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The class of real n X n matrices M, known as K-matrices, for which the linear complementarity
problem w—Mz=gq, w=0, z=0, w'z=0 has a solution whenever w—Mz=gq, w=0, z=0 has
a solution is characterized for dimensions n<4. The characterization is finite and ‘practical’.
Several necessary conditions, sufficient conditions, and counterexamples pertaining to K-matrices
are also given. A finite characterization of completely K-matrices (K-matrices all of whose
principal submatrices are also K-matrices) is proved for dimensions <4.
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1. Introduction

Let E” be the n-dimensional Euclidean space and let E™*" be the set of real
nxn matrices. For M € E"*", M;; denotes the (i, j) entry in M, and for I, Jc
{1,..., n}, M, is the submatrix of M consisting of the rows indexed by I'; and M.,
consists of the columns indexed by J. The jth column of M is denoted either M;
or M, the ith row of M is denoted by M...

Given a matrix M € E™*" and vector q € E”, the linear complementarity problem,
denoted by (g, M), is to find vectors w, ze€ E" such that

w— Mz=gq,
(LCP)
w=0, z=0, w'z=0.

This problem arises in such diverse areas as economics, game theory, linear program-
ming, mechanics, lubrication, numerical analysis, and nonlinear optimization. Gen-
erally in a particular application area the matrix M has a special structure (e.g.,
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symmetric positive definite), and moderately efficient algorithms have been
developed to solve these special linear complementarity problems. Nevertheless
considerable attention has been devoted to the general linear complementarity
problem, and in particular to special classes of matrices related to the problem.

The matrices M € E"" for which (g, M) has a unique solution for every vector
g< E™ are known as P-matrices, and are characterized algebraically by having all
their principal minors positive. The equivalence of (g, M) having a unique solution
for all ge E” and M being a P-matrix (all principal minors positive) has been
proved in many different ways, most notably by Ingleton [10], Samelson, Thrall,
and Wesler [17], Murty [16], Watson [19], and Kelly and Watson [11]. Another
finite characterization for (g, M) to have a unique solution for every ge E"
(equivalently, for M to be a P-matrix) proved in Murty [15], Tamir [18] states that
this property holds iff (g, M) has a unique solution whenever g is in the finite test
setI'={I....,1,...,M,,....M, —M,,...,—M,, e} where I is the unit matrix
of order n and e is the column vector in E" all of whose entries are 1. M is called
a Q-matrix if (g, M) has at least one solution for all g€ E", and for over ten years
there have been serious attempts to characterize Q-matrices in a manner similar to
P-matrices. Numerous necessary conditions or sufficient conditions have been found
(see, e.g., Watson [19], Doverspike [4], Doverspike and Lemke [5]), but simple
algorithmic necessary and sufficient conditions have remained elusive. Progress is
being made, though, as Cottle [3] recently characterized completely Q-matrices
(matrices whose principal submatrices are all Q-matrices).

To investigate the situation further, we require more notation.

Given any matrix D, C(D) denotes the cone {x|x = Dy, y = 0}. The cone generated
by the set of vectors V={V,,..., Vi} is

k

C(V)=C(V,,... Vk)={z aiw\aizo,i=1,2,...,k}.
i=1

For qe E", V< E", if ge C(V) we say that q is covered by C(V). If g€ E",
V={V,...V,}c E", q is in the interior of C(V) if ge C(V) and q=Y, , &V,
imply «;>0 for all i.

C(A), where A;e{l,, -M,},i=1,2,...,n,is called a complementary cone formed
Jrom M. (g, M) has a solution if and only if g is in some complementary cone.
C(A), where {A,,..., A} {L,—M;|j=1,2,...,n}, is called a noncomplementary
cone formed from M. Note: The set of complementary cones formed from M is
contained in the set of noncomplementary cones formed from M.

M is called a K-matrix (following Lemke [13]) if the existence of a solution to
w-Mz =g, w=0, z=0 implies the existence of a solution to the linear complemen-
tarity problem (g, M). (The class of K-matrices is also referred to as the class of
Q,-matrices in some of the literature.) So a K-matrix is a matrix M such that (g, M)
has a solution for every g€ C(A), where C(A) is any noncomplementary cone. A
matrix M is called K (completely K) iff it and all its principal submatrices are K.
Clearly a K-matrix M is a Q-matrix iff C(M)( ) the interior of C(I)#@. Thus a
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finite characterization of K-matrices would give a characterization for Q-matrices.
Attempts at an algorithmic characterization of K-matrices have been made by Garcia
[8], Doverspike [4], Doverspike and Lemke [5], among others. This is a larger class
of matrices than the Q-matrices, but for various reasons, it may be easier to
characterize than the class of Q-matrices. A finite but impractical (even for n=4)
algorithm to check whether a given matrix M is a Q-matrix attributed to D. Gale
has been described in M. Aganagic and R.W. Cottle [1]. Here we briefly discuss
how this algorithm can be readily extended into a finite algorithm to check whether
a given square matrix M of order n is a K-matrix. Given M, a square matrix A of
order n is called a complementary submatrix of (I|-M) if A,;€ {L;, —M.,} for j=1
ton Let A', ..., A be all the nonsingular complementary submatrices, where [ <2".
Let D"=(A")™", t=1 to L Consider the following system of linear constraints in
which the variables are we E”, ze E", q€ E",

Dlg<0 t=1to],
w—Mz—q=0, (1)
w=0, z=0, gq unrestricted,

where, for each =1 to I, 1=<1i,=< n. Because of the possibility of the choice of i,
there are n' systems of the type (1). Clearly, M is a K-matrix iff each of the n'
systems of type (1) has no feasible solution (w, z, g). The feasibility or infeasibility
of a system of type (1) can be established finitely using the well known theorems
of the alternative and algorithms for linear programming. This provides a finite
algorithmic approach for checking whether the given square matrix M of order n
is a K-matrix, but, since this involves checking the infeasibility of n' systems of
type (1), where I could be as large as 2", this approach is impractical even for n =4.
Since this approach, though finite, is very inefficient, in this paper we explore other
finite characterizations for K-matrices. Using P-matrices as an ideal model, there
are two types of desirable characterizations. One type would say that M is a K-matrix
if and only if some linear algebraic statement about M holds, where the statement
is in terms of eigenvalues, minors or some other algebraic quantity. The second type
of characterization would say that M is a K-matrix if and only if (g, M) has a
solution for all g in some finite ‘test set’, which is permitted to depend on M and
g. The exhaustive numerical examples in Watson [19] and Kelly and Watson {11]
indicate it is unlikely that a characterization of either type exists for Q-matrices.
The present paper gives a characterization of the second type for K-matrices of
dimension less than 4. The situation in dimension 4 is considerably more complex,
and is being investigated.

Section 2 gives a characterization of K-matrices for dimension n =2, and a few
other minor results. Section 3 contains the characterization of K-matrices for
dimension 3, and Section 4 contains a characterization of completely K-matrices
(M is completely K if all its principal submatrices are K-matrices) in dimension
3. Note that since every 1 X 1 matrix is a K-matrix, a 2 X 2 K-matrix is also completely
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K. Hence the characterization of 2 x 2 K-matrices in Section 2 is also a characteriz-
ation of completely K-matrices for dimension 2.

S"! denotes the unit sphere in E".

In the sequel, the word ‘generator’ refers to any column vector of (I —M).

2. Two-dimensional theorems

Theorem 1. For Me E*** M is K iff —M,+ 1, and —M,+ I, are covered by the
complementary cones of M.

Proof. If M is K then by definition both —M,+ I, and —M,+ I, are covered by
the complementary cones of M.

Assume —M,;+ I, and —M,+ I, are covered by complementary cones. M is not
K if and only if there is some portion of the cone generated by —M, and I, for
i=1 or 2, which is not covered by the complementary cones.

Case 1. Assume that the cone C(—M,, I;) does not contain any I, or —M,, j#i.
—M;+1I; is covered and since there are no generators in the interior of the cone
C(—M, I,), the cone that covers —M;+ I, must cover the entire cone C(—M,, I,).

Case 2. Assume that the cone C(—M,, I;) does contain I, or —M,, j# i, and let
A; be this generator. Then the two cones C(A;, I;) and C(A;, —M,) will cover all
of the cone C(-M,, I,). O

Counterexample to Theorem 1 for M € E***: Let

1 -2 1 2
M=|2 =2 1} and g=| 2}
2 -1 -1 -2

Then
3L +4,— M, =¢q,
IL—M,=-2M,—M,+1,,
L—-M,=21+3L+1;
L-M,=1L+1,-2M,,
but g is not covered by any of the complementary cones of M.

Theorem 2. Let M € E¥*. If det(M)>0, then M is K.
Proof. Det(M) >0 implies the arc from —M, to —M, is counterclockwise.

Case 1. C(I, I,)n C(—M,, —M,) #{0}. If the cone C(I;, I,) contains —M,, for
i=1 or 2, then —M;+ I, is covered by the cone C(I,, I,). If the cone C(I,, I,) does

not contain —M,, for i =1 or 2, then — M, + I; is covered by the cone C(—M,, —M,).
Therefore, by Theorem 1, M is K.
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Case2. C(I,, L) n C(—M,, —M,) ={0}. The arc from I, to I, is also counterclock-
wise. Starting at I, and going counterclockwise the generators are encountered in
the following order: I,, I,, —M;, —M,. Since the generators are found in an
alternating order (alternating order refers to the subscripts of the generators), if the
cone C(I;, —M;) has a nonempty interior it must contain A;=1I, or —M;, j#i In
this case the cone C(I;, —M;) is covered by the two cones C(A;, I;) and C(A;, —M,).
If the cone C(I,, —M,) has an empty interior then C ([, —M;) is a straight line and
is obviously covered by the complementary cones of M. [J

Counterexample to Theorem 2 for M € E>. Let

1 -1 4
M=|4 -3 1
1 02 —-0.05

Then det(M)=13.95>0, but I,~M,=(1,4,—-0.2)" is not covered by any of the
complementary cones of M. This matrix is from Kelly and Watson [11].

Theorem 3. Let M e E***, If M,.<0 or M,.<0 then M is K.

Proof.

Case 1. M,.<0. If M,. <0 then both —M, and —M, lie in the first or fourth
quadrant of E**?, In this case I,— M, is covered by C(I,, I,)u C(I;, —M,).

Case la. —M, lies on I, or —M, is in the first quadrant. In this case I, — M, is
covered by the cone C(I,, I,). Then, by Theorem 1, M is K.

Case 1b. —M, lies in the fourth quadrant. In this case I, is covered by the cone
C(1I,, —M,), therefore I, — M, is covered by the same cone. Then, by Theorem 1,
M is K.

The case for M,. <0 can similarly be proved. [

Counterexample to Theorem 3 for M € E>. Let

-1 =2 -1
M=|-1 -3 2|
305 -1

Then M;.<0 but I~ M;=(1, -2, 2)" is not covered by any of the complementary
cones of M.

Theorem 4. Let M € E¥?. If C(I,, —M,) covers I, or C(I,, ~M,) covers I, then M
is K.

Proof. Assume C(I;,—M;), i=1 or 2, covers I, j# i Then I,— M; is covered by
C(IL, I)v C(—M, I)).
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Case 1. —M; is covered by C(I,, —M,). Since I, is also covered by C(I,, —M,),
I — M, is covered by C(I, I,) u C(—M,, I,). Therefore, by Theorem 1, M is K

Case 2. —M,; is not covered by C(I,, —M,). Since I; is covered by C(I,, —M;), we
know that if C(I;, —M;) has a nonempty interior, then C(I;, —M;) contains A, where
A=1I or A=—M, So I,—M,; is covered by C(A, I,)u C(A, —M;). Therefore by
Theorem 1, M is K. If C (I, —M;) has an empty interior then I, — M, lies in either
C(I;) or C(—M;) and is obviously covered by the complementary cones of M.
Therefore, by Theorem 1, M is K. [

Theorem 5. Let M € E¥*. If M, M,,>0 then M is K.

Proof. Casel. M;>0fori=1,2. M;>0fori=1,2implies that — M, liesin C(—1I,)
or the second or third quadrants and that —M, lies in C(—1I,) or the third or fourth
quadrants. For either —M, € C{~1I,) or —M, e C(—1,), det(M)> 0 so, by Theorem
2, M is k. If —M, lies in the second quadrant, then C(I,, —M,) covers I; if — M,
lies in the fourth quadrant, then C(I,, —M,) covers I,. Therefore in either case, by
Theorem 4, M is K. If both —M, and —M, lie in the third quadrant, M is strictly
positive, hence a Q-matrix [6, 16], hence K.

Case 2. M;<0fori=1,2. M;<0 for i=1, 2 implies that —M, lies in C(I,) or
the first or fourth quadrants and that —M, lies in C(I,) or the first or second
quadrants. For either —M, e C(I;) or —M, < C(I,), det(M)>0 so, by Theorem 2,
M is K. If — M, or — M, lies in the first quadrant, then M,. <0 or M,. <0, respectively.
Therefore, by Theorem 3, M is K. For the remaining case, — M, lies in the fourth
quadrant and C(—M,, I,) covers I,, so C(—M,, I,) also covers I, — M. Also, since
—M, lies in the second quadrant C(I,, —M,) covers I, so I,— M, is covered by
C(I,, —M,). Therefore, by Theorem 1, M is K. [

Counterexamples to Theorem 5 for M € E¥°. Let

1 -3 3 -3
M=} -3 1 2| and ¢g=|-2}|
0 0 4 -3

Then M;; > 0fori=1,2,3 but I; — M; = qis not covered by any of the complementary
cones of M. Let

-1 1 2 2
M=|-1 -3 -2| and g=| 1|
3 -2 —4 -3

Then M; <0fori=1,2,3but I, - M, = g is not covered by any of the complementary
cones of M.

Theorem 6. Let M € E**?. For M to be K it is necessary that M, M,,> 0 or M,; <0
or M,<0.
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Proof. Assume M, M,,=<0 and M,, >0 and M,,>0. M, M,,=<0 implies that one
of the following cases holds: M,; =0, M,,=0, M,; <0 and M,,>0, or M,,>0 and
M,, <.

Case 1. M,,=0. In this case —M, = —al,, a >0, and —M, lies in either the second
or third quadrant. If —M, lies in the second quadrant or on C(—1I,), then I, — M,
is not covered by any of the complementary cones of M; if —M, lies in the third
quadrant, then I, — M, is not covered by any complementary cones of M. In either
case, by Theorem 1, M is not K.

Case 2. M,,=0. By symmetry, the proof of this case follows from Case 1.

Case 3. M,;; <0 and M,,>0. In this case —M, lies in the fourth quadrant and
— M, lies in the third quadrant. Then I, — M, is not covered by any of the complemen-
tary cones of M and hence, by Theorem 1, M is not K.

Case 4. M,;>0 and M,,<0. By symmetry, this case follows from Case 3.

Therefore, in each case, M is not K. [

Theorem 7. Let M € E***. For M to be K it is necessary that det(M)=0 or not both
M; =<0 and M;>0 for i # j hold.

Proof. Assume det(M)<0and M;<0and M;>0 for i, je{1, 2} and i #j. — M, lies
in the third quadrant and — M, lies in the first quadrant or on C(I) or C(I,). Since
det(M) <0, I,— M, is not covered by any of the complementary cones of M.
Therefore, by Theorem 1, M is not K. 0O

Theorem 8. Let M € E*** have all nonzero minors. Then M is K if and only M,.<0
or M,. <0 or M;;M,,>0 or det(M)> 0.
Proof. By Theorems 2, 3, and 5 the conditions

M. <0 or M, <0 or M;M,>0 or det(tM)>0

imply that M is K.
The negation of the conditions of the theorem:

M M,,<0 and det(tM)<0 and M, %0 and M, %0
imply

[MM,,<0 and M, >0 and M,,>0] or

[det(M)<0 and M;<0 and M;>0, i#j],

which imply M is not K by Theorems 6 and 7. O

A referee has suggested an alternative proof for the results in this section using
the signs of the linear dependence of I, I, and —M, (or —M,).
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It had been conjectured that a 3Xx3 matrix is K iff all of its 2x2 principal
submatrices are K. As a counterexample to this, let

-3 -2 3
M=|-1 -4 -2}
2 1 -1

Then all nine 2 x 2 submatrices of M are K-matrices but I; — M; is not covered by
any of the complementary cones of M.
A matrix can be a K-matrix and not be K. Let

4 -4 0
M=|-1 -1 3
2 0 -1

(Watson [19]). Then M is a Q-matrix so it is a K-matrix. The submatrix

]

is not a K-matrix so M is not K.

3. Three-dimensional theorems

The preceding section gave a finite characterization and several theorems for two
dimensions which do not generalize to three dimensions. In this section a finite
characterization for 3-dimensional K-matrices is given. For dimension <4 the
spherical geometry approach of Kelly and Watson [11] is both convenient and
rigorous, and will be employed here. For completeness, a few definitions from [11]
are included here.

Definition. If G is a nonempty set in $" ' (or in E") and P a point, then Vis(P, G)
is the union of the half-open segments [P, X) in $"™* (or in E") which lie entirely
in the complement of G.

Definition. If G is a nonempty set in $”' (or in E") and P a point, then St(P, G)
is the union of closed segments [P, X], X € G.

When dealing with $"7", segments in these two definitions and in the rest of the
paper refer, of course, to spherical segments in $"', that is, great circle arcs of
length less than 7, and Euclidean segments in E". The segment between antipodal
points is defined to be those two points.

Let M={M;}, N={N}, i=1, 2,...,r, be two r-tuples of points on the unit
sphere $"”' in E". A spherical (r—1)-simplex with vertices P,e {M, N}, i=1,
2,...,r1is called a complementary simplex relative to M and N. The union of such
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simplices is denoted C'(M, N). Cj(M, N) means C'"'(M', N') where M'=
M —{M;}, N'= N —{N;}. The union of spherical simplices with vertices P, M U N,
i=1,2,...,ris denoted by S"(M, N). S;(M, N) means S '(M’, N') where M'=
M —{M;}, N'=N—{N;}. Note that C"(M, N) < S"(M, N) always. Also note that
no independence assumption is made for the sets M and N, hence some of the
simplices may be degenerate.

Analogous to the definition of a Q-arrangement in [11] we have:

Definition. C"(M, N) is a K-arrangement on $"~ ' if C"(M, N)=S8"(M, N).

We now set r =3 and look at the three dimensional case.

Fix ie{1,2,3}, let A= M u N—{M; N,}, and denote the elements of A by A,,
h=1,2,3, 4 If A,A, nAA, =S#0 for distinct j, k, I, m, then let Re S and let P’
contain the elements A;+ A, + R, A;+ A+ R, A+ A,,+R A+ A+ R ,and M; + N,
Else if A;/A, N AA,, = for all distinct j, k, I, m, then let P'={A;+ A, + A, A;+ A, +
A, A+tA+A, ActA+A,, M+ N}

Theorem 9. C*(M, N) is a K-arrangement iff P' U P*U P> St(M,, C3(M, N))u

Proof. The necessity is trivial, since clearly P'U P?U PP $*(M, N)=C*(M, N) =
St(M,, C}(M, N)) U St(N;, C3(M, N)).

For the sufficiency, let P'U P>U P*c St(M, C}(M, N)) USt(N, C}(M, N))=S,
where i is arbitrary. We wish to show that all simplices of each S;(M, N) are
contained in S. For j#i assume, without loss of generality, that for some De
{M, N}, M;+N,;eSt(D, C}(M, N)). The line from D to —D through M;+ N,
intersects a point of C3(M, N) at M;+ N; or beyond M;+ Nj; let X be the first such
point.

Case 1. M; # £ N, and X and D are separated by the great circle through M; and
N,
Case la. X #—D. For some Fe{M,, N, |k# i, k+#j} the point X lies on either
FM; or FN,. Since X and D are separated by the great circle through M; and N,
F is also separated from D by the great circle through M; and N, Therefore the
triangle AFM;N; does not contain either D or —D. Any line from D to —D through
a point on M;N; must also intersect either FM; or FN; of AFN;M; (Pasch’s Theorem
[9]). Therefore, since {FM;, FN,) = C}(M, N), M;N, = St(D, C}(M, N)).

Case 1b. X = D. There is no line segment from D to —D so this case is impossible.

Case 2. M;==N.,

Case 2a. M;=N, In this case MN,={N}cC}(M,N) so MNc
St(D, Ci(M, N)).

Case 2b. M;=—N, In this case M;N,={M, N} C}(M, N) so MN,c
St(D, CXM, N)).
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Case 3. M;# =N, and D lies on the great circle through M; and N,. In this case
M;, N;, M;+ N,;, D, and X all lie on the same great circle.

Case 3a. X =M, or X = N,. If D lies on M;N; then M;N; is covered by the two
lines DM; and DN, so M;N, < St(D, C}(M, N)). If D does not lic on M;N; then
without loss of generality assume X = N;. The line from D to N; covers N;+ M; so
that line must also cover all of M;N;,. Therefore M;N, < St(D, C}(M, N)).

Case 3b. X # N, and X # M,. For some F e {M,, Ni|k #j, k # i} the point X lies
on either FM; or FNj. Without loss of generality assume X lies on FN]. Since X
and N, lie on the great circle through M; and N, the line FN; must also lie on that
great circle. Since X is the first point of C;(M, N) that the line from D to —D
through M, + N, intersects after intersecting N;+ M,, X lies on M,N,. Therefore
X € (FN;nM;N,—{N;}) #§. Since F, N, and M; are all on the same great circle,
this implies that F is between N; and M; or M, is between N, and F,so M;N, = FN, U
FM, < St(D, C3(M, N)).

Case 4. M;# £ N, and D does not lie on the great circle through M; and N,, but
X does lie on this great circle. In this case, X = M;+ N; and lies on FM, or FN]
with F as before. Assume without loss of generality that X € FN,. Since X, M,, and
N; all lie on the same great circle, F must also lie on this great circle. Then
X =M;+ N, on FN; implies F is between N; and M; or M, is between N; and F.
In both cases M;N; < FN,u FM, < St(D, C}(M, N)).

This completes the proof that S}(M, N)< S, i =1, 2, 3. The simplices in S;(M, N)
(or C}(M, N)) create triangles on S” (some of which possibly degenerate to just
line segments), refered to as cells of S}(M, N) (or C}(M, N)). We now wish to
show that any cell B in S3(M, N) is in St(M,, C3(M, N))u St(N, C} (M, N)).

The set P’ was defined so that any cell of S;(M, N) with nonempty interior
contains a point of P’ in its interior. This can be seen by looking at the various
different forms that S;(M, N) can have. Figure 1 shows the two cases where
AA,NAA,, =0 for all distinct j, k, I, m. In the one case there are three cells and
in the other there are four cells, but in either case it is clear that P’ contains the
midpoints of those cells. Figure 2 shows the other nondegenerate case where
AA.NAA, =S #for distinct j, k, ], m. In this case there are four cells and again
it is clear that P’ contains the midpoint of those cells. Figure 3 shows one of the

Fig. 1.
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Fig. 2.

Fig. 3.

degenerate cases with only two cells. For the degenerate cases it is again easy to
see that P’ contains points in the interior of the cells.

Take any cell B of S;(M, N).

Case 1. B is a cell of C3(M, N). If B contains both —M; and — N; in its interior
then the interior of B would not be covered at all by St(N, C3(M, N)u
St(M,, C3(M, N)), a contradiction. So B does not contain both ~N; and —M; in
its interior, and B < St(M,, C}(M, N)uU St(N, C3(M, N)).

Case 2. B is not a cell in C3}(M, N) and B only has one edge contained in an
element of {M;N;|j # i}. Let the cell B have one edge on M;N, = St(D, C}(M, N)),
De{M, N;}, j#i (it has already been shown that M;+ N; and M,N; are in the
same star).

Case 2a. B contains D. A line from D through any point, say Y, in the interior
of the cell B also intersects one side of B, If it intersects a side of B which lies on
a part of C3(M, N), then Y e St(D, C}(M, N)) clearly. Also if the line intersects
the side of B lying on M;N,, then Y e St(D, C}(M, N)) because any line from D
to — D through a point of M;N; also intersects a point of C;(M, N) after intersecting
MN,.

Case 2b. B does not contain D. Then since any line from D to —D through a
point of M;N; intersects a point of C;(M, N) after intersecting M;N;, it follows that
B does not contain —D. Any line from D to —D through a point, say Y, in the
interior of the cell intersects two sides of the cell. If the line doesn’t intersect the
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side lying on M;N; second, then Y € St(D, C}(M, N)). If it intersects the side lying
on M;N; second, then Y e St(D, C}(M, N)) since the line continues to a point of
Ci(M, N).

Case 3. B is not a cell of C}(M, N), and has one edge on M;N; and one edge
on M, Ny, with i, j, k distinct. Since the side of B on M,N; intersects the side of B
on MiN,, M;N; intersects M, N,. So the great circle through M; and N; either
separates M, and N, or one of them lies on that great circle. Without loss of
generality assume that the third side of B lies on N, N,. Then B lies entirely on one
side of the great circle through M; and N, the same side as N,. B is also contained
in the triangle A N;M;N,, which does not contain a point of Ci}(M, N) in its interior.
By Case 2 the interior of triangle AN;M;N,, and hence also B, is contained in
St(D, C3(M, N)).

Therefore all the cells in S;(M, N) are covered by St(N, C}(M, N))u
St(M, C3(M, N)). It follows that S*(M, N) is the union of C*(M, N) and all the
cells of S}(M,N) for i=1, 2, 3, so S*M, N)cJ_, St(N, C}(M, N))u
St(M,, C}(M, N))=C* M, N), and C*(M, N) is a K-arrangement. (]

The statement of Theorem 9 appears complicated, and a reasonable conjecture
is that the following simpler formulation should suffice. Let

I<j<---<jr<3,1<k<3,A e{M, er}}’

Kk
FZ{ 2 A,

r=1
Y={y+ - +y|{,....,ntc1<r<3}

Then C*(M, N) is a K-arrangement if and only if Y < C*(M, N).
Unfortunately, this simple characterization is false, as illustrated by
-0.05 0.15 -0.01
M=] 015 -0.05 -0.01|
1 1 -1

817 of the 2951 points in Y are unique and all are covered by the complementary
cones of M, but g=(0,0, —1)'=-0.25M, —0.75M, +0.11, is not. Therefore M is
not a K-matrix, showing that the complexity of the statement of Theorem 9 is
justified.

4. Completely K-matrices

A simple, finite, geometric characterization is:

Theorem 10. Let M c E**®. Then M is K iff M is K,
L—M, L—M,eSt(I;, C3{(~M, I)) USt(— I, C3(—M, I)),
I —M,, I,— Mye St(I,, C3(—M, I)) uSt(—I,, C3(— M, I)),
and I,— M,, I, — My e St(I,, C3(—M, ))u St(—1,, C3(-M, I)).
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Proof. For J =K ={1,2}, N = Mg is one of the three principal 2 x 2 submatrices
of M. The first two elements of I,—M,, I,— M, are equal to I,—N,, L—N,,
respectively. Since the first two elements of I, and —I; are zero,

L =My, L= M,eSt(L, C3(-M, I)) U St(— L, C3(—M, I)),

if and only if the first two elements of I, — M,, I,— M, are complementary combina-
tions of —N;, —N, and the columns from the two dimensional identity matrix if
and only if I, ~ N, and I,— N, are both covered by complementary cones of N if
and only if (by Theorem 1) N is a K-matrix.

The equivalence of the last two conditions in the theorem to the other two principal
2 x 2 submatrices of M being K-matrices is proved similarly. Since all 1 x 1 matrices
are K-matrices, the theorem follows. [

An efficient characterization of completely K-matrices would exploit the K-matrix
property of the lower dimensional principal submatrices to help characterize the
K-matrix property of the higher dimensional principal submatrices. Thus for the
case n=3, it is natural to investigate the relationship between the 2 X2 principal
submatrices being K-matrices and the whole 3 x 3 matrix being a K-matrix. There
is a weak relationship, as shown by

Theorem 11. Let M € E*®. If all the principal 2x2 submatrices of M are not K-
matrices, then M is not a K-matrix.

Proof. Assume all three principal 2 X 2 submatrices of M are not K-matrices. From
Theorem 5 we know there can be at most one positive and at most one negative
diagonal element of M.

For N e E**? not a K-matrix, it easily follows from the theorems of Section 3
that the following must hold:

If N;;<0 and N,,=0, then N;,>0 and N,, must be such that N,, N,, = N,; N,,.
(By Theorem 3 we know N;,=0. If N;,=0 then {I,-N,,,— N} C(I,, L,)u
C(I,,~N,)u C(—N,, I,) and by Theorem 1 N is K, so N;,>0. From Theorem 2
we have that N, N,, = N,;; N,,.)

If N,,>0 and N,,=0, then N,;,=0 and N,,>0. (If N;,<0 then C(I,,—N,)
covers I, and by Theorem 4, N is K. If N,; <0 then, again by Theorem 4, N is K.
Also if N,; =0 then I,— N, and I, — N, are covered by C(I,, I,)u C(I,, —N,) so
by Theorem 1, N is K. Therefore, N,,>0.)

If N, = N,,=0, then N;,=0, N,; =0, and N;,+ N,,>0. (Using Theorem 4 we
have that N,,=0 and N,,=0. With N;,=0 and N,, =0 we have N;,+ N,, =0, but
if Nj;+ N,;=0then N is K, so Nj,+ N,,>0.)

Using these facts and symmetry to reduce the number of cases, it immediately
follows that M has one of the forms

-+ o+ -+ 4 0 0+ +][ o0 o+ o0+
-0+ + 0,+,j0,+ 0 O,+}{0,+ 0 +1|]0,+ 0 0+
oo+ + o0 |lo+ 0+ o ||lo,+ 0+ +||0,+ 0+ o0
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where ‘+°, ‘—’, ‘0’ indicate a positive, negative, or zero element respectively. For
each of these forms if we take g;> 0, which we may do independent of what ¢q, and
g, are, then we force w; > 0 and z; = 0. This reduces the problem to a 2 X 2 subproblem
which we know isn’t K. Therefore, M is not a K-matrix. {1

If all the 2 X2 principal submatrices of M are K-matrices, it should be easier to
verify that M is also a K-matrix than if nothing were known about the 2x2
submatrices. Interestingly, this is not true, as shown by the following sequence of
examples. All the 2 X2 principal submatrices of

-0.05 0.15 -0.01
M={ 015 -0.05 -0.01
1 1 -1

are K-matrices, but g=—025M,—0.75M,+0.11,=(0,0, —1)" is not covered by
complementary cones. Similarly for

-1 0 -1
M= 0 2 =3},
-1 2 1

g=IL—M,=(0,—1, —2)" is not covered. These examples show that it is necessary
to check all the points mentioned in Theorem 9, and thus knowing that the 2x2
principal submatrices are K-matrices is of no help (at least for this type of finite
characterization). The algebraic signs of the minors of K-matrices, completely
K-matrices, and non-K-matrices were investigated, and no patterns were apparent
other than what have already been mentioned.
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