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There has been increasing attention recently on average case algorithmic performance measures  
since worst case measures  can be qualitatively quite different. An important  characteristic of  a 
linear program, relating to Simplex Method performance,  is the number  of  vertices of  the feasible 
region. We show 2 ~ to be an upper  bound on the mean  number  of  extreme points of  a randomly 
generated feasible region with arbitrary probability distributions on the constraint matrix and 
right hand  side vector. The only assumption made is that inequality directions are chosen 
independently in accordance with a series of  independent  fair coin tosses. 
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Attempts to establish the mean number of extreme points and other topological 
properties of random linear constraint sets have included distribution dependent 
approaches (see, for example, Efron (1965), Liebling (1972), Schmidt and Mattheiss 
(1977, 1980)) as well as essentially distribution free approaches (May and Smith 
(1982), Adler and Berenguer (1981), (1983)). Apart from the purely mathematical 
interest of these models and results, they have proved useful in establishing average 
case performance of variants of the Simplex Method (Borgwardt (1982), Adler 
(1983), Saigal (1984), Smale (1983), Todd (1983)), Adler, Karp and Shamir (1982), 
Adler and Meggido (1983), and Haimovich (1983)). 

McMullen (1970) demonstrated that the worst case number of extreme points 
goes up factorially fast in problem dimension for the class of convex polytopes. 
Independently, May and Smith (1982) and Adler and Berenguer (1981), using the 
theory of arrangements of hyperplanes partitioning Euclidean space (Grunbaum 
(1967), Buck (1943)), established distribution invariant topological results for ran- 
domly generated linear constraint sets. They showed that the average number of 
extreme points for a class of distributions over convex polytopes increases only 
exponentially fast in problem dimension. They assumed the generating distribution 
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to be continuous, thus excluding sparsity, integer constraint coefficients, degeneracy, 
and other characteristics that real world and many randomly generated linear 

programs are known to possess. It was also assumed that inequality directions were 
decided on the basis of  independent tosses of a fair coin. Retaining only the latter 
assumption, (now referred to as sign invariance) we show in this paper  that for 
arbitrary distributions, the expected number of  extreme points is bounded from 
above by 2" where n is the dimension of the constraint set. Note that this result for 
random linear programs does not exclude degeneracy. 

1. A model  for random linear programs 

We express the constraint sets in the general form Ax ~ b where A is an m x n 
matrix, b is column m-vector and x is a column n-vector. The inequality directions 
are specified by a column m-vector e, where ei = 0 or 1 according to whether the 
ith constraint is <~ or >/respectively. A probability distribution can then be specified 
over the space of all possible polyhedral sets S = (A, b, e) for n and m fixed. Let 
F1, F2 and F3 be the marginal distributions on A, b and e respectively. In particular 

define F3 by the m-tuple (Pl, P2,. .  •, p,,) where pi = P(e~ = 1) and el, e2, • • •, em are 
assumed independent. Most of the occurrences of  S correspond to empty polyhedral 
sets. We shall, however, be concerned with conditional properties of polyhedral 
sets so generated given that they are nonempty. After randomly generating the 
constraint set, we can obtain a region of dimension 0, 1 , . . . ,  or n. Let Ek(m, n) 
denote the expected number  of  extreme points of  a generated region of dimension 
k. Then the expected number  of  extreme points of  a generated region, 

E(m, n)= ~ Ek(m, n)p(k), 
k=O 

where p(k) is the probability of  generating a region of dimension k. 
If  Ek(m, k)<~ 2 k we would then have 

E(m,n)= ~ Ek(m,k)p(k)<~ ~. 2kp(k)~2" ~ p ( k ) = 2 " .  
k=O k=O k=O 

It suffices to show, without loss of  generality, that 

E,(m, n)~<2" 

(we would clearly have that Ek(m, n)<~2k). 
In particular, we are interested in 

E(n, m ) =  the expected number of  extreme points of  a nonempty polyhe- 

dral set formed by m constraints in R" according to the model 
above. 
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We shall impose the following restrictions. We require that p~ =½ for i = 1 , . . . ,  m 
in the m-tuple for F3;  this is the crucial symmetry assumption of the main results 
of  May and Smith (1982) and Adler and Berenguer (1981, 1983). 

We shall here extend the exponential bound of 2 ~ for E(m,  n) obtained in May 
and Smith (1982) and Adler and Berenguer (1981, 1983) by weakening the assump- 
tions of F1 and F2 to arbitrary distributions over the constraint set matrix and right 
hand side vector respectively. Incidently their joint distribution is also allowed to 
be arbitrary. In keeping the one half symmetry on F3 we retain the assumption that 
each polyhedral set of the partition of ~n formed by the m hyperplanes is equally 
likely to occur as the chosen feasible region. 

2. A bound on the expected number of extreme points for an arbitrary 
number of constraints 

Theorem 1. Let F1 over A and F2 over b be arbitrary and possibly dependent 
distributions. Let e~, i = 1, 2 . . . .  , m, be i.i.d. Bernoulli random variables with p~ =½for 
all i = 1 . . . .  , m where e is independent of  A and b. Then the expected number of  extreme 
points for the corresponding randomly generated nonempty constraint set of  m con- 
straints and n variables, E ( n, m)<~ 2 n for all m and n. 

Before proving Theorem 1 we need the following results. 

Definitions (Winder (1966)). A set of k hyperplanes in En all passing through a 
common point is odd-degenerate if the dimension of their intersection is of different 
parity than n - k. A set of hyperplanes that is not odd-degenerate is termed even- 
degenerate. 

Lemma 1 (Winder (1966)). The number of  regions in which m hyperplanes, all passing 
through some common point, divide R n is equal to the number of  distinct even-degenerate 
subsets of  the given m hyperplanes minus the number of  distinct odd-degenerate subsets 
(the empty subset is included and counted as even-degenerate). 

Lemma 2. Suppose a point p is determined by (that is, coincides with the intersection 
of) the distinct hyperplanes H~ . . . .  ,HI/  in R ~. Consider the hyperplane 
H ~ { H ~ , . . . ,  Hf},  also passing through p and with theproperty that it does not contain 
any linear flat of  dimension greater than zero which is the intersection of  two or more 
of  the H~, j = 1 , . . . ,  I. Let NH (p) be the number of  regions (n-dimensional polyhedral 
sets) formed by the H; ,  j = 1 , . . . ,  l, and lying entirely in a distinguished half-space of  
H. Then NH(p) is invariant over all H satisfying the property above. 

Proof. It is sufficient to show that the number of even-degenerate and odd-degenerate 
sets of the partition o fR  n by H, H ~ , . . . ,  H f  is invariant to the choice of H, so long 
as it satisfies the property stated above. Then, from Lemma 1, the number of regions 
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in the pa r t i t ion  fo rmed  by  H I  p, . . . ,  H p and cut by  H is invar ian t  to H. The remain ing  

uncut  regions are then invar ian t  in number ,  so that  the ha l f  o f  these uncut  regions 

lying whol ly  in a d i s t ingu ished  ha l f - space  is invar ian t  in number .  
Let S-= H p, n HP~ c ~ - . .  c~ Hie ,  where  n ~  c { H I P , . . . ,  HP}. It suffices to show that  

the par i ty  o f  H c~ S is invar ian t  with respect  to H. Let d i m ( S )  = k ~> n - q. Clear ly,  

d i m ( H  c~ S) = k - 1, for  k > 0, by  the p rope r ty  above  that  H satisfies. Also,  d i m ( H  n 

S) = 0 for  k = 0; obvious ly ,  in this case H c~ S ~ S -= {p}. Therefore ,  par i ty  o f  ( H  n S) 

is invar iant  with respect  to H. []  

W e  can therefore simpli fy  the notat ion subst i tut ing N ( p )  f o r  N t q ( p ) .  

Lemma 3. Consider  a po in t  p determined in ~"  by hyperplanes HPl, . . . , H p.  Le t  C ( p )  

be the total  number  o f  regions f o r m e d  by HP,  . . . , H p around p. Then C ( p )  <~ 2" N (p ) .  

Proof.  I t  can be easi ly seen that  there must  exist  n l inear ly  i n d e p e n d e n t  hype rp l anes  

out  o f  { H ~ , . . . ,  H~}  which  suffice to de te rmine  p. Wi thou t  loss o f  genera l i ty  denote  

these n hype rp l anes  H I P , . . . ,  H e. N o w  cons ide r  the 2 n or than ts  de t e rmined  by  

HIP . . . .  , H~ and n u m b e r  them 1 th rough  2 n. Let  the n u m b e r  o f  regions in or than t  

i be Ci (i = 1 , . . . ,  2n). Then there c lear ly  exists a hype rp l a ne  Hi,  sat isfying the 

p roper ty  o f  L e m m a  2, a ha l f -space  o f  which whol ly  conta ins  the ith orthant .  By 

Lemma 2, Ci <~ N ( p )  (i = 1 , . . . ,  2 n) since every region in the o r than t  ent irely lies in 

a d i s t inguished  ha l f - space  o f  Hi. Hence  it fol lows that  

2 n 2 "  

C ( p )  = Z Ci ~ ~, N ( p )  = 2nN(p) .  []  
i ~ l  i ~ - I  

Now,  cons ide r  the pa r t i t i on  of  R n by the m hype rp l anes  o f  the cons t ra in t  set 

A x  ~ b. We shal l  assume th roughou t  that  the m hype rp l anes  are dist inct ,  for  otherwise 

we s imply  e m b e d  the p r o b l e m  in the co r r e spond ing  lower  d imens iona l  subspace.  

Let Pr, r - -  1, 2 . . . . .  k be the vertices o f  the pa r t i t ion  (k  is the n u m b e r  of  vertices o f  

the par t i t ion ,  k ~< (~)). Let H be a hype rp l ane  in R n, H÷ a d i s t ingu ished  ha l f -space  

o f  H and  H er and  H +  e~ the hype rp l ane  pa ra l l e l  to H pass ing  th rough  Pr and the 

ha l f - space  co r r e spond ing  to H e, respect ively.  Since the  n u m b e r  of  hype rp l anes  in 

the par t i t ion  is finite, we can find H such that  H e toge ther  with the hype rp lanes  

H ~  ~ that  de te rmine  p~ on the par t i t ion  ( j  = 1 , . . . ,  4) have the p rope r ty  o f  Lemma 

2J  By L e m m a  2, exac t ly  N ( p r )  regions a r o u n d  p,  lie ent i rely in H+e% and we associa te  

these regions  to p~ Also  c lear ly  no region R o f  the pa r t i t ion  can be assoc ia ted  to 

two dis t inct  points ,  say p,  and  p, where  s ~ t. 2 We can then  state the fol lowing 

l emma whose  p r o o f  is s t ra ight forward .  

Let a ~ be the ith row of A corresponding to a normal of the ith hyperplane for i = 1, . . . ,  m. Since 
the union of the spans of all subsets of a~, . . . ,  a ~ with n -1  vectors or less cannot be all of R", there 
must exist a vector a E ~" that is not in the span of any subset of a~, . . . ,  a ~ of n - 1 vectors or less. 
Hence the solution set of ax = 0 (representing hyperplane H) cannot contain the intersection of the 
solution sets of any n -  1 or less of the equations a~x =0, . . . ,  a ' x  = O. 

2 Suppose R _c He+, n Hg, without loss of generality, HP+, c_ He+, and HP+, ~ Hg,, so that Pt ~ He+ ,. But 
Pt E R and R c_ He+,. Contradiction. 
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Lemma 4. Consider the partition of  space formed by m arbitrary hyperplanes in R n. 

Then the total number of  regions in the partition N >t k ~r=l N(pr) where pl, . . . , Pk are 
the points formed by the partition (the bound on the right is understood to be zero i f  

there are no points). 

We can now easily prove Theorem 1, using the lemmas above. 

Proof of Theorem 1. E(m,  n)~-the expected number  of  extreme points for a ran- 
domly selected region of the par t i t ion--average number  of  extreme points of  

k k 2 n g _-- 2 n. regions of  the partition=Y~r= ~ C ( p r ) / N < ~ r = l  N(pr)/~,r=~ N(pr) [] 

3. Concluding remarks 

The bound of 2" for the expected number  of  extreme points established in Theorem 
1 is approached in the limit as the number  of  constraints increases for absolutely 
continuous independent distributions F1 and F2 as shown in May and Smith (1982), 
Adler and Berenguer (1981). We suspect although we have not shown that all other 
topological properties are also bounded by those characteristic of  an n-dimensional 
hypercube. Also since the proofs do not directly exploit the linearity of  the varieties 
partitioning space, the same results can be expected for a wide class of  nonlinear 
programs. The more interesting direction would be a weakening of the symmetry 
assumption on the inequality directions. Unfortunately, such a move would introduce 
strong distributional dependence of average topological properties on the particular 
choice for F1 and F2 as well as on their particular form of dependency. 
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