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Stochastic linear programs have been rarely used in practical situations largely because of 
their complexity. In evaluating these problems without finding the exact solution, a common 
method has been to find bounds on the expected value of perfect information. In this paper, 
we consider a different method. We present bounds on the value of the stochastic solution, 
that is, the potential benefit from solving the stochastic program over solving a deterministic 
program in which expected values have replaced random parameters. These bounds are 
calculated by solving smaller programs related to the stochastic recourse problem. 
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1. Introduction 

Many practical decision problems involve uncertain parameters that are 
commonly replaced with approximations and expected values. Stochastic pro- 
gramming approaches are generally avoided because, to the practitioner, they 
appear to multiply the complexities of already complex situations. Sensitivity 
analyses and deterministic solutions for different scenarios are typically used to 
determine the effects of changing situations. In attempting to make the explicit 
consideration of uncertainties more practical, this paper presents an analysis of 
the expected return from solving a stochastic program instead of deterministic 
scenarios. We also show that information about this return can be gained in 
simple extensions of the sensitivity and scenario approaches. 

The criterion in determining the importance of uncertainties in mathematical 
models has generally been the expected value of perfect information (EVPI) [8]. 
This quantity represents the maximum amount one would pay in return for 
complete information about the future. Madansky [7] first examined bounds for 
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the EVPI in stochastic programs. His results were later enhanced by Huang, 
Vertinsky and Ziemba [6] and Avriel and Williams [1]. 

Estimates of the expected value of perfect information reveal the potential worth 
of more accurate forecasts. In situations in which one cannot gather more infor- 
mation about the future, however, it may be more pertinent for decision makers to 
know how well their deterministic model solutions perform relative to solutions 
from more complicated stochastic programs. For this reason, we investigate a 
quantity we call the value o f  the stochastic solution (VSS). 

To motivate our development, we first show that the EVPI and VSS are 
distinct, different values that measure different types of uncertainty. We then 
review basic inequalities for these quantities and present upper and lower 
bounds on VSS that can be found by solving linear programs at most twice the 
size of the expected value linear programs. These procedures should be more 
efficient than direct techniques for large stochastic recourse problems. 

2. The stochastic linear program with recourse 

Dantzig [3] and Beale [2] first formulated versions of the stochastic linear 
program with fixed recourse. We begin a discussion of this problem by for- 
mulating the program: 

Minimize ~b(xl, ~) = ClXl + Min[c2x2 [ A2x2 = ~ + BIXI, X 2  > - 0], 
Subject to Alxl = bl, Xl->0, (1) 

where the vectors Cl E R "l, c2 E R n:, and b E R ml, are known, the m2-vector, ~, is 
a discrete random vector defined on a finite sample space w, and AI, B1 and A2 
are known matrices. The decision vector xl represents decisions made in the first 
period, and x2, a random vector, represents decisions in a future, second period 
after the first period decisions have been made. 

A perfect information solution would choose optimal first period decisions in 
(1) for each realization of ~. The expected value of this solution is known in the 
literature as the 'wait-and-see' (WS) solution [7], where: 

WS = E,[Min $(xl, ~)]. (2) 
X 1 

An alternative problem, called the stochastic program with fixed recourse by 
Walkup and Wets [9], or the recourse problem (RP) by Avriel and Williams, is 
written: 

RP = Min E,[~b(Xl, ~)]. (3) 
Xl 

We note that our assumption of a discrete random variable limits the generality 
of this program. This should not be too restrictive here since discrete dis- 
tributions are generally assumed in practical situations. Letting ~l, ~2 . . . . .  ~k be the 
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possible outcomes of ~, we can write (3) as: 

R P =  Min C 1 x I + p l c 2 x l g + " ' + p k c 2 x k 2 ,  

s.t. A1XI -- bl,  
-- l l X l  + A2 x l  = ~1, 

- Blxl + Azx~ = ~2, 

-- B1Xl + Z2x~ = ~k, 

xl, x~>-O, i = 1  . . . . .  k, 

(4) 

where pi = p{~ = ~i}.  

We also note that the more general recourse problem, as surveyed by Wets 
[10], includes randomness in B~, As and c2. We can include this in program (4) by 
adding components to vectors x~ . . . . .  x~ and increasing the number of scenarios 
(realizations of ~). (For example, if x~(j) can be carried as inventory to the 
second period according to B [(j) or B2(j), then we add x~(n2 + 1) and A2(n2 + 1) = 
B~(j ) -BI( j ) ,  where x~(n2+l )=x l ( j )  for ~ . . . . .  ~k, and x~(nz+l )=O for 
~k+l . . . . .  ~2k.) These additions again greatly increase the size of the problem. To 
avoid this, our emphasis will be on using solutions to less complex problems to 
gain information about the solution of problem (4). 

The recourse problem is almost always avoided in practice because of the 
number of possible realizations and the resulting large size of (4). The ap- 
proximation problem most often solved is the expected value problem: 

EV = Min ~b(xl, E(~)). (5) 
x 1 

Letting E(~) = ~, this program yields first period solutions, 2~(~) which multi- 
plied by BI, become inventories, B l~ ,  to the second period. A second optimiza- 
tion must then be performed after ~ is realized. We have: 

ck(~l((), ~) = clxl(~) + Min[czx2 ] Azx2 = ~ + B~1(~), x2 >- 0]. (6) 

We assume here that if no feasible x2 exists, then ~b(~l(~), ~) = +oo. 
The expected result of using the EV solution is then 

EEV = Et[~b(~,(~), ~)1. (7) 

In his analysis of this and the other quantities above, Madansky [7] established 
the following inequalities: 

EEV - RP -> WS >- EV. (8) 

These results follow directly from Jensen's inequality and the convexity of 
,/,(x~, O. 
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3. The relation between the value of perfect information and the value of the 

stochastic solution 

Analyses  of the effect of uncer ta inty in stochastic programs generally concen-  
trate on the expected  value of perfec t  information (EVPI).  By our definitions, 

this is: 

E V P I  = RP - WS. (9) 

We immediately  see f rom (8) that  

0 -< E V P I  -< EEV - EV. (10) 

These bounds are easily computable ,  as Avriel and Williams [1] suggest, and 
can be of substantial  benefit in providing bounds on the amount  a decision maker  
should spend to gain more information about  the future.  More refined upper  and 
lower bounds on E V P I  are presented in [6]. 

When no more information about  the future can be found,  a more  useful  value 
may be the difference between the result  of using an expected  value solution and 

the recourse problem solution. We call this the value of the stochastic solution 
(VSS), where 

VSS = E E V  - RP. (11) 

Frequently,  VSS and E V P I  are related, but  they are not equivalent  measures .  
Appendix A presents  two simple examples ,  in which, E V P I  = 0 and VSS ~ 0, 
and, in which, E V P I  # 0 and VSS = 0. The fo rmer  example  is only possible when 
multiple opt ima occur  at the minimum solution of EV and may be avoided. The 
latter situation has, however ,  been  observed in a product ion problem for  a large 
steel company,  and may  be relatively f requent  in practical  problems.  

4. Bounds on the value of the stochastic solution 

As in the case of the expected value of per fec t  information,  an immediate  

result of (8) is that  

0 -< VSS -< EEV - EV. (12) 

When  EV = EEV,  we therefore  have that  VSS = 0 and E V P I  = 0. Although this 
result  is sufficient for VSS = E V P I  = 0, the conditions for  VSS = 0 and E V P I  = 0 
are not the same,  as the examples  in Appendix  A indicate. The fundamental  
difference be tween the conditions for  the two quantities to be zero is that the 
first period decisions must  be independent  of the realization of ~ for  E V P I  = 0, 
while VSS can be zero with the first period solution including some information 
about  the second period constraints.  
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To see that these conditions are different we first observe that if there exists 
some x* and x~(~) such that (x*, x*(O) solves (1), then EVPI  = 0. To observe 

that the independence of x* from ~ can also be a necessary condition for 
EVPI  = 0, we assume that the components  of ~ are nondegenerate independent 
random variables and that (1) is nondegenerate.  In this case, if EVPI  = 0, then 
there must exist x* that solves RP and that is part  of a solution to (1) for all ~. 
x~ is therefore  independent  of ~ and has exactly ml nonzero components.  

The nondegeneracy and independence assumptions above are necessary to 
avoid in which cases x* has more than ml nonzero components .  Even  without 
these assumptions, this would be an unusual case. In general, then, for  EVPI  = 
0, an optimal basis for  each subproblem must have square block triangularity [4]. 
The possibility of multiple optima is, however,  an important  concern. If multiple 
optima exist for  the expected value problem (1) where ~ = ~ and, if x* is not 
chosen, then the value of the stochastic solution for that choice may not be 0 (as 
in the example of Appendix A). 

Less restrictive sufficient conditions for having the value of the stochastic 
solution equal to 0 can be found. To develop these conditions, we first define an 
auxiliary problem, which we call the pairs subproblem of ~ and ~: 

Min ~bP(x, ~, ~) = clxl +/~c2x2(~) + (1 -/~)c2x2(~), 
s.t. A~x~= bl, 

- B~xl + A2x2(~) = ~, (13) 
- B lx l  + A2x2(~) = ~, 

X 1 ~--- 0 ,  X2(~) , X2(¢)  :> 0 ,  

where/~ = P(~ = ~). 
The pairs subproblem leads to simple sufficient conditions for VSS = 0. We 

observe that if (1), where ~ = ~, has a solution (x*, x~(~)) and there exists some 
x~(~) for  every ~ such that (x*, x~(~), x~(~)) solves (13), then clearly x* solves 
RP and VSS = 0 with ~ substituted for  ~ in the definition of EEV. Finding ~ may 
prove difficult as many pairs problems must be solved. We shall restrict 
ourselves to ~ = ~ in the computational discussion, although specific knowledge 
about a problem may lead to another  choice. Intuitively, the conditions for 
hold when a single second period scenario requires additional resources from the 
first period that are sufficient for  all other scenarios and when, without these 
conditions, a costly penalty would arise. We discuss a case in which this 
situation arose and in which ~ = ~ below. We also note that these conditions 
show that it is not necessary for Xl to be independent  of ~ for VSS = 0. Hence,  
some information about the future can be incorporated into the solution. 

The pairs subproblem (13) can also be used to determine bounds on the VSS 
even when the sufficient conditions do not hold. Since the pairs subproblems are 
much less complex than the general recourse problem (4), these bounds may be 
valuable in determining whether  the additional computations for the stochastic 
program are warranted. We first define two quantities to which we will refer. The 
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first SPEV, for sum of pairs expected values solutions, is 

1 k . 

SPEC --- (1 -/~------) '~. p 'min ~bP(x, ~, ~') (14) 

where we have restricted ourselves to the simpler discrete case, let ~ = ~, and 
allow/~ = 0. 

The second quantity is EPEV, for expectation of pairs expected value solu- 
tions. For this quantity, we define ~( ( ,  ~ )  to be the optimal first period solution 
of (13) for ~ = ~, ~ = ~i. We then have 

EPEV = Min E[6(~l(~, ~'), ~)], (15) 
i 

where we include ~ =  ~ in the minimization. The EPEV represents the best 
expected value solution that can be obtained from the problem (13) for all i. To 
find this quantity, each pairs subproblem and each second period problem (as in 
(6)) would be solved. This procedure may require several optimizations, but each 
would be of manageable size. 

The SPEV and EPEV are related to the RP solution as stated in the following 
lemmas. 

Lemma 1. WS --< SPEV -< RP. 

Proof. Any solution x*, of the recourse problem must have a feasible completion 
in (13) for all i. Hence, for any optimal solution (£~, £2(~), £2(~)), of (13), we have 

clxl + pc2X2(~) + (1 - ~)c2x2(~ i) <- ClX* + ffc2x~(~) + (1 - P)c2x~(~i), 
(16) 

where x*,x~(~0, x~(~2) . . . . .  X~(~k) are optimal in (4). Taking sums over i and 
multiplying by p ~, we have SPEV -< RP. 

Similarly, every (£~, X2(~)) and (£1, X2(~ I) found in the pairs subproblem is 
feasible for the individual problems in (4). Hence, SPEV - WS. 

Lemma 4.2. RP -< EPEV - EEV. 

Proof. Since 

k 

E,[6(~1(~, ~'), O] = c,X,(~, ~') + ~,  p,c2~, 
i = 1  

for £~ optimal in the second period problem (6) we have 

E¢[d,(£t(~, ~i), ~)] _ RP, for all i. 

Hence, EPEV - RP. 

(17) 
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The second inequality follows obviously from observing that the solution of 
(13) for ~ = ~ will be the same as in the expected value problem (4) when ~ = ~. 

The two lemmas above immediately give us the following theorem. 

Theorem 4.3. 0 -< EEV - EPEV -< VSS -< EEV - SPEV -< EEV - WS. 

Proof. This follows directly from Lemmas 4.1 and 4.2 and (8). 

The upper bounds on the value of the stochastic solution can be easily 
calculated by solving the k - 1  pairs subproblems. These problems should be 
much less complex than the recourse problem for large k. The result of these 

optimizations should then be used as a guideline for motivating further effort in 
solving the recourse problem. If the upper bound is large, more investigation 
may be warranted, but, if it is small, the expected value solution may be used 
without significant consequences. 

We note that the lower bound on VSS provides necessary conditions for 
VSS = 0. This bound requires more computation in the evaluation of EPEV, but 
it may be warranted when a large upper bound on VSS has been found. The 
pairs subproblem solutions here are used in a similar manner to the deterministic 
solutions in the 'modified wait-and-see' approach of Gunderson, Morris, and 
Thompson [5]. In each case, the best expected value solution for a set of smaller 
problems has been used as the solution of the larger recourse problem. Accord- 
ing to Gunderson et al., practical problems suggest that this procedure is 
reasonable since the majority of first period decisions remain unchanged under 
varying second period realizations. We believe that pairs solutions are quite 
valuable here because they can include basic decision variables from either but 
not both of the scenarios. Our experience on an optimization model for capacity 
expansion demonstrated the importance of this property. 

The model was formulated to determine when coke producing facilities should 
be expanded over an intermediate term planning horizon. Within this model, levels 
of production at various sites and levels of importation from external sources had to 
be determined. Random quantities included the demand for coke in each market 
region and the amount of low and high priced imported coke available. The 'worst 
case' scenario that assumed the highest demand in each market and the most 
restricted levels of low cost imports led to a first period decision to expand capacity 
and to produce maximum inventories at each plant. The scenarios that assumed low 
demand and large supplies of low cost imports led to myopic first period decisions 
(minimum inventories). The optimal solution to the recourse problem included the 
expansion of the first period but did not require maximum inventories at all plants. 
In this case, the expected cost of using high cost imports to satisfy demand for the 
worst case was less than the cost of producing in the first period to fill the maximum 
inventories. 
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Solving the pairs problems using the worst  case scenario as ~ resulted in 
EPEV = RP but SPEV < R P  since the worst  case scenarios solution was not 
part of the solution to RP. Small changes in the cost of imports did, however,  
make the worst  case first period solution optimal in RP and VSS = 0. In this 
case, also, the expected value solution used the same set of basic activities as 
the optimal solution, and the 'modified-wait-and-see' procedure would have led 
to an optimal solution. 

This problem demonstrated that the pairs subproblems could be useful in 
determining decisions for recourse problems. The substitution of the worst  case 
for ~ was based on the specific problem and the observation that first period 
production was required to meet  future demand. In other examples,  information 
such as that used here may be beneficial in determining which scenarios to use 
a s  ¢. 

Successively tighter bounds on the value of the stochastic solution can be 
found by optimizing larger subproblems. In addition to pairs, combinations of 
three and more scenarios can be used as subproblems to bound VSS. 

We can obtain these bounds by defining SGEV(I) as the sum o f  group expected  

values with l scenarios,  where 

SGEV(I) -- 
1 k k k . 

( l_- -~r  ~ ~ ... ~ p,,p,2 ... p'~ Min ~b'(x, ~, ~ . . . . .  ~'~), 
il=l  12~il i l~il  1 

~i~ ~F~ ~iF( (18) 

and where 4~l(x, ~,~q,~i2 . . . . .  ~i,) is the objective function of the group sub-  

problem : 

Min 

s.t. 

6~(x~, ~1, ¢~1, ¢,~ . . . . .  ¢ '9  = c~x~ + ~c:x2(F;) + ~ (1 - O)c :x : (¢ 'O,  
ijeL 

A1xl = b, 

- Blx~ + A2x2(~) = ~, 
- Bx l  + A2x2(~i0 = ~ij, j = 1, 2 . . . . .  l, 

xl, x2(~), x2(~iO -> O, j = 1, 2 . . . . .  1, 

(19) 

where L is the set of distinct indices among il, i2 . . . . .  il. 
Analogous to EPEV,  we also define EGEV(I)  as the expecta t ion  o f  group 

expected  values solut ion with l scenarios.  We define xl(~, ~q, ~12 .... , ~i~) as the 
optimal solution in (19), and obtain 

EGEV(I)  - Min E~[6(~(~, ~i1, ~12 . . . . .  ~ i / ) ,  ~ ] .  (20) 
(il, i2 ..... it) 

The extensions of Lemmas 4.1 and 4.2 follow: 

Lemma 4.4. WS <-- SPEV = SGEV(1) - SGEV(2) -< ... -< SGEV(k - 2) -< 
SGEV(k - 1) -< RP, where (; has k poss ible  realizations.  
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Proof.  By  definition S G E V ( 1 ) =  S P E V .  For  (:~,:~2(~),:~2(~9, :~2(~ ~2) . . . . .  :~2(~,)) 

opt imal  in (19) with l = q, and for  

(Xl, X2(~), X2(~il)' X2(~/2), " " '  X2(~iq)) 

k 
= 1 ~_, (x, , j ,  x , , j (~) ,  x,,j(,~il) . . . . .  x~j(~iq)), 

where  (x *J, x~'~(~),x~'J(,~'),x~'J(,~i'),x'~'J(,~i~),x~'J(,~J)) is opt imal  in (19) for  j = 

q + 1 and l = q + 1, then 

c121 +/~c2x2(~) + ~ (1 -/~)c222(~i0 <-- c~Y,, + pc2Yc2+ ~ (1 -/~)c2~2(~19. 
ijEL ijEL 

By taking sums as in (18) and mult iplying 
S G E V ( q )  -< S G E V ( q  + 1). 

We also obse rve  that  for  I = k - 1 ,  the 

(21) 

by  p i~, p i2 . . . . .  p iq, we obtain 

c o m p o n e n t s  of  any  solution 

(x$, x$ 'l, x~ '2 . . . . .  x$  'k) of  (4) which  co r r e spond  to il, i2 . . . . .  ik-i in (19) will fo rm a 

feasible solution to (19). Hence ,  we obtain  S G E V ( k -  1)-< RP.  

Lemma 4,5. RP  -< E G E V ( k  - 1) ~ E G E V ( k  - 2) -< -.. - EGEV(2)  -< EGEV(1)  = 

E P E V  -< E E V .  

Proof.  We note  tha t  E G E V ( 1 ) =  E P E V  by  definition, and we observe  that  any 

solution cons idered  in E G E V ( q - 1 )  is cons idered  in E G E V ( q ) ,  hence  

E G E V ( q )  -< E G E V ( q  - 1). 
E G E V ( k  - 1) - R P  also fol lows direct ly  since any  first per iod solution of  (19) 

with il, i2, . . . ,  i~ all dist inct  mus t  have  a feasible comple t ion  in (4). 

These  two lemmas  lead direct ly  to: 

Theorem 4.6. 0 --< E E V  - E P E V  = E E V  - EGEV(1 )  -< E E V  - EGEV(2)  -< 

• .. E E V  - E G E V ( k  - 1) -< VSS -< E E V  - SGEV(k  - 1) -< E E V  - S G E V ( k  - 2) -< 

• .. -< E E V  - SGEV(2)  -< E E V  - SGEV(1)  -- E E V  - S P E V  -< E E V  - WS. 

To compu te  SGEV( / )  and E G E V ( / )  fo r  groups  of  m a n y  scenarios  m a y  lead to 

more  computa t iona l  effort  than is involved  in comput ing  the RP  solution. In  fact ,  

fo r  l = k - 1, solving RP  is equivalent  in terms of  p rob lem size to solving one of  
the group subproblems.  These  bounds  should,  therefore ,  be used only w h e n  they  

add in format ion  to the problem wi thou t  creat ing m a n y  addit ional  computa t ions .  

Again,  we used ~ as a base case fo r  these subprob lems  but  o ther  values  of  

could be used  based  on more  specific in format ion  about  the problem. 
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5. Summary 

The value of the stochastic solution has been presented as a measure of the 
benefit received from solving the stochastic recourse problem instead of the 
deterministic expected value problem. The relationship between this quantity 
and the expected value of perfect  information was presented,  and the dis- 
tinctions between the two differences were noted. Bounds were then given for 
the value of the stochastic solution that can be computed by solving a series of 
subproblems that are more computationally tractable than the recourse problem. 
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Appendix A 

Example A.1. EVPI  = 0 and VSS ~ 0. We consider the following program: 

Min z = xl + 4x2 + E~[Min Yl + 10y~ + 10y~ Ix1 and x2], 
s.t. x~ + x2= l, 

- x l + 2 x 2 +  Yl+ Y~- Y~ = ~, (A.1) 
0 -  < yl-<2, x~,x2,Y+2, y~---0, ~ is Uniform[I ,3] .  

For  the deterministic version of this problem we have the following optimal 
first period variables and the range of ~ over which they are optimal. 

Basic Range 

(x,, x0 = (~, b [1, 3] 
(xl, x 9  = (0, 1) [2, 3] 

4, (Yt,~ ¢ ) 

10 

5 

5 
0 
0 

\ 
\ xl chosen optimally 
\ for all ~¢ 
\ - - - - -  xlchosen by recourse 

\ problem. 

\ - - ' - -  ~t chosen by expected 
\ value problem. 

I 1 [ 
I 2 3 

Fig. 1. EVPI = 0, VSS ~ 0. 
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t0 

5 

2 ®  

® 

3/2  2 

® 

3 

* ~ chosen optimally 
for all ~'. 

0 ~t chosen by recourse 
problem. 

X ~ chosen by expected 
value problem. 

Fig. 2. EVPI ~ 0, VSS = 0. 

The solution of the stochastic problem includes (x~, x : )=  (I, {). Since this is 
optimal for all ~, we have W S =  RP and E V P I =  0. At ( =  2, however, an 
alternative optimum exists. If ( xbx : )=  (0, 1) is used as the expected value 
solution, we find (see Fig. 1) that 

v s s  -- 4 = ( A . 2 )  

We note that large scale problems often include alternative optima and that 
this example may not be a trivial case. 

Example A.2. E V P I  # 0 and VSS = 0. We cons ider  (A.1) again where  ~ ~ {0, 3, 3} 

and  P(~  = 0) = P(~ = ~) = P(~ = 3) = ~. In  this example ,  the Optimal basic  set of 

first per iod var iab les  for the expec ted  value p rob lems  is {xl, x2}. These  var iables  
2 1 are also basic in the optimal recourse problem solution. For (x~, x2)= (5, ~), an 

optimal solution of the expected value problem, we have VSS = 0. However, see 
Fig. 2, 

E V P I  = 3. (A.3) 
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