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We give a short proof that in a convex minimax optimization problem in k dimensions there
exist a subset of k + 1 functions such that a solution to the minimax problem with those k + 1
functions is a solution to the minimax problem with all functions. We show that convexity is
necessary, and prove a similar theorem for stationary points when the functions are not
necessarily convex but the gradient exists for each function.
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1. Introduction

We generalize a minimax theorem for convex functions to non-convex
differentiable functions. We prove two theorems, and present two examples.
One example shows that convexity is necessary for the first theorem, and the
second shows that the second theorem must be formulated with non-negative
stationary points rather than with local minimum points.

2. The convex case

In this section we assume that the functions involved are convex. Let fi(x)
for i=1,...,n be convex functions. Consider the following minimax optimiza-
tion problem.

miniinize {max {f,-(x)}} (¢))

1=i=n
where
X = (X1, e 5 Xp)-

Let f* be the minimal value of the objective function in problem (1). By the
convexity of fi(x) the set {x | fi(x) = fo} is either empty or a convex set. Let
N ={1,...,n} and let I C N. Let F;(fo) be the intersection of all sets {x lf.-(x) <
fo} for i € I. Note that f* is the minimal value of f, such that Fy(fo) # 6.
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The following theorem is proved in [3] via a transformation to a regular
mathematical programming problem. We present here a short and direct proof.

Theorem 1. There exists a subgroup I C N of cardinality less than or equal to
k + 1 such that the problem

miniJ{nize {I‘l.’ing{fi(X)}} 2

has an optimal value of f*. Furthermore, at least one of the solution points to
problem (2) is also a solution point to problem (1).

Proof. The case n=<k+1 is trivial, so let us assume n >k + 1. Consider all
possible sets of k + 1 members out of N. Let them be I, ..., I, where r = (i.)).
Calculate

F, = mxin {rrilez}jx{f,-(x)}}. 3)

Since Fy(f*)#0, Fy(f*) # 0. Therefore, f; <f*. Let f™ = max;{fy}. Since f, =
f*, then f™ <f*. Since f; <f™, for every I, Fy(f™) # §. By Helly’s Theorem (2,
4], Fx(f™) # 0 and therefore f* < f™ Therefore, f™ = f*. If f™ = f*, then there
exists I; such that f; = f*. Therefore, the solution to problem (2) with I = I; has
the optimal value f*. Now, since Fy(f*)C F;l.(f*), at least one of the solution
points to problem (2) is also a solution point to problem (1).

Note that if f;(x) are strictly convex, then the solution point to problem (1) is
unique. Therefore, the unique solution for group I in the theorem must be the
unique solution to problem (1).

3. The nonconvex case

One may suggest that Theorem 1 can be true for nonconvex functions and
local minima. In this section we show that such modification of the theorem is
false. However, we present another generalization to Theorem 1 for nonconvex
differentiable functions. In this section we assume that f;(x) are not necessarily
convex.

To show that convexity is essential for the theorem, consider the following
example:

fie, y)=2—|x—1l-|yl,  foAx,y)=2—|x+1|—1yl,
fax, y)=2—|x|=ly =1, fax,y)=2-|x|~|y+1], 3)
fs(x, y) = x| +1yl.

A simple check shows that (0,0) is a global minimum. However, removal of
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any of the first four functions creates a descent direction. For example, by
removing fi(x,y) from (3) the objective function decreases as x increases.
Therefore, there is no set of three functions with a local minimum at (0, 0).

Geometrically, every fi(x,y) for i=1,...,4 ‘covers’ a section of angle w/2
inside which f;(x, y) is increasing. We have arranged the four functions to cover
all possible directions, Removing one function creates a direction in which the
objective function is decreasing. One can construct functions that increase
inside a section of angle 2w/K for K =4 getting a counterexample for any K = 4.

When f;(x) are convex the angle of such sections must be at least . Note that
when the gradient of f;(x) exists, that angle must be exactly «. This observation
leads to the following theorem.

Let us first present a new concept similar to definitions in [1]. Let us have a
function f(x) with directional derivatives at every point. A stationary point is a
point such that the directional derivative is zero in every direction. Let us define
a non-negative stationary point as a point such that the directional derivative is
non-negative in every direction. Similarly, a non-positive stationary point pos-
sesses non-positive directional derivatives.

Two trivial properties of the new concepts:

(i) If a point is a non-negative stationary point and a non-positive stationary
point, then it must be a stationary point.

(ii) If the gradient of f(x) exists at a certain point, then non-negative sta-
tionary point, non-positive stationary point, and stationary point are equivalent at
that point.

Let fi(x) = max;e;{fi(x)}. Let x5 be a non-negative stationary point of fy(x),
and let S = {i ]f.-(xs) = fn(x5)}. Note that fi(x) are not necessarily convex.

Theorem 2. If the gradient of fi(x) at x5 exists for i € S, then there exists a subset
I CN of cardinality less than or equal to k + 1 such that x° is a non-negative
stationary point of fi(x).

Proof. The case n <k +1 is trivial, so let us assume n>k+1. Let 8 be a
direction vector. Since x5 is a non-negative stationary point of fy(x), there exist
i €S such that Vfi(x5)- 6 =0 in this direction. Let gi(x) = Vfi(x®) - (x — x%) for
i€S. g(x)=0 is the tangent hyperplane to fi(x) at x = x5 Since for any
direction 6 there exists an i € S for which gi(x+A8)=0 for A =0, x° is the
optimal point for the problem:

mxin {Tffsx {g.-(x)}}-

Since g;(x) are convex for i € S, there exist by Theorem 1 a subset I, ] CS CN,
of cardinality less than or equal to k + 1 such that x° is optimal for the problem:

min {r?gx{g.-(x)}}.
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Therefore, for any direction 6 there exists an i €I for which gi(x+A6)=0,
which means Vf;(x5) - = 0. Therefore, x% is a non-negative stationary point of
fr(x).

In the following example x5 is the global minimum of fy(x), but for each
possible I, f;(x) has no local minimum point at x = x5.

fl ) =2=1c =D+ yT?  falx, y)=2-[(x+ 1P+ 7"
ey =2-1+G-DI"  foy)=2->++ D" “)
fs(x, y) = (x> + y)"2.

A simple check shows that (0, 0) is the global minimum. The gradient of f;(x, y) for
i=1,...,4 exists at (0,0). However, removal of any of the first four functions
creates one descent direction while the directional derivative in that direction is
equal to zero. For example, by removing f(x, y) the objective function decreases as
x increases. The derivative along that direction is zero.
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