z. Drezner/ On minimax optimization problems 

There fo re ,  for  any  direct ion 0 there  exis ts  an i E I fo r  which  g~(x +) tO)>-0 ,  

which  m e a n s  Vf~(x s)  • 0 >- O. There fo re ,  x s is a non-nega t ive  s ta t ionary  point  of  

h(x). 
In the fo l lowing example  x s is the global  m i n i m u m  of  fN(x) ,  bu t  fo r  each  

poss ib le  I, f~ (x )  has  no local m i n i m u m  point  at  x = x s. 

f l ( x ,  y) = 2 -  [(x - 1)2+ y211/2, re(x, y) = 2 -  [(x + 1)2+ y2]1/2 
f3(x, y )  = 2 - [x 2 + (y - 1)2] l/z, fn(x,  y) = 2 - [x 2 + (y + 1) 2] 1/z (4) 

fs(x, y) = (x 2 + y2)1/2. 

A s imple  check  shows  tha t  (0, 0) is the global  min imum.  The  gradient  of  f~(x, y) fo r  
i =  1 . . . . .  4 exis ts  at (0, 0). H o w e v e r ,  r e m o v a l  of  any  of  the first four  func t ions  

c rea tes  one  de scen t  d i rec t ion while the d i rec t ional  de r iva t ive  in tha t  d i rect ion is 

equal  to zero.  Fo r  example ,  by  r e m o v i n g  fl(x, y) the  ob jec t ive  func t ion  dec rea se s  as 
x increases .  The  der iva t ive  a long tha t  d i rect ion is zero.  
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