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The class of real n × n matrices M, known as K-matrices, for which the linear complementarity 
problem w - Mz = q, w >1 O, z >1 O, WTZ = 0 has a solution whenever w - Mz = q, w >I O, z >1 0 has 
a solution is characterized for dimensions n <4. The characterization is finite and 'practical'. 
Several necessary conditions, sufficient conditions, and counterexamples pertaining to K-matrices 
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principal submatrices are also K-matrices) is proved for dimensions <4. 
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I. Introduction 

Let E"  be the n -d imens iona l  Euc l idean  space and  let E "×" be the set of  real 

n x n  matrices. For  M ~ E  "x", Mo  denotes the ( i , j )  entry in M, and  for /, J c  

{ 1 , . . . ,  n}, MI. is the submatr ix  of M consist ing of the rows indexed by I ;  and  M . j  

consists of the columns indexed by J. The j t h  co lumn of M is denoted  either Mj 

or M.j, the ith row of M is denoted  by Mi.. 

Given  a matrix M ~ E"×" and  vector q c E",  the l inear  complementar i ty  problem,  

denoted  by (q, M ) ,  is to find vectors w, z~  E"  such that 

w - M z = q ,  
(LCP) 

w>lO, z>lO, w T z = O .  

This problem arises in such diverse areas as economics,  game theory,  l inear  program- 

ming,  mechanics ,  lubr icat ion,  numer ica l  analysis,  and  non l inea r  opt imizat ion.  Gen-  

erally in a par t icular  appl ica t ion  area the matrix M has a special structure (e.g., 
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symmetric positive definite), and moderately efficient algorithms have been 
developed to solve these special linear complementarity problems. Nevertheless 
considerable attention has been devoted to the general linear complementarity 
problem, and in particular to special classes of  matrices related to the problem. 

The matrices M c  E n×n for which (q, M)  has a unique solution for every vector 
q ~ En are known as P-matrices, and are characterized algebraically by having all 
their principal minors positive. The equivalence of (q, M)  having a unique solution 

for all q c  E ~ and M being a P-matrix (all principal minors positive) has been 
proved in many different ways, most notably by Ingleton [10], Samelson, Thrall, 
and Wesler [17], Murty [16], Watson [19], and Kelly and Watson [11]. Another 
finite characterization for (q, M) to have a unique solution for every q~ E" 
(equivalently, for M to be a P-matrix) proved in Murty [15], Tamir [18] states that 
this property holds iff (q, M)  has a unique solution whenever q is in the finite test 

set F = {I.1 . . . .  , I . , , . . . ,  M.1 , . . . ,  M.,, - M n ,  • • . ,  - M . , ,  e} where I is the unit matrix 

of  order n and e is the column vector in E"  all of whose entries are 1. M is called 
a Q-matrix if (q, M) has at least one solution for all q c E ", and for over ten years 
there have been serious attempts to characterize Q-matrices in a manner similar to 
P-matrices. Numerous necessary conditions or sufficient conditions have been found 
(see, e.g., Watson [19], Doverspike [4], Doverspike and Lemke [5]), but simple 
algorithmic necessary and sufficient conditions have remained elusive. Progress is 

being made, though, as Cottle [3] recently characterized completely Q-matrices 
(matrices whose principal submatrices are all Q-matrices). 

To investigate the situation further, we require more notation. 

Given any matrix D, C ( D )  denotes the cone { x [ x  = Dy, y >10}. The cone generated 
by the set of  vectors V = { V b . . . ,  Vk} is 

/ 1 C ( V ) = C ( V 1 , . . .  Vk) = ~ o q V i l o q ~ O , i = l , 2 , . . . , k  . 
i ~ 1  

For q ~ E  n, V c E  n, if q c C ( V )  we say that q is covered by C ( V ) .  If  q c E  ~, 

V = { V 1 , . . .  V n } c E  n, q is in the interior of C ( V )  if q ~ C ( V )  and q=~7=la~V~ 

imply a~ > 0 for all i. 
C(A),  where Ai ~ { Ii, -]Vii}, i = 1, 2 , . . . ,  n, is called a complementary cone formed  

f rom M. (q, M)  has a solution if and only if q is in some complementary cone. 
C ( A ) ,  where {A1 , . . . ,  An}c  { / j , - M j  IJ = 1, 2 , . . . ,  n}, is called a noncomplementary 

cone formed  f rom M. Note: The set of  complementary cones formed from M is 
contained in the set of  noncomplementary cones formed from M. 

M is called a K-matr ix  (following Lemke [13]) if the existence of a solution to 
w-Mz  = q, w >1 O, z >i 0 implies the existence of a solution to the linear complemen- 
tarity problem (q, M).  (The class of  K-matrices is also referred to as the class of 
Qo-matrices in some of the literature.) So a K-matr ix  is a matrix M such that (q, M)  
has a solution for every q c C ( A ) ,  where C ( A )  is any noncomplementary cone. A 
matrix M is c a l l e d / (  (completely K )  iff it and all its principal submatrices are K. 
Clearly a K-matr ix M is a Q-matrix iff C ( M ) ( " )  the interior of  C ( I ) # 0 .  Thus a 
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finite characterization of  K-matrices would give a characterization for Q-matrices. 
Attempts at an algorithmic characterization of K-matrices have been made by Garcia 
[8], Doverspike [4], Doverspike and Lemke [5], among others. This is a larger class 
of  matrices than the Q-matrices, but for various reasons, it may be easier to 
characterize than the class of  Q-matrices. A finite but impractical (even for n = 4) 
algorithm to check whether a given matrix M is a Q-matrix attributed to D. Gale 
has been described in M. Aganagic and R.W. Cottle [1]. Here we briefly discuss 
how this algorithm can be readily extended into a finite algorithm to check whether 
a given square matrix M of order n is a K-matrix.  Given M, a square matrix A of  
order n is called a complementary  submatr ix  of  ( / I - M )  if A.j  c {I.j,  --M.k} f o r j  = 1 
to n. Let A ~, . . . ,  A t be all the nonsingular complementary submatrices, where l ~< 2". 
Let D r = ( A t )  - 1 ,  t = 1 to I. Consider the following system of linear constraints in 
which the variables are w c E n, z c E", q e E n, 

Df , .q<O t = l  to / ,  

w - M z - q  =0,  (1) 

w~>0, z~>0, qunrestricted, 

where, for each t = 1 to l, 1 <~ i, ~< n. Because of the possibility of  the choice of  it, 
there are n ~ systems of the type (1). Clearly, M is a K-matr ix  itt each of the n z 
systems of type (1) has no feasible solution (w, z, q). The feasibility or infeasibility 
of  a system of type (1) can be established finitely using the well known theorems 
of the alternative and algorithms for linear programming. This provides a finite 
algorithmic approach for checking whether the given square matrix M of order n 
is a K-matrix,  but, since this involves checking the infeasibility of  n I systems of 
type (1), where I could be as large as 2 ", this approach is impractical even for n = 4. 
Since this approach,  though finite, is very inefficient, in this paper  we explore other 
finite characterizations for K-matrices. Using P-matrices as an ideal model, there 
are two types of  desirable characterizations. One type would say that M is a K-matr ix  
if and only if some linear algebraic statement about M holds, where the statement 
is in terms of  eigenvalues, minors or some other algebraic quantity. The second type 
of characterization would say that M is a K-matr ix if and only if (q, M)  has a 
solution for all q in some finite 'test set', which is permitted to depend on M and 
q. The exhaustive numerical examples in Watson [19] and Kelly and Watson [11] 
indicate it is unlikely that a characterization of either type exists for Q-matrices. 
The present paper  gives a characterization of the second type for K-matrices of  
dimension less than 4. The situation in dimension 4 is considerably more complex, 
and is being investigated. 

Section 2 gives a characterization of K-matrices for dimension n = 2, and a few 
other minor results. Section 3 contains the characterization of K-matrices for 
dimension 3, and Section 4 contains a characterization of completely K-matrices 
( M  is completely K if all its principal submatrices are K-matrices) in dimension 
3. Note that since every I x 1 matrix is a K-matrix,  a 2 x 2 K-matr ix  is also completely 
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K. Hence the characterizat ion of  2 x 2 K-matr ices  in Section 2 is also a characteriz- 
ation of  completely K-matr ices  for d imension 2. 

S n-~ denotes the unit sphere in E n. 

In  the sequel, the word 'generator '  refers to any column vector o f  ( I  i - M ) .  

2. Two-dimensional theorems 

Theorem 1. F o r  M c E  2x2, M is ff2 iff - M l d - I  1 and -M2+ I2 are covered by the 
complementary cones of M. 

Proof.  I f  M is / (  then by definition both  -MI+I1  and -M2+I2 are covered by 
the complementary  cones o f  M. 

Assume - M 1  + I1 and - M 2 + / 2  are covered by complementa ry  cones. M is not 

/ (  if and only if there is some port ion o f  the cone generated by -M~ and I~, for 
i = 1 or 2, which is not  covered by the complementary  cones. 

Case 1. Assume that the cone C(-M~, I~) does not  contain a n y / j  or - M j ,  j r  i. 

- M j +  I~ is covered and since there are no generators in the interior o f  the cone 

C(-M~, Ii), the cone that covers - M ~ + / i  must  cover the entire cone C(-M~, I~). 
Case 2. Assume that the cone C(-Mi,  Ii) does contain /j or - M j ,  j ~ i, and let 

Aj be this generator. Then the two cones C(Aj, I~) and C(Aj, -Mi)  will cover all 
o f  the cone C(-M~, Ii). [] 

Counterexample  to Theorem 1 for M 6 E3X3: Let 

M = - 2  and q = . 

Then 

311+412-M1 = q, 

I1 - M 2  = - 2 M 1  - M 2  + I3, 

I2-M2=2I~ +312+ I3, 

I 3 -  M3 = I~+ I2 -2M3 ,  

but  q is not  covered by any of  the complementary  cones o f  M. 

Theorem 2. Let M ~ E 2×2. I f  de t (M)  > 0, then M is K. 

Proof.  D e t ( M ) >  0 implies the arc f rom - M 1  to - M 2  is counterclockwise.  

Case 1. C(Ib/2) n C(-M1,  - M 2 )  ¢ {0}. I f  the cone C(I1,/2) contains - M i ,  for 

i = 1 or 2, then - M i + L  is covered by the cone C(Ib I2). I f  the cone C(Ib 12) does 
not  contain - M i ,  for i = 1 or 2, then -M~ + I~ is covered by the cone C(-Mi,  -M2). 
Therefore,  by  Theorem 1, M is /(. 
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Case 2. C(I1,/2) c~ C ( - M b  -M2) = {0}. The arc from 11 to/2 is also counterclock- 
wise. Starting at 11 and going counterclockwise the generators are encountered in 
the following order: I1, 12, -M1,  -M2. Since the generators are found in an 
alternating order (alternating order refers to the subscripts of the generators), if the 
cone C(I~, -Mi)  has a nonempty interior it must contain Aj = / j  or -Mj ,  j # i. In 
this case the cone C(Ii, -M~) is covered by the two cones C(Aj, Ii) and C(Aj, -M~). 
If  the cone C(I~, -Mi)  has an empty interior then C(Ii, -M~) is a straight line and 
is obviously covered by the complementary cones of M. [] 

Counterexample to Theorem 2 for M c E 3×3. Let 

[ ! - 1  4 ]  

M =  -3  1 . 

0.2 -0.05 

Then d e t ( M ) =  13.95>0, but I2 -M2= (1, 4,--0.2) t is not covered by any of the 
complementary cones of M. This matrix is from Kelly and Watson [11]. 

Theorem 3. Let M e  E 2×2. IfM~.<O or M2.<0 then M is K. 

Proof. 
Case 1. MI .<  0. If  MI .<  0 then both -M~ and -M2  lie in the first or fourth 

quadrant of E 2×2. In this case 12-M2 is covered by C(I~, l z ) u  C(Ia, -M2).  
Case la. -M~ lies on I1 or -M~ is in the first quadrant. In this case I~-M~ is 

covered by the cone C(I1, I2). Then, by Theorem 1, M is /~. 
Case lb. -M~ lies in the fourth quadrant. In this case I1 is covered by the cone 

C(I2 , -MO,  therefore / 1 - M a  is covered by the same cone. Then, by Theorem 1, 
M is /~. 

The case for M2. < 0 can similarly be proved. [] 

Counterexample to Theorem 3 for M ~ E 3x3. Let 

M =  - - 3  . 

5 - 

Then M1. < 0 but / 3 - M 3  = (1 , -2 ,  2)  t is not covered by any of the complementary 
cones of M. 

Theorem 4. Let M e  E 2x2. I f  C( I1 ,  -M1) covers I2 or C(I2, -M2) covers I1 then M 
isK. 

Proofl Assume C(/~, -Mi ) ,  i = 1 or 2, covers /j, j ~ i. Then Ii - M~ is covered by 
C( I , , I j ) uC ( -M , , I j ) .  
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Case 1. - M j  is covered by C(L, -Mi) .  Since /j is also covered by C(Ii , -Mi) ,  
/j - M~ is covered by C(Ii, Ij) to C(-Mi,  Ij). Therefore, by Theorem 1, M is /~. 

Case 2. - M j  is not covered by C(I~, -M~). Since/~ is covered by C(Ii, -M,) ,  we 
know that if C(/j ,  - M j )  has a nonempty interior, then C(/j ,  - M j )  contains A, where 
A =  I~ or A = - M i .  So / j - M j  is covered by C(A, Ij)w C(A , -Mj ) .  Therefore by 
Theorem 1, M is /(. I f  C(/~, - M i )  has an empty interior t h e n / j - M ~  lies in either 
C(/~) or C ( - M j )  and is obviously covered by the complementary cones of  M. 
Therefore, by Theorem 1, M is /~. [] 

Theorem 5. Let M e  E z×2. I f  M l l M 2 2 > O  then M is K. 

Proof. Case 1. M,  > 0 for i = 1, 2. M,  > 0 for i = 1, 2 implies that - M 1  lies in C(-I1) 
or the second or third quadrants and that --ME lies in C(-I2) or the third or fourth 

quadrants. For either - M ~  ~ C ( - I 1 )  or - M 2  ~ C ( - I 2 ) ,  d e t ( M ) >  0 so, by Theorem 
2, M is /~. I f  - M ~  lies in the second quadrant, then C(Ib - M O  covers/2;  if - M 2  
lies in the fourth quadrant, then C(I2, -M2)  covers/1.  Therefore in either case, by 
Theorem 4, M is/~.  I f  both -M~ and - M 2  lie in the third quadrant,  M is strictly 

positive, hence a Q-matrix [6, 16], hence/~.  

Case 2. M,  < 0 for i = 1, 2. M,  < 0 for i = 1, 2 implies that - M 1  lies in C(IO or 
the first or fourth quadrants and that - M 2  lies in C(I2) or the first or second 

quadrants. For either -M~ ~ C(II) or - M 2 c  C(I2), det (M)  > 0 so, by Theorem 2, 
M is/~. I f  -M~ or - M 2  lies in the first quadrant, then M2. < 0 or M1. < 0, respectively. 
Therefore, by Theorem 3, M is /£. For the remaining case, - M 1  lies in the fourth 

quadrant and C(-M1, 12) covers I1, so C(-M1, 12) also c o v e r s / 1 - M 1 .  Also, since 
--ME lies in the second quadrant  C(I1,-M2) covers 12 so I 2 - M 2  is covered by 
C ( I 1 , - M 2 ) .  Therefore, by Theorem 1, M is /~. [] 

Counterexamples to Theorem 5 for M e E 3x3. Let [13 3] 
M =  - 3  1 2 and q =  . 

0 0 4 

Then M,  > 0 for i = 1, 2, 3 but I3 - M3 = q is not covered by any of the complementary 
cones of  M. Let 

M =  - 1  - 3  and q =  . 

3 - 2  - 

Then M,  < 0 for i = 1, 2, 3 but I1 - M1 = q is not covered by any of the complementary 
cones of  M. 

Theorem 6. Let M c E 2x2. For M to be K it is necessary that M l l M 2 2  > 0 or M21 ~ 0 

or M12<~ 0. 
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Proof. Assume MI1M22~<0 and M21>0 and M12>0. MllM22<~0 implies that one 
of the following cases holds: M n  = 0, M22 = 0, Mll ~ 0 and M22 > 0, or M n  > 0 and 

M22<0. 
Case 1. M n  = 0. In this case -M~ = -~ I2 ,  ot > 0, and - M 2  lies in either the second 

or third quadrant. I f  - M 2  lies in the second quadrant  or on C ( - I O ,  t h e n / 1 - M ~  
is not covered by any of the complementary cones of  M;  if - M 2  lies in the third 
quadrant, t h e n / 2 - M 2  is not covered by any complementary cones of  M. In either 
case, by Theorem 1, M is not /~. 

Case 2. M22 = 0. By symmetry, the proof  of  this case follows from Case 1. 
Case 3. Mll d 0  and M22>0. In this case -M~ lies in the fourth quadrant and 

- M 2  lies in the third quadrant. Then 12 - M2 is not covered by any of  the complemen- 
tary cones of M and hence, by Theorem 1, M is not /(. 

Case 4. Mll > 0 and M22 < 0. By symmetry, this case follows from Case 3. 
Therefore, in each case, M is n o t / ( .  [] 

Theorem 7. Let  M ~ E 2x2. For M to be K it is necessary that det (M)/> 0 or not both 

M~ <~ O and M~ > O fo r  i ~ j hold. 

Proof. Assume de t (M)  < 0 and Mi <~ 0 and Mj > 0 for i, j c {1, 2} and i ¢ j .  - M j  lies 
in the third quadrant and - M i  lies in the first quadrant  or on C ( I O  or C(I2). Since 
d e t ( M ) < 0 ,  / ~ - M j  is not covered by any of the complementary cones of  M. 

Therefore, by Theorem 1, M is not /(. [] 

Theorem 8. Let  M ~ E 2x2 have all nonzero minors. Then M is I (  i f  and only M1. < 0 

or M2.<0  or M11M22> 0 or d e t ( M ) > 0 .  

Proof. By Theorems 2, 3, and 5 the conditions 

MI.<0 or M2.<0  or MllM22>0 

imply that M is /£. 

The negation of the conditions of  the theorem: 

M l l M 2 2 < O  and d e t ( M ) < 0  and M I . ~ 0  

imply 

[M11M22<0 and M Z l > 0  and M12>0] or 

[ d e t ( M ) < 0  and M i < 0  and M j > 0 ,  i # j ] ,  

which imply M is not / (  by Theorems 6 and 7. [] 

or d e t ( M ) > 0  

and M 2. ~ 0 

A referee has suggested an alternative proof  for the results in this section using 
the signs of the linear dependence o f /1 ,  /2 and - M 1  (or -M2) .  
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It had been conjectured that a 3 x 3 matrix is /~ iff all of  its 2 × 2 principal 
submatrices a r e / ( .  As a counterexample to this, let 

M - -  - 1  - 4  . 

2 1 

Then all nine 2 x 2 submatrices of  M are K-matrices but I 3 -  M3 is not covered by 
any of the complementary cones of  M. 

A matrix can be a K-matr ix  and not be /~ .  Let 

[ 4 - 4  i ]  M =  -1  - 1  

2 0 - 

(Watson [19]). Then M is a Q-matrix so it is a K-matrix. The submatrix 

0] 
is not a K-matr ix so M is not /~ .  

3. Three-dimensional theorems 

The preceding section gave a finite characterization and several theorems for two 
dimensions which do not generalize to three dimensions. In this section a finite 
characterization for 3-dimensional K-matrices is given. For dimension <4  the 
spherical geometry approach of Kelly and Watson [11] is both convenient and 
rigorous, and will be employed here. For completeness, a few definitions from [11] 
are included here. 

Definition. I f  G is a nonempty set in S n 1 (or in E")  and P a point, then Vis(P, G) 
is the union of  the half-open segments [P, X)  in S "-~ (or in E n) which lie entirely 
in the complement  of G. 

Definition. I f  G is a nonempty set in S" a (or in E")  and P a point, then St(P, G) 
is the union of closed segments [P, X] ,  X c G. 

When dealing with S n-~, segments in these two definitions and in the rest of  the 
paper  refer, of  course, to spherical segments in S n-~, that is, great circle arcs of  
length less than ~, and Euclidean segments in E n. The segment between antipodal 
points is defined to be those two points. 

Let M = {Mi}, N = {N~}, i = 1, 2 , . . . ,  r, be two r-tuples of points on the unit 
sphere S n-~ in E n. A spherical ( r - 1 ) - s i m p l e x  with vertices P~ ~ {Mi, N~}, i =  1, 
2 , . . . ,  r, is called a complementary simplex relative to M and N. The union of such 
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r r-1 , M' = simplices is denoted Cr(M, N). Cj(M, N) means C (M,  N') where 
M - {M~}, N '  = N - {N~}. The union of spherical simplices with vertices P~ ~ M w N, 
i = 1, 2 , . . . ,  r, is denoted by S~(M, N). S~(M, N) means S'-~(M ', N') where M'= 
M-{M~},  N ' =  N-{N~} .  Note that Cr(M, N ) ~  Sr(M, N) always. Also note that 
no independence assumption is made for the sets M and N, hence some o f  the 
simplices may be degenerate. 

Analogous to the definition of a Q-arrangement in [11] we have: 

Definition. Cn(M, N) is a K-arrangement  o n  S n-1 if C"(M, N) = S"(M, N). 

We now set r = 3 and look at the three dimensional case. 
Fix i~ {1, 2, 3}, let A = M w N - { M i ,  Ni}, and denote the elements of  A by Ah, 

h = 1, 2, 3, 4. I f  AjAk c~ AtA,, = S ~ 0 for distinct j, k, l, m, then let R ~ S and let P~ 

contain the elements Aj + Am + R, Aj + At + R, Ak + A,, + R, Ak + At + R, and Mi + N~. 
Else if AjAk c~ AIA,, = 0 for all distinct j, k, l, m, then let P~ --- {Aj + Ak + At, Aj + Ak + 
A,,, Aj + AI + A,,, Ak + At + Am, M~+ N~}. 

Theorem 9. C3(M, N) is a K-arrangement iff P 'w P2u p3 c St(M1, C3(M, N))• 
St(N,, C3(M, N)). 

Proof. The necessity is trivial, since clearly p1 u p2 w p3 c S3(M, N )  -- C3(M,  N )  = 

St(M,, C~(M, N ) ) u  St(N1, C3(M, N)). 
For the sufficiency, let P~ u p 2  p3 c St(Mi, C3i(M, S ) )  u St(N/, C3(M,  N ) )  -= S, 

where i is arbitrary. We wish to show that all simplices of  each S3(M, N) are 
contained in S. For j ~  i assume, without loss of  generality, that for some D 
{Mi, N~}, M j + N j c S t ( D ,  C3(M, N)). The line from D to - D  through M j + N j  
intersects a point of  C3(M, N) at Mj + Nj or beyond M~ + N~; let X be the first such 
point. 

Case 1. M~ ¢ +Nj and X and D are separated by the great circle through Mj and 

Case la. X ¢ - D .  For some Fe{Mk, Nk lk#  i, kCj}  the point X lies on either 
FMj or FNj. Since X and D are separated by the great circle through M~ and Nj, 
F is also separated from D by the great circle through Mj and Nj. Therefore the 
triangle AFM~N~ does not contain either D or - D .  Any line from D to - D  through 
a point on MjN~ must also intersect either FMj or FN~ of AFNjMj (Pasch's Theorem 
[9]). Therefore, since {FIVIj, FNj) c C3(M, N), M~Nj c St(D, C3(M, N)). 

Case lb. X = D. There is no line segment from D to - D  so this case is impossible. 
Case 2. M i = + N  ~. 
Case 2a. M~=N~. In this case M~Nj={N~}cC3(M,N) so MjN~c 

St(D, C3(M, N)). 
Case 2b. M j = - N j .  In this case M2Nj={Mj, Nj}c  C3(M,N) so M~Njc 

St(D, C3( M, N) ). 
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Case 3. Mj # ±Nj  and D lies on the great circle through Mj and Nj. In this case 
Mj, Nj, Mj + Nj, D, and X all lie on the same great circle. 

Case 3a. X = Mj or X -- Nj. I f  D lies on MjNj then M~Nj is covered by the two 
lines DMj and DNj, so MjNj c St(D, Ca(M, N)). I f  D does not lie on MjNj then 
without loss of  generality assume X = Nj. The line from D to Nj covers Nj + Mj so 
that line must also cover all of  MiNi. Therefore MjNj c St(D, C3(M, N)). 

Case 3b. X ¢ Nj and X ¢ Mj. For some F ~ {Mk, Nklk #j, k ~ i} the point X lies 
on either FMj or FNj. Without loss of  generality assume X lies on FNj. Since X 
and N~ lie on the great circle through Mj and Nj, the line FN~ must also lie on that 
great circle. Since X is the first point of  C~(M, N) that the line from D to - D  
through ~ + Nj intersects after intersecting Nj + Mj, X lies on MiNi. Therefore 
X e (FNj c~ MjNj-{Nj})  ~ 0. Since F, Nj, and ~ are all on the same great circle, 
this implies that F is between Nj and Mj or Mj is between Nj and F, so M~Nj c FNj u 
FMj c St(D, C~(M, N)). 

Case 4. Mj # +Nj and D does not lie on the great circle through Mj and Nj, but 
X does lie on this great circle. In this case, X = Mj + Nj and lies on FMj or FNj 
with F as before. Assume without loss of  generality that X ¢ FNj. Since X, IV/j, and 
Nj all lie on the same great circle, F must also lie on this great circle. Then 
X = Mj + Nj on ~FNj implies F is between Nj and Mj or Mj is between Nj and F. 
In both cases MjNj c FNj w FMj c St(D, C3(M, N)). 

This completes the proof  that S3(M, N)  c S, i = 1, 2, 3. The simplices in S~(M, N) 
(or C3(M, N)) create triangles on S 2 (some of which possibly degenerate to just 

line segments), refered to as cells of S~(M, N) (or C~i(M, N)). We now wish to 
show that any cell B in S3(M, N) is in St(M~, C3(M, N))w St(N~, C3(M, N)). 

The set P~ was defined so that any cell of  S3(M, N)  with nonempty interior 
contains a point of P~ in its interior. This can be seen by looking at the various 
different forms that S3(M, N) can have. Figure 1 shows the two cases where 

AjAk c3 AIA m = ~ for all distinct j, k, 1, m. In the one case there are three cells and 
in the other there are four cells, but in either case it is clear that P~ contains the 
midpoints of  those cells. Figure 2 shows the other nondegenerate case where 
AjAk c3 AlAm = S ~ 0 for distinct j, k, l, m. In this case there are four cells and again 
it is clear that P~ contains the midpoint of  those cells. Figure 3 shows one of the 

/ 
b 

Fig. 1. 
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Fig. 2. 

degenerate cases with only two cells. For the degenerate cases it is again easy to 
see that pi  contains points in the interior of  the cells. 

Take any cell B of S3(M, N). 
Case 1. B is a cell of  Ca(M, N). I f  B contains both - M i  and - N i  in its interior 

then the interior of B would not be covered at all by St(N~,Ca(M,N)u 
St(Mi, C3(M, N)) ,  a contradiction. So B does not contain both - N i  and - M i  in 
its interior, and B c St(M~, Ca(M, N) w St(N~, C3(M, N)). 

Case 2. B is not a cell in Ca(M, N) and B only has one edge contained in an 
element of  {MiNi [j ~ i}. Let the cell B have one edge on MjNj c St(D, Ca(M, N)), 
D ~ {M~, N~}, j ¢ i (it has already been shown that Mj + Nj and MflV~ are in the 

same star). 
Case 2a. B contains D. A line from D through any point, say Y, in the interior 

of  the cell B also intersects one side of  B. I f  it intersects a side of  B which lies on 
a part of  Ca(M, N), then Y~ St(D, Ca(M, N)) clearly. Also if the line intersects 

the side of  B lying on MiNi, then Y c S t ( D ,  Ca(M, N)) because any line from D 
to - D  through a point of  MjN~ also intersects a point of  Ca(M, N) after intersecting 

Case 2b. B does not contain D. Then since any line from D to - D  through a 
point of MjNj intersects a point of  Ca(M, N) after intersecting M~Nj, it follows that 
B does not contain - D .  Any line from D to - D  through a point, say Y, in the 
interior of  the cell intersects two sides of  the cell. I f  the line doesn' t  intersect the 
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side lying on M~/V~ second, then Y~ St(D, Ca(M, N)). If it intersects the side lying 
on MjN~ second, then Y c  St(D, Ca(M, N)) since the line continues to a point of 
C3( M, N). 

Case 3. B is not a cell of C3(M, N), and has one edge on MjN~ and one edge 

on MkNk, with i, j, k distinct. Since the side of B on M~N~ intersects the side of B 
on MkNe, MjNj intersects MkNk. So the great circle through Mj and /Vj either 
separates Mk and Nk or one of them lies on that great circle. Without loss of 
generality assume that the third side of B lies on NflV~. Then B lies entirely on one 
side of the great circle through Mj and Nj, the same side as Nk. B is also contained 
in the triangle ANjMjNk, which does not contain a point of C3(M, N) in its interior. 
By Case 2 the interior of  triangle ANjMjNk, and hence also B, is contained in 
St(D, C3(M, N)). 

Therefore all the cells in S3(M,N) are covered by St(N/, C3(M,N))w 
St(M~, C3(M, N)). It follows that S3(M, N) is the union of C3(M, N) and all the 
cells of S3(M,N) for i = 1 ,  2, 3, so S3(M,N)c~_J~=ISt(Ni, C3(M,N))~A 
St(M/, C3(M, N)) = C3(M, N), and C3(M, N) is a K-arrangement. [] 

The statement of Theorem 9 appears complicated, and a reasonable conjecture 
is that the following simpler formulation should suffice. Let 

F={ ~_ AJ, ll<-j,< "''<jk <-3,1<-k<-a,Aj,~{iVIj,,N~,}}, 

Y={Y~+' ' '+Yr[{Y~ . . . .  ,Y,}C F, 1<~ r~<3}. 

Then C3(M, N) is a K-arrangement if and only if y c  C3(M, N). 
Unfortunately, this simple characterization is false, as illustrated by 

-0.05 0.15 -0.01 ] 

M =  0.15 -0.05 -0.01 . 

1 1 - 1  

817 of the 2951 points in Y are unique and all are covered by the complementary 
cones of M, but q = (0, 0, --1) t =  -0.25M~ -0.75M2 +0.1I~ is not. Therefore M is 
not a K-matrix, showing that the complexity of the statement of Theorem 9 is 
justified. 

4. Comple te ly  K-matr ices  

A simple, finite, geometric characterization is: 

Theorem 10. Let Me E 3×3. Then M is K iff M is K, 

I 1 -  Mb 12- ME ~ St(I3, C](-M, I))• St(-I3,  C3(-M, I)), 

I~ - M~, 13 - M3 c St(I2, C3(-M, I ) )  u St(-I2,  C3( - M, I)),  

and 12 - M2, I3 - M3 ~ S t ( I ,  C3(-M, I ) )  u St(-I~, C3(-M, I)). 
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Proof. For J = K -- {1, 2}, N = MjK is one of the three principal 2 x 2 submatrices 

of M. The first two elements of  I 1 - M 1 ,  12-M2 are equal to I 1 -  NI, / 2 - N 2 ,  
respectively. Since the first two elements of  I3 and - I 3  are zero, 

I 1 -  M1, I2--ME ~ St(I3, C3( -M,  I ) ) •  St(-I3 ,  C3( -M,  I)) ,  

if and only if the first two elements of  Ii  - M1, 12-  M2 are complementary combina- 
tions of  -N1 ,  - N 2  and the columns from the two dimensional identity matrix if 

and only if 11-  N2 and I 2 - N 2  are both covered by complementary cones of  N if 
and only if (by Theorem 1) N is a K-matrix.  

The equivalence of the last two conditions in the theorem to the other two principal 
2 x 2 submatrices of M being K-matrices is proved similarly. Since all 1 x 1 matrices 
are K-matrices,  the theorem follows. [] 

An efficient characterization of completely K-matrices would exploit the K-matr ix  
property of the lower dimensional principal submatrices to help characterize the 
K-matr ix property of  the higher dimensional principal submatrices. Thus for the 
case n = 3, it is natural to investigate the relationship between the 2 × 2 principal 
submatrices being K-matrices and the whole 3 x 3 matrix being a K-matrix.  There 
is a weak relationship, as shown by 

Theorem 11. Let M ~ E 3×3. I f  all the principal 2 x 2 submatrices of M are not K- 

matrices, then M is not a K-matrix. 

Proof. Assume all three principal 2 x 2 submatrices of  M are not K-matrices. From 
Theorem 5 we know there can be at most one positive and at most one negative 
diagonal element of  M. 

For N c E 2×2 not a K-matrix,  it easily follows from the theorems of Section 3 
that the following must hold: 

I f  Nil < 0 and N22 ~> 0, then N12 > 0 and N21 must be such that N12N21 ~> Nll N22. 
(By Theorem 3 we know N12~>0. I f  N12=0 then { I1 -N1 ,  I 2 - N 2 } ~  C(I1, I2 )u  
C ( I 1 , - N 2 ) u  C ( - N 1 ,  12) and by Theorem 1 N is /(, so N12> 0. From Theorem 2 
we have that N12N21 >~ N11N22.) 

I f  N l 1 > 0  and N22=0, then N12~>0 and N21>0. ( I f  N12<0 then C ( I 2 , - N 2 )  

covers I1 and by Theorem 4, N is K. I f  N21 < 0 then, again by Theorem 4, N is K. 

Also if N21 = 0 then / 2 -  N2 and 11 - N1 are covered by C ( I b / 2 )  w C(I2, - N 1 )  so 
by Theorem 1, N is K. Therefore, N21 > 0.) 

I f  NH = N22 =0,  then N12~>0, N21~>0, and N~2+ N2~> 0. (Using Theorem 4 we 
have that N12~>0 and N21~>0. With N12>~0 and N21~>0 we have N12+ N21~>0, but 
if N12+ N21=0 then N is K, so N12+ N21>0.) 

Using these facts and symmetry to reduce the number  of  cases, it immediately 
follows that M has one of the forms 

[ + + +l 00+i][00+0o: ] 
- , 0 , +  + 0,+ , 0,+ 0 0,+ , 0 ,+ o , 0,+ 0 0 

0,+ + 0 [ o , +  0,+ o [ 0 , +  o,+ 0,+ 0,+ 
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where ' + ' ,  ' - ' ,  '0 '  indicate a positive, negative,  or zero e lement  respectively. For  
each of  these forms if we take q3 > 0, which we may  do independen t  of  what  ql and 
q2 are, then we force w3 > 0 and z3 = 0. This reduces the p rob lem to a 2 × 2 subprob lem 
which we know isn ' t  K. Therefore ,  M is not  a K-matr ix .  []  

I f  all the 2 x 2 pr incipal  submatr ices  of  M are K-mat r ices ,  it should be easier to 
verify that  M is also a K-ma t r ix  than if nothing were known about  the 2 x 2  
submatrices.  Interestingly,  this is not  true, as shown by the fol lowing sequence of  
examples.  All the 2 × 2 pr incipal  submatr ices  of  [-00  00 ] 

M = [  0.~5 -0.051 -0 .01  . _ 1  

are K-matr ices ,  but  q = - 0 . 2 5 M l - O . 7 5 M 2 + 0 . 1 1 1  = ( 0 , 0 , - 1 )  t is not covered by 

complemen ta ry  cones. Similarly for  

[ - 1 0  - 1 ]  

M =  0 2 - 3  , 

- 1  2 1 

q = [ 2 - m 2  = ( 0 , - 1 , - 2 )  t is not  covered.  These  examples  show that  it is necessary 
to check all  the points  men t ioned  in Theo rem 9, and thus knowing that  the 2 x 2 
principal  submatr ices  are K-mat r i ces  is o f  no help (at least for  this type of  finite 
characterizat ion).  The algebraic  signs of  the minors  of  K-mat r ices ,  comple te ly  
K-matr ices ,  and non -K-ma t r i ce s  were investigated,  and no pat terns  were apparen t  
o ther  than  what  have a l ready been ment ioned.  
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