
Mathematical Programming 54 (1992) 307-333 307 
North-Holland 

Finite dimensional approximation in infinite 
dimensional mathematical programming 

Irwin E. Schochetman 
Department of Mathematical Sciences, Oakland University, Rochester, MI 48309, USA 

Robert L. Smith* 
Department of Industrial and Operations Engineering, The University, of Michigan, Ann Arbor, 
MI48109, USA 

Received 18 April 1989 
Revised manuscript received 20 August 1990 

We consider the problem of approximating an optimal solution to a separable, doubly infinite mathe- 
matical program (P) with lower staircase structure by solutions to the programs (P(N)) obtained by 
truncating after the first N variables and N constraints of (P). Viewing the surplus vector variable 
associated with the Nth constraint as a state, and assuming that all feasible states are eventually reachable 
from any feasible state, we show that the efficient set of all solutions optimal to all possible feasible 
surplus states for (P(N)) converges to the set of optimal solutions to (P). A tie-breaking algorithm which 
selects a nearest-point efficient solution for (P(N)) is shown (for convex programs) to converge to an 
optimal solution to (P). A stopping rule is provided for discovering a value of N sufficiently large to 
guarantee any prespecified level of accuracy. The theory is illustrated by an application to production 
planning. 
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I .  I n t r o d u c t i o n  

C o n s i d e r  t he  f o l l o w i n g  d o u b l y  in f in i te  m a t h e m a t i c a l  p r o g r a m m i n g  p r o b l e m :  

o o  

m i n i m i z e  ~ c j ( y , , ,  . . ,  yj) 
j 1 

i 

s u b j e c t  to ~ a i j ( y l , . . . , y j ) > ~ b i ,  i =  1,2 . . . . .  , 
j=  l 

y j c  ~ ,  j = l , 2 , . . . ,  

w h e r e  Yj _~ N" , , j  = 1, 2 , . . .  a n d  bi c l~ m~, i = 1, 2 , . . . .  A p a r t  f r o m  the  i mp l i c i t  s t r u c t u r a l  

a s s u m p t i o n  t h a t  e a c h  c o n s t r a i n t  c o n t a i n s  at m o s t  f in i te ly  m a n y  va r i ab l e s ,  (P)  is at 

* The work of Robert L. Smith was partially supported by the National Science Foundation under 
Grant ECS-8700836. 



308 LE. Schochetman, R.L. Smith / Infinite Mathematical Programming 

this point completely general, including integer programs where each Yj is discrete. 
Although there is an extensive literature on the solution of semi-infinite mathematical  
programs (see for example Anderson and Nash [1]), there is relatively little work 
on the doubly infinite case (Grinold [8, 9, 10], Jones, Zydiak and Hopp [12], and 

Flam and Wets [7] being notable exceptions). In this paper, we establish conditions 
on (P) which allow for arbitrarily good approximations to the solutions of (P) by 
solving finite dimensional approximations to (P) obtained by truncating beyond 
finitely many variables and constraints. 

I f  we interpret the index j in (P) to correpond to the j th  period in a multi-period 
planning problem, then the above truncation to (P) becomes a finite horizon 
approximation of an infinite horizon optimization problem. This so-called planning 
(or solution) horizon approach has an extensive literature (see for example Bean 

and Smith [3], B~s and Sethi [5], and Schochetman and Smith [19]). Our paper  
extends this work to a general mathematical  programming framework where the 
requirement of  [3, 5] that variables be discrete and the assumption of [19] that all 
finite horizon feasible solutions are extendable to infinite horizon feasible solutions 
do not hold in general. 

Moreover, in the presence of a certain property, which we call reaehability, we 
show how to enlarge the set of  finite dimensional optimal solutions to guarantee 
Hausdorff convergence to the set of  infinite dimensional optimal solutions as the 
dimensionality increases. The tie-breaking algorithm of Schochetman and Smith 
[20] is then employed to select a sequence of finite dimensional optimal solutions 
that converges to an infinite dimensional optimal solution as the dimensionality of  
the approximation increases. This differs fundamentally from [7]-[10] where it is 

shown only that convergent subsequences  exist. 
Throughout this paper  we adopt  the following. 

Assumptions. 
(A) The feasible activity vectors yj lie in non-empty,  compact  regions, i.e., each 

Yj is a non-empty,  compact  subset of  R nj, so that there exists ri > 0 such that [yJb <~ rj, 

for all yj  c Yj and j = 1, 2 , . . . ,  where [-]j is the Euclidean norm on R ".i. 

(B) The constraint functions are continuous, i.e., for each i - -1 ,  2 , . . . ,  a• is a 
continuous, real-valued function on Y1 x .  • • x Yj, for j = 1 , . . . ,  i. 

(C) The objective function is continuous and absolutely convergent, i.e., for each 
o o  

j = 1, 2 . . . .  , cj is a continuous, real-valued function on Y~ x .  • • x Yj and ~j ~ ~ 1[ cj [1o~ < 
oo, where 

[1 cj[]oo = m a x { l c j ( y ~ , . . . ,  yj)[: Yk c Yk, k = 1 , . . .  ,j}. 

Note that this implies uniform convergence of the objective function. 

In Section 2, we establish a Hilbert space context for (P) and note that, as a 
c o  

consequence of Assumption A, the product and metric topologies on l~j=l YJ are 
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identical. We then show that under Assumptions A, B and C, (P) has an optimal 

solution. 
In Section 3, we formally introduce the finite dimensional approximations,  (P (N) )  

to (P) effectively consisting of the first N variables and first N constraints of  (P), 

N = 1, 2 , . . . ,  and study their inter-relationships. 
In Section 4, we prove that the sequence of optimal objective function values to 

the approximating problems (P(N) )  converges to the optimal value of (P), as N ~ 
(i.e., value convergence). We also show that for convex programs with strictly convex 
objective functions, the sequence of optimal solutions to the problems (P (N) )  also 
converges to the (unique) optimal solution of (P), as N-~co (i.e., solution 

convergence). 
In Section 5, we consider the class of  problems where the objective function and 

constraints are separable and each variable appears  in at most finitely many con- 

straints. Treating the surplus vector associated with the N th  constraint of  (P (N) )  
as a state variable, we form for each N, the closure of  the set of  all optimal solutions 
to all feasible states. In the presence of our reachability property, we show that this 
sequence of optimal sets converges to the set of  optimal solutions of  (P) in the 
underlying Hausdorff  metric. Thus, under reachability we have solution set conver- 

gence. Also in this section, we discuss a natural tie-breaking rule for selecting 
solutions to the (P (N) )  in such a way that the resulting solution sequence converges 
to an optimal solution of (P). We also discuss a forward algorithm which, together 
with a stopping rule for determining N, yields any desired level of  accuracy. Finally, 
in Section 6, we discuss an application in production planning. 

2. Mathematical preliminaries 

We begin by constructing an infinite dimensional Hilbert space in which we 
embed (P). 

Each R"J is a Hilbert space with usual inner product, norm and metric denoted 
o o  

respectively by ( . , . ) j ,  ['[j and dr, j =  1 , 2 , . . . .  I f  we let Y = [ I j = I  ~ ,  then by 
Assumption A and the Tychonoff Theorem [13, p. 143], Y is a non-empty,  compact  
subset of 1]j=l R"~ relative to the product of  the metric topologies. 

F i x 0 < / 3 i < l ,  eachj ,  such that ~i= 1 2 2 ~ flJrJ <oo (for example,/3j = 1/jrj) .  For each 
j = 1, 2 , . . . ,  denote by ~ the Hilbert space given by Nnj as a (real) linear space 
with inner product, norm and metric given respectively as follows: 

(xj, yj)j  = tg~(x~, yj)j, 

IIx lli =  ,lxjtj, 

pi(x~, yj)  = ~idj(xj, yj) ,  xj,yj c H i. 

Of course, the metrics pj and d r are topologically equivalent for all j, so that Y is 
c o  

also a compact  subset of  Hi=1 Hi. 
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Let H denote the Hilbert sum [2, p. 222] of the /-/j, i.e., 

H =  xj)c  /4j: E ilxjll 2 2 2 
j = l  j = l  j = l  

with inner product  given by 

co oo 

(x, y) = E (xj, yj)j • 2 = fij(xj, yj)j. 
j = l  j = l  

Hence, the corresponding norm and metric are given by 

and 

LE. Schochetman, R.L. Smith / Infinite Mathematical Programming 

From the choice of the fij, it follows that 

Y~_H. 

Thus, Y inherits a metric structure from H via p. 

x , y ~ H .  

Thus, since Y is compact  in the product  topology, it is a compact metric space 
relative to p. Moreover,  a sequence {y"} in Y converges to y relative to p if and 
only if for each j, {y~} converges to yj in R~ relative to the usual Euclidean metric. 

Define Y{(Y) to be the space of all compact,  non-empty subsets of Y and let D 
denote the Hausdorff metric on Y{(Y) corresponding to p. Recall that for C, K in 
Y{(Y),  we have 

D ( C , K ) = m a x ( m a x p ( x , K ) ,  max p(y, C ) ) ,  
\ x c C  y ~ K  

where p(x, K ) =  miny~K p(x, y), x ~ C. In this manner,  Y{(Y) becomes a compact  
metric space [11, 15]. This metric will prove useful in Sections 4 and 5 where we 

study solution set convergence. 
There is an alternate characterization of set convergence which will also prove 

very useful to us later on. Let KN_~ Y, for N =  1 , 2 , . . . .  Define l i m i n f K N  and 
lira sup KN as follows [4, 11, 15]: 

(1) y 6 lim i n f K u  if and only if y ~ Y and, for each N sufficiently large, there 
exists yU in KN such that yN__)y, as N ~ c c .  

Proof. See pages 120 and 153 of[16] .  [] 

Lemma 2.1. The p-metric topology and the product metric topology on Y are the same. 
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(2) y e lira sup KN if and only if y c Y and there exists a subsequence {Kuk} of  
{KN} and a cor responding  sequence {yk} such that yke  KNk, all k, and y k ~ y ,  as 
k ----> oo .  

I f  K _ Y and K = lira inf KN = lira sup KN, we write 

lira KN = K. 

In general, lim inf KN and lim sup KN are closed subsets o f  Y, which may be empty  
and which satisfy lim inf KN c lira sup KN. N o w  suppose KN is not empty  for  N 

large. Since Y is compact ,  we have that lim sup KN # O. Also, if K c J{(Y)  and 

KN e Y{( Y), all N, then 

KN -~ K in :7{(Y) relative to D 

if and only if 

K = lim inf KN = lim sup KN, 

i.e., lim sup KN c K and K _~ lim inf KN [11, 14, 15]. Thus,  lira KN = K also. 

For  each i = 1, 2 , . . . ,  recall that  bi is an element o f  the Eucl idean space N' , ,  so that 

a ~ : Y 1 x ' ' ' x Y / - > I R  m', j = l , 2 , . . . , i .  

Thus, the ith constraint  is a vector inequali ty involving the first i variables at most. 

It may  be interpreted as a system of  m~ scalar constraints in the componen t s  o f  the 
yj, j = 1, 2 , . . . ,  i. By Assumpt ion B, each aij is a cont inuous  function, so that  the 

funct ion 

i 

aii : Y, × " " " × Yi ~ ~ m' 
j=l 

is also cont inuous,  i =  1, 2 . . . . .  Hence,  if we define 

F~=(yc  Y: ~ aa(yl,. . . ,yj)>~b~}, i = 1 , 2  . . . . .  
j=l 

then F~ is a closed and hence compact  subset o f  Y. The feasible region X of  (P) is 

then given by 

X=~-]F;.  
i--1 

Thus, X, being an intersection o f  compac t  sets, is itself a compact  subset o f  Y. To 

avoid the trivial case, we assume that X # 0, so that each F~ # 0, as well. A necessary 

and sufficient condi t ion for this is that  the sets {F~} have the finite intersect ion 

proper ty  [13, p. 136]. Hence, under  our  assumptions,  we have that the feasible region 

X is in Y{(Y). 
Turning to the objective funct ion o f  (P), for each j = 1, 2 , . . . ,  we have that  

Cj: Y, x .  • • x ~-->~. 
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By Assumption C, each cj is continuous. Since Y~ x . . - x  ~ is compact,  we have 
that the sup norm of % 

Ilcjl]oo= max Icj(y~ . . . . .  yjl<oo, j = l , 2 , . . . .  
Y t x -  ' " x Y j  

oo 
By Assumption C, we have moreover that ~j=l [[ cj I1~ < co. A sufficient condition for 
Assumption C to hold is that each cj be of the form oflkj, where 0 <  a < 1 is a 
discount factor, kj is a continuous function on Y~ x • • • x y / a n d  the kj are uniformly 
bounded. 

Theorem 2.2. The correspondence 

co 

c ( y )  = Z c j ( y , , . . . ,  s j )  
j=l  

defines a continuous function C: Y ~ ~ which is the uniform limit of the sequence of 
continuous functions C( .  ; N )  given by 

N 

C ( y ; N ) =  Y~ c ) ( y , , . . . , y j ) ,  y ~ Y .  
. j-  1 

In particular, given e > 0, there exists N~, > 0 such that N >t N~ implies that 

j=~+~N cj(y~, . . . ,y~)  <e,  y Y. 

Proof. This follows from Assumptions A, B and C. fZ 

Since C is continuous on Y and X is a compact,  non-empty subset of Y, C 
attains its minimum on X. Let 

C *  = m i n  C(x)  
x c X  

be the optimal objective value of (P) and let 

X *  = {x c X :  C(x )  = C * }  

denote the set of optimal solutions. Then X* is also a compact,  non-empty subset 
of Y, i.e., X* ~ Y{(Y), where 

O ¢ X * c X c  Y. 

Our primary objective in this paper  is to approximate the optimal objective value 
C* and an optimal solution x* in X* via corresponding quantities computed from 
finite dimensional approximations of (P). 
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3. The finite dimensional approximations 

3 1 3  

We begin by defining finite dimensional approximations to (P) formed by retaining 
the first N variables and the first N constraints. For each N - 1, 2 , . . . ,  let (P (N) )  
be the finite dimensional problem given by , 

N 

(P (N) )  minimize Z cj(y~,...,yj) 
j - -  1 

i 

subject to ~ ao(y~,...,yj)>~bi, i= l , . . . ,N ,  
j - - I  

ycY..  

Note that (P (N) )  has N constraints in the N vector variables y l , . . . ,  YN, with the 
remaining yj being arbitrary. Thus, (P (N) )  is a finite dimensional problem having 
the advantage that all solutions are comparable  as elements of  Y. Our intent is to 
ultimately approximate  solutions of (P) by solutions of  the (P(N)) .  Let X(N) 
denote the feasible region of (P(N)) ,  for N = 1, 2 , . . . .  Then X(N) is a non-empty,  
compact  subset of  Y, since X(N)=(-~iN_l Fi, i.e., X(N)c~{(Y), N= 1 , 2 , . . . .  

Lemma 3.1. For each N = 1, 2 , . . . ,  we have 

(i) X ( N ) = { y c  Y: ~ a~(yl,...,yj)>~bi, i = l , 2 , . . . , N } ,  
j = l  

(ii) X( N+I ) ~ X(N) .  [] 

Since X is the non-empty intersection of the sets X(N) in Y{(Y), i.e., X =  
oo (-]N=1 X(N), we have that 

X ( N ) ~ X  in Y{(Y), as N-->~,  

relative to the Hausdorff metric D [14, p. 339]. 
Turning to the objective function of (P(N)) ,  let 

N 

C(y;N)= Y, cj(y,,...,yj), N=l ,2 , . . . ,  
j=l 

where the domain of C ( . ;  N )  is Y. Then (P(N) )  may be abbreviated as 

min C(y; N), N=1,2 , . . . .  
y~X(N) 

Also, recall that the C( .  ; N) ,  when viewed as functions on Y, converge uniformly 
to C (Theorem 2.2). 

Since C ( . ;  N )  is continuous and X(N) is compact  as well as non-empty,  it 
follows that the minimum in (P(N))  is attained. Denote this optimal value by 

C*(N), N = 1, 2 , . . . .  Also let X*(N) be the set of  optimal solutions of  (P (N) ) ,  
so that X*(N) is a compact,  non-empty subset of  X(N), N = 1, 2,... .  
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In the next section, we search for conditions which allow for approximating the 
infinite dimensional optimal objective value C* and an infinite dimensional optimal 
solution x* by finite dimensional optimal objective values C*(N) and finite 
dimensional optimal solutions x*(N) for N sufficiently large. 

4. Optimal value and solution convergence 

We first establish (optimal) value convergence for the finite dimensional programs. 

Theorem 4.1 (value convergence). The optimal values of the finite dimensional prob- 
lems (P( N) ) converge to the optimal value of the infinite dimensional problem (P), i.e., 

C*(N) -~ C*, 

as N~oe .  Also, limsup X * ( N ) c  X*. 

Proof. Let I = {1, 2 , . . .}  • {co}. Then I is a compact  metric space under stereographic 
projection. Define 

f :  Y x I - > ~  

by 

f ( y , N ) = { C ( y ; N ) ,  y c Y ,  N = l , 2 , . . . ,  
C(y), y¢  Y, N=oo. 

We claim that f is continuous. In particular, if y" --> y in Y and N,  -~ co, as n --> oo, then 

If(Y, ~ ) - f ( Y ' ,  Nn)l = IC(y) - C(y"; N.)  I 

<~ I C ( y ) -  C(y")l+ I C ( y " ) -  C(y"; N.)  I 

o ~  

=]C(y)-C(y")]+ E cj(y]) , 
,j = N , ,  + 1 

which goes to zero as n ~oc,  since C is continuous and uniformly convergent 
(Theorem 2.2). Since lim X ( N ) =  X, it follows that the mapping N-> X ( N )  (with 
X(cc) = X)  is continuous from I into Yg'(Y). Hence, by the Maximum Theorem 
[4, p. 116], it follows that min{f(y,  N):  y ¢ X ( N ) }  converges to min{f(y,  co): y e X}, 
i.e., C * ( N ) ~ C * ,  as N ~ o o ,  and that lim sup X*( N) c_ X*. [] 

Having established value convergence, we next address the question of solution 
convergence. That is, we seek conditions under which it is possible to choose 
solutions optimal for (P(N))  which converge to a solution optimal for (P). As we 
will see shortly, for strictly convex programs (P), this convergence occurs for all 
solutions optimal for (P(N)) .  However,  in general, not all solution selections optimal 
for the (P(N))  will converge. In fact, we will find it necessary to enlarge the set of 
possible solution selections from the (P (N) )  to include non-optimal feasible solution 

selections with the property that the limit of  any convergent subsequence of these 
is optimal for (P). 
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More formally, we define a finite dimensional algorithm A* for (P) to be a sequence 
{A*(N),  N = 1, 2 , . . . }  where each A * ( N )  is a closed, non-empty subset of  X ( N )  

satisfying 

A*(oo) _~ X*,  

where A*(~ )  is defined to be lim sup A * ( N ) ,  the set of  accumulation points of  the 

A*(N) .  In this case of course, lim i n f A * ( N ) ,  although possibly empty, must also 
be a subset of  X*. For example, if each A * ( N )  is a closed, non-empty subset of  
X * ( N ) ,  then it follows from Theorem 4.1 that A* = {A*(N),  N = 1, 2 , . . . }  is a finite 
dimensional algorithm for (P). In what follows, we will see that there exist finite 

dimensional algorithms A* for which A * ( N )  ~ X * ( N ) ,  for all N. 
We seek a finite dimensional algorithm A* which is itself convergent, i.e, such 

that A * ( N ) ~ A * ( ~ )  in Y{(Y) relative to the Hausdorff  metric D, as N ~ c o .  For 
such A*, we are interested in selecting x * ( N )  in A * ( N ) ,  for each N, so that the 
sequence {x*(N)} converges to a solution in X*.  This selection is made as follows. 
Let p c Y and K ~ Y[(Y). Then the distance p(p, K )  from p to K is attained, possibly 

non-uniquely. I f  sp(K) is such a point for each K in Y[(Y),  then we call % a 
nearest-point selection defined by p. I f  K is such that p(p, K)  is uniquely attained 
by a point in K, then p is called a uniqueness point for K. The set of  all such 
uniqueness points will be denoted by U(K) .  Clearly, ~0 # K c_ U ( K )  c_ y in general. 

Theorem 4.2. Let A* be a finite dimensional algorithm for (P) and A a closed subset 
of  X *  containing A*(oo). Then the following are equivalent: 

(i) A*(N)-+ A, relative to the Hausdorff metric D, as N ~ .  
(ii) lim i n f A * ( N )  = lim sup A * ( N )  = A. 

(iii) For all x* c A, there exists x* (N)  ~ A * ( N ) ,  each N, such that x * ( N )  ~ x*, 
relative to the p metric, as N ~ ~ .  

(iv) For each p in U(A)  and each nearest-point selection sp defined by p, 
s p ( A * ( N ) ) ~  sp(a), as N ~ .  

In particular, if  A = X *  is a singleton, where X* = {x*}, then all the above conditions 

are satisfied; in fact, 

x * ( N ) o  x*, 

as N ~ ~ ,  where x*( N )  is any element of  X*(  N) ,  N =  1 , 2 , . . . .  

Proof. This theorem follows immediately from Schochetman and Smith [20] in 
conjunction with our previous discussion. [] 

Analogously, we have the following dual version of Theorem 4.2. 

Theorem 4.3. Suppose A* is a finite dimensional algorithm for (P) with A as above. 
Then the following are equivalent: 

(i) lim i n f a * ( N )  # ~. 
(ii) There exists an x* c A for which there exists x * ( N ) c  A * ( N ) ,  each N, such 

that x* ( N )  ~ x*, relative to the p metric, as N ~ ~ .  
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(iii) There exists p in U ( A ) such that sp ( A * ( N ) ) ~ sp ( A ) , as N ~ ~ , for  all nearest- 

point selections sp defined by p. [] 

Theorem 4.3 gives the existence of limit points of A* in (i) as a necessary condition 

for approximating a solution to (P) by suitable choices of  solutions to the (P(N))  
from the A * ( N ) .  In practice, the easier way to demonstrate this condition is to 
establish the stronger claim that A* converges to some non-empty set A, the latter 
being condition (i) of  Theorem 4.2. Under  this condition, any nearest-point selection 
(defined by p) of  solutions from the A * ( N )  is guaranteed to converge, provided 
that there is a unique point closest to p from A. Since A c_ y, we also have A c H, 
where H is a Hilbert space. Hence, a sufficient condition for there to be a unique 
point in A closest to p, for any p c Y, is that A be closed and convex [2, p. 15]. In 

particular, for (P) a convex program, X* is a convex subset of H, where (P) is said 
to be convex if: 

(i) Yj is convex, j = 1, 2 , . . . .  
(ii) - a ~  is convex, j = 1 , . . . ,  i, i =  1 , 2 , . . . .  

(iii) cj is convex, j = 1, 2 , . . . .  
We therefore obtain the following corollary to Theorem 4.2. 

Corollary 4.4. Let A* be a finite dimensional algorithm for  (P) where (P) is a convex 

program. Then the following are equivalent: 
(i) A * ( N ) - ~  X * ,  as N ~ .  

(ii) For each p ~ Y and each nearest-point selection sp defined by p, sp ( A * ( N ) ) ~ x* 

* is the unique point in X *  closest to p. [] as N ~ oo, where x r, 

In the next section, we will construct a finite dimensional algorithm A* which, 
under a reachability condition, converges to the set of  all infinite dimensional optimal 
solutions X*.  Hence, by the previous corollary, nearest-point finite dimensional 
solutions will converge to an optimal solution of (P). 

Before leaving this section, we note that if (P) is a convex program with strictly 

convex objective function C, the optimal solution x* will be uniquely attained. 
From Theorem 4.2, or as a corollary to Theorem 4.1, we obtain the following. 

Theorem 4.5 (solution convergence). Suppose (P) is a convex program with strictly 

convex objective function C, i.e., cj is strictly convex on ~ n , x . . . x ~  n~, for  some 
j = 1 , 2 , . . . .  Then 

x * ( N ) ~  x*, 

where x * ( N )  is any solution to (P(N)) ,  N = 1, 2 , . . . ,  and x* is the unique solution 

to (P).  [] 

The previous theorem extends a result established directly by McKenzie in [17]. 
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5. Solution convergence through tie-breaking 

317 

In the previous section, we saw that tie-breaking by means of a nearest-point selection 
of  solutions from a convergent finite dimensional algorithm generates a sequence 

of solutions which converges to an infinite dimensional optimal solution. Our 

objective in this section is to construct such a convergent finite dimensional 

algorithm. 
We begin by assuming henceforth that (P) is separable lower staircase, i.e., 

cj(y, . . . .  , yj) = c j ( y j ) ,  j = 1, 2 , . . . ,  
and 

with 

aij(Yl,...,yj)=a!j(yi), j = l , . . . , i ,  i=1 ,2 , . . . ,  

aij=O, j = l , . . . , i - 2 ,  i = 3 , 4 , . . . .  

Under this assumption, (P) may be written in the form 
co 

(P) minimize ~ cj(yj) 
j 1 

subject to a o I(Yi O+ao(Y~)>~b~, i = 1 , 2 , . . . ,  

y j c  ~ ,  j = l , 2 , . . . ,  

where a~o is identically zero. 
In order to construct a finite dimensional algorithm {A*(N), N = 1, 2 , . . .}  which 

converges, for example, to X*, we need by Theorem 4.2 to choose each A*(N) 
sufficiently large to insure that for each x*~ X*, there exists a choice x*(N) in 

A*(N), all N, such that x*(N)-+x*. On the other hand, we also need to be sure 

that each A*(N) is sufficiently small so as to insure that each convergent subsequence 

{x*(Nk), k = 1, 2 , . . .}  drawn from the A*(N) converges to a point x* in X*. The 

set X*(N) of all finite dimensional optimal solutions for (P(N))  is too small a 
choice for A*(N) in general. Instead, viewing N as a discrete time parameter, we 

enlarge X*(N) to include all solutions optimal to some feasible "state" ending 

period N. We begin by formalizing the notion of state. 

Fix N. I f y  is feasible for (P(N)),  then the only connection between the constraints 

of (P(N))  and the remaining constraints of (P) is the value aN+~.N(yN). We call 

this value the state s(N) ~ R raN+' associated with the solution y in X(N).  Let s(N) 
be an aribtrary element of N'N+' and define 

X(N, s(N)) = {y c X ( N ) :  aN+,.N(yN) = s(N)}. 

Then X(N, s(N)) is the set of (P(N))-feasible solutions y having state s(N) at 

stage N. Since the constraint functions are continuous, it is a closed, although 

possibly empty, subset of X(N).  Let 

So(N) = {s(N) ~ ~m~+,: X(N, s(N)) # 0} 

= { s ( N ) c  ~mN+,: aN+I.N(XN)=S(N), for some x ( N ) 6 X ( N ) }  
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be the set of all states feasible for (P(N))  and let 

S*(N) = { s ( N )  eRmN+': * - aN+I,N(XN) -- s (N) ,  for some x* e X*} 

be the set of all states s(N) optimal for (P). We have S*(N)c So(N), all N. 
Moreover, one can easily show that, for each N, S*(N) and So(N) are compact, 
non-empty subsets of E raN+'. 

For each N and each s(N) in So(N), consider the mathematical program 
(P(N, s(N))) given by: 

(P(N,  s(N))) minimize C(y(N); N) 

subject to y(N) c X(N, s(N)). 

Since the minimum C*(N, s(N)) is attained, we may define 

X*(N,  s(N))= { y ( N ) e  X(N, s(N)) :  C(y(N); N ) =  C*(N, s(N))}, 

which represents the set of all solutions optimal to state s(N) e So(N) for problem 
(P(N)) .  Each such X*(N,  s(N)) is a compact, non-empty subset of X(N) c y, i.e., 

an element of Y{(Y). 
For each N, and S(N) satisfying S*(N)c_ S(N)c  So(N), let 

x*(N, S(N))= U X*(N, s(N)). 
s ( N ) c S ( N )  

For technical reasons, we also define x*(N,  S (N) )  to be the closure of x*(N,  S (N) )  
in Y, so that x*(N,  S(N))cYf(Y), for all N. 

The set x*(N, S(N)), being the set of all solutions optimal to some feasible state 
in S(N) for (P(N)) ,  is called an efficient set (Ryan, Bean and Smith [18]). Note that 

X*( N) ~_ x*(N,  So(N)) 

is a strict inclusion in general, since x*(N, So(N)) is the union of the X*(N, s(N)) 
over all feasible states s(N) e So(N), not just those states corresponding to optimal 
solutions of (P(N)) .  

Remark. One can show that for fixed N, the mapping s(N) -~ X(N, s(N)) of So(N) 
into Y{(Y) is upper semi-continuous [4]. If this mapping is also continuous (as for 
example when YN is discrete), then from the Maximum Theorem [4, p. 116], the 
resulting mapping s(N)-~ X*(N, s(N)) of closed S(N) into Yf(Y) is upper semi- 
continuous. In this case, x*(N,  S(N)) is automatically closed, thus, eliminating the 
necessity of taking its closure. 

We turn now to establishing conditions under which the efficient sets x*(N, S(N)) 
converge to the set X* of solutions optimal for (P). By definition, it is necessary 
and sufficient to establish that 

(1) X*_~ lim in fx*(N,  S(N)) and 
(2) lim sup x*(N, S(N)) c X*. 

The next lemma establishes (1). 
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Lemma 5.1. Let S*(N) ~ S(N) c So(N), for each N. Then 

X *  ___ lim inf  x*(N, S(N)). 

319 

Proof. Let x * c X * ,  and thus x * c X ( N ) ,  all N. Fix N and define s ( N ) =  
au+l,u(XN), so that  s (N)e  S*(N). We next verify that  x*e X*(N, s(N)), i.e., x* 

is opt imal  for  (P(N,  s(N))). 
Suppose  not. Then  there exists x in X*(N, s(N)) such that  x # x* and C(x; N) < 

C(x* ;  N) .  For  such x, we have 

aN+I,N(XN). s(N) = aN+,.N(XN) = * 

N o w  define 

Then 

Thus,  

Z = ( X  1 , . . . , X N -  1 , X N ,  X N +  1 , X N + 2 ,  • • . ) .  

@ a N + I , N + I ( X N + I )  au+,.u(Zu) + aN+,.N+,(ZN+,) = aN+,.N(XN) * 

= aN+I,N(XN) + aN+,N+,(XN+O 

bN+l. 

z is feasible for  (P), i.e., z e X. Moreover ,  
co 

C(z) : C(z; S ) +  E cj(z,) 
j = N + I  

=C(x;  N)+  E c~(x~) 
j = N + I  

oo 

<C(x*; N)+ E ej(xT) 
] ~ N + I  

= C(x*), 

i.e., x* is not  opt imal .  Contradic t ion.  Hence,  x* c X*(N, s(N)), so that  x* e 

x*(N, S*(N))~_ x*(N, S(N)). Since N is arbi trary,  we have that  

x*e ~] x* ( N ,S (N) )~ l i m i n f  x*(N,S(N)) .  [] 
N = I  

In  order  to establish (2), we require that  a state reachabi l i ty  p roper ty  be satisfied. 

Definition (reachabil i ty) .  Suppose  S*(N)~ S(N)~_ So(N), for  each N. Let k be a 
posit ive integer and s(k) a feasible state in So(k). We say that  the sequence  
{ S ( N ) ,  N =  1 , 2 , . . . }  is reachable from state s(k) at k if, given any sequence  
{ t (N) ,  N = 1, 2, . . .}  o f  feasible states with t(N) e S(N), all N, there exists Nk > k 
sufficiently large such that  for  each N >1 Ark, there exists a sequence o f  decisions 

= , . . - , Y N , . . . )  which 
(i) is feasible for  ( P ( N ) )  and  achieves state t(N), i.e., yN C X(N,  t(N)) and 

(ii) whose first k decisions are feasible for (P(k) )  and  achieve state s(k), i.e., 
N y c X(k,  s(k)). 
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We say that the sequence {S(N) ,  N = 1, 2 , . . . }  is reachable from all feasible states 
if it is reachable f rom all states s ( k ) c S ( k ) ,  for all k, where 

S(k)  = {s(k) c ~mk+,: ak+,.k(Xk) = s(k),  for some x c X} 

is the set o f  states at k which are feasible for (P), k = 1, 2 , . . . .  Note  that for  each 

N, S*(N)  c_ S ( N )  ~_ So(N), in general. 

Roughly  speaking, a sequence of  feasible state sets is reachable if any sequence 
o f  states drawn from the sequence o f  sets can be eventually reached (i.e., at tained) 

f rom any feasible state o f  (P) at any stage. This is a key property which decouples  

current and future decisions, al lowing for finite dimensional  approximat ion  of  an 

infinite dimensional  problem. This decoupl ing effect is formalized in the fol lowing 

theorem. 

Theorem 5.2. Let S*( N)  ~ S( N)  ~_ So(N), all N. I f  {S( N) ,  N = 1, 2 , . . . }  is reachable 
from all feasible states, then 

X - -  lim X ( N ,  t (N)) ,  
N ~ c ~  

for all selections { t (N) ,  N = 1, 2, . . .}  with t (N)  c S ( N ) ,  all IV. 

Proof. 

since 

Since X ( N ,  t (N) )  ~_ X ( N ) ,  all N, it follows that 

lim sup X ( N ,  t (N) )  c_ lim sup X ( N )  = X, 

X =  ~'] X ( N ) =  lim X ( N ) .  
N = I N ~ o o  

Now suppose (P) has the reachability proper ty  to { S ( N ) ,  N = 1, 2 , . . . }  f rom all 

feasible states and t ( N ) c  S (N) ,  all N. Let z c X and define s (k )= ak+l.k(Zk), k= 
1, 2 , . . . .  Then z ~ X(k ,  s(k)) and s(k) ~ S(k) ,  all k. By reachability for k = 1 (and 

s(1)), there exists N ~ I  such that for all N ~ N 1 ,  there exists yl.N which is 

(P(N)) - feas ib le  with state t (N)  and whose first decision is (P(1))-feasible with state 

s(1). By reachabil i ty for k = 2, there exists N 2 >  N1 such that for all N ~ N2, there 
exists y2,N which is (P(N))- feas ib le  with state t ( N )  and whose first two decisions 
are (P(2))-feasible with state s(2). For  N1 ~ N < N2, define z N in Y as follows: 

__~zl, j =  1, 
Z T - -  l N [ y /  , j = 2 , . . . , N ,  

where z N is chosen arbitrarily in ~ ,  for j > N. We leave it to the reader to verify 

that  z N is (P(N)) - feas ib le  with state t( N ), i.e., zN ~ X ( N, t( N ) ), N1 <~ N < N2. 
N o w  suppose  1 < N~ < N2 <"  • • < Nk have been found  for 1, 2 , . . . ,  k respectively 

by reachabili ty and z N,, . . . ,  z uk ~ have been constructed so that z N c X ( N ,  t (N) ) ,  
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N z < ~ N < N k - l  andzN=zj ,  f o r j = l ,  I, Nt<~N<N~+~ l = l ,  k -  1. Recall 

that Nk has the property that for each N ~  > Nk, there exists yk, N which is (P(N)) -  

feasible with state t (N)  and whose first k decisions are (P(k))-feasible with state 

s(k). Applying reachability to k +  1, there exists Nk+~> Nk such that for all N ~  > 
N~.+~, there exists yk+~,n which is (P(N))-feasible with state t (N)  and whose first 

k +  1 decisions are (P(k+ 1))-feasible with state s (k+ 1). For Nk ~< N <  Nk+~, define 

z N in Y as follows: 

_ / z , ,  j = l  . . . . .  k, zT-[y .N, j - -k+1, . . . ,  u, 

where z N is chosen arbitrarily in ~ ,  for j >  N. Once again, one can show that 
N z c X (N ,  t (N)) ,  for Nk ~< N < Nk+~. In this way, we obtain a sequence {z N} in Y 

such that z N c X ( N ,  t (N)) ,  all N ~  > NI,  and 

zJ~=zj, j = l , . . . , l ,  N~<~N<Nt+,, l = l , . . . , k - 1 ,  k = l , 2  . . . . .  

Therefore, z N ~ z, as N ~ ~ ,  in the product topology of Y and hence, relative to 

the metric p as well (Lemma 2.1). Consequently, z c l i m i n f X ( N ,  t (N)) .  

Theorem 5.2 states that whenever a state sequence is reachable from any feasible 

state, the feasible decisions which reach those states will eventually cover the entire 

feasible region X. 
We return to the task of showing, under reachability, that the efficient sets 

)¢*(N, S (N) )  converge to the set of optimal solutions X*. The next lemma establishes 

the inclusion in (2) above. 

Lemma 5.3. Suppose S*( N ) c S ( N ) ~_ So(N), all N. I f  {S(N),  N = 1, 2 , . . .}  is reach- 
able from all feasible states, then 

lim sup x*( N, S( N))  c X*. 

Proof. Fix x in lira sup x*(N, S(N)) .  Then there exists a sequence 

I < N1< N2 < N3 <" " " , 

and a corresponding sequence {x u~} such that x N' ~x*(Ni,  S(Ni)),  all i, and x N, ~x ,  

as i o ~ .  Then, for each i, there exists t (N i ) cS (N i )  such that xN 'cX*(Ni ,  t(Ni)), 
so that xc l imsup~X*(Ni ,  t(N~)). For each N different from Ni, let t ( N ) ~ S ( N )  
be arbitrary, so that we get t (N)  c S (N) ,  all N. Arguing as in the proof of  Theorem 

4.1, we may show that lira sup X*(N,  t (N))  c_ X*. This completes the proof  since 

lim sup X*(N~, t(N~)) c lim sup X*(N,  t (N)) .  D 
i N 
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We are now ready to prove our main result in this section. 

Theorem 5.4 (efficient set convergence). Suppose (P) is separable lower staircase. Let 
S*(N) ~_ S (N)  c So(N), for all N, and suppose {S(N),  N = 1, 2 , . . .}  is reachable 
from any feasible state. Then : 

(i) Setting A*(N) = x * ( N ,  S(N)) ,  all N, we have 

A * ( N ) ~ X * ,  a sN~oo ,  

i.e., A* is a convergent finite dimensional algorithm for (P). 
(ii) For every p in U(X*), we have that 

s,,(x*(N,S(N)))-~ sp(X*), as N-~oo, 

where Sp(X*(N  , S ( N ) ) )  is any point in x*(N, S(N))  nearest to p and sp(X*) is the 
unique point in X* nearest to p. 

Proof. By Lemmas 5.1 and 5.3, we have that X* = lim x*( N, S(N)).  Now apply 
Theorem 4.2 and [14, p. 337] to complete the proof. [~ 

Theorem 5.4 generalizes (to continuous variable mathematical programs) a result 
proven for discrete decision sets by Ryan, Bean and Smith [18]. For ~ finite and 
uniformly bounded, all j, and /3 sufficiently small (where /3j =/3 i, 0 <  ~ < 1), they 
showed that the uniqueness set U(K) for any K in 9~(Y) contains the origin. 
Moreover, letting p be the origin, they showed that the nearest point selection 
determined by p corresponds to the lexicographically minimum solution. 

Since the uniqueness set of X* is all of  Y for convex programs, we obtain the 
following consequence of Theorem 5.4. 

Corollary 5.5. Suppose the mathematical program (P) in the preceding theorem is 
convex. Then, for any p in Y, 

sp(x*(N, S (N)) )~sp(X*) ,  as N - ~ .  

Proof. Apply Corollary 4.4. 

The use of efficient set convergence in approximating solutions to (P) via solutions 
to the (P(N))  is complicated by two issues. The first is the task of computing 
sr(x*(N, S(N))) ,  which is a solution to a quadratic program. The difficulty lies in 
determining its feasible region, which is the efficient set x*(N, S(N)) .  What is 
required is a parametric right hand side solution of (P(N)) .  For the discrete case, 
as in Ryan, Bean and Smith [18], a dynamic programming solution of (P(N))  will 
automatically generate x*( N, S( N) ) = x*( N, S( N) ) for all S*( N) ~_ S( N) c So(N). 
Also, for the continuous case with one-dimensional surplus states s(N),  as in 
inventory and production planning, the efficient sets are obtainable through conven- 
tional parametric programming. However, as the dimensionality of the surplus states 
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grows, the task of computing h~*(N, S(N)) becomes more difficult, since multi- 
dimensional variation of the right hand side must be considered. 

The second issue in implementing efficient set convergence in approximating 
solutions to (P) via those of (P (N) )  involves the choice of  N. Under the conditions 

of  Theorem 5.4 or Corollary 5.5, a nearest point to p in x*(N, S(N)) will be 
arbitrarily close to the infinite dimensional optimal solution in X* nearest to p for 
sufficiently large N. We next provide a stopping rule for discovering how large N 
must he to insure a desired level of  accuracy. 

The procedure described below is to solve a sequence of ever higher dimensional 
approximations to (P) until a stopping criterion is met that insures the desired level 
of  accuracy. Specifically, using the finite dimensional algorithm A*, employment  of 
the stopping rule will approximate the first k decisions of  the infinite dimensional 
optimal solution sp(X*) within an error at most 8 > 0. The first part of  the procedure 

is the stopping rule. 
We begin by fixing p c U(X*) and a corresponding nearest-point selection Sp. 

* denote the unique element of  X* such Let S*(N) c S(N) c So(N), all N. Let x,, 
that p(p, X*)=p(p, x'r), i.e., sp(X*)=x*. In what follows, it will be convenient to 
write x*(N,S(N)) for sv(x*(N,S(N))), all N. Recall that by Theorem 5.4, 
x*(N, S(N))~x*,  as N ~ o o .  Likewise, for s(N) c S(N), it will also he convenient 

to write xp(N, s(N)) for sp(X*(N, s(N))), N = 1, 2 , . . . .  Let k be a positive integer 
and 8 > 0. Assume A* is the algorithm given in Theorem 5.4, i.e., 

A*(N)=x*(N,S(N)),  all N. 

Stopping Rule. Stop at N for algorithm A* if N ~> k and 

di(xp(N , s ( N ) ) , ,  x*(N, S(N)),) ~< 6, j =  1 , . . . ,  k, 

for all s(N) ~ S(N). 

The rule states that the algorithm A* can be terminated when the nearest-point 
selections to all feasible states in S(N) at N differ from the efficient set selection 
by at most 8 in the first k decisions. Application of the stopping rule in practice 

requires exploitation of special structure in (P). For example,  for discrete problems, 
S(N) is finite so that there are only a finite number  of  selections to compute and 
compare for each N. Similarly, in the linear programming case there are finitely 

many candidate optimal bases. 

Forward Algorithm. 
Stepl. Choose k a n d  8. Set N = k .  
Step 2. Solve (P(N))  using algorithm A* to obtain xp(N, s (N) ) ,  for all s(N) 

S(N). 
Step 3. I f  the stopping rule is not satisfied, set N = N + 1 and go to Step 2. 

Step 4. Stop. 
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Theorem 5.6. I f  the Forward Algorithm terminates at N, then x*( N, S( N)) approxi- 
* within error at most 6 in thefirst k decisions, i.e., mates xp 

dj(x*p(N,S(N))j,(x*p)j)<~6, j = l , . . . , k .  

Proof. For each N, let s*(N)=aN+I,N((X*)N) SO that s*(N)~S*(N) .  By the 
triangle inequality, we have that 

dj(x*( N, S( N) ) j, (x~) j) <~ dj(x*( N, S( N) ) j, xp( U, s*( N) ) j) 

+di(xp(N,s*(N))i,(x*)j),  j = l , . . . , k .  

By hypothesis, it follows that 

dj(x~( N, S( N) ) j, xp( N, s*( N) ) j) <~ 6, 

since S * ( N ) c S ( N ) .  Thus, the proof  will 
xp( N, s*( N) ) 2 = (x*t, ) i,j = I , . . . ,  k. 

Suppose for the moment that 

Define 

j = l , . . . , k ,  

be complete 

N N 

Z Pi((x*)i, Pj) 2< • P j(xp(N,s*(N))j, Pi) 2 
j = i j = 

{(x*)i ,  ~ j = l , . . . ,  N, 
Zi=Ixp(N,s ' (N)) ,  ., j = N + I , . . . .  

if we show that 

diction. Hence, it must be that 

N N 

E pj((x~)j, pj)2 >1 E 
j = l  . i = 1  

Now define y by 

= ~xp(N, s* (N) ) j ,  
Y i t ( x , ) i ,  

p j (  xp(  N ,  s* (  N )  ) i , p i )  2. 

j = I , . . . , N ,  
j = N + I , . . . .  

Then z is (P(N))-feasible with state s*(N),  i.e., z c X(N,  s*(N)). In fact, by the 
principle of optimality, z must also be optimal, i.e., z c X*(N, s*(N)). Moreover, 
by our assumption, 

N oc~ 

P(z,P) 2= Z Pj(Zi, Pj) 2+ Z Pj(zi, Pj) 2 
.j~l . j~N+I 

N 0o 
= ~, Pj((x*)j, Pi) 2+ E pj(xp(N, s*(N))j,pi) 2 

j = l  j = N + I  

oo 

< E Pi(Xp( N, s*(N))i, Pj)~ 
j=l  

= p(x,,(N, s*(N)) ,  p)2, 

which implies that z in X*(N,  s*(N)) is closer to p than xp(N, s*(N)). Contra- 
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Since y has state s*(N) at N, it is easy to see that y e X. Moreover, since x* c 
X*(N, s*(N)), we have that 

N co 

C(y)= E cj(yi)+ E c/y i )  
j - I  j - N + I  

N 02 

= E cj(xp(N, s*(N))j)+ E Ci((x*)j) 
j I . j = N + I  

N 

= E cj((x~).i)+ ~ c/(x~)j) 
. i = l  j = N + I  

: C(x*),  

i.e., y is optimal for (P), so that y ~ X*. 
Finally, by above 

N c(~ 

p(y,p)2= E pj(yj, pj)2+ E pj(yj, pj)2 
.i ~ 1  .i N + I  

N oo 

= ~ Pi(Xp(N,s*(N))j, pi) 2+ ~ Pj((x*).i, Pj) 2 
.j=l j N + I  

N 

<~ E Pj((x*)j, Pj) 2+ E . * 2 • pj((x,, )j, pj) 
j ~ l  j ~ N + I  

=p(x*,p)  2, 

• is the unique point in X* nearest to p. which implies that y = x * ,  since xp 
Consequently, 

xp(N, s*(X) ) j  * =(xt,)j , j = I , . . . , N ,  

and the proof  is complete, since N/> k by the Stopping Rule. [] 

We turn next to the question of when the stopping criterion will ultimately be met. 

Theorem $.7. The Forward Algorithm will finitely terminate for any choice of k and 6 
whenever 

X*( N, s( N ) ) ~ X* in J{( Y), 

as N ~  00, for all choices s(N) ~ S(N),  N = 1, 2 , . . . .  

Proof. I f  not, then the Stopping Rule is not satisfied eventually for some positive 
integer k and 8 > 0 .  Thus, for each N>~k, there exists s ( N ) c S ( N )  and j u e  
{ 1 , . . . ,  k} such that 

djN(xp(N , s(N))m, x*(N, S(N))j~)> & 
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Since { 1 , . . . ,  k} is a finite set, there exists joe { 1 , . . . ,  k} for which ju  : Jo  infinitely 
often. Thus, there exists a subsequence {NI} of {N:  N ~  k} such that N ~  k and 

djo(Xp(N, , s(N,))jo , x*(Nl, S(N,))i o) > 6, 1 = 1, 2 . . . . .  

By Theorem 5.4, we have that x~(N, S(N))  ~ x*, as N-~ ~ ,  so that x*(N~, S(N~)) 
x*, as l ~ .  Hence, by Lemma 2.1, 

x*(N,, S(Ns))jo-~(x*)jo, as l-->eo. 

By our hypothesis, X*(N, s(N))-* X* in 3g'(Y), as N -  oo. Thus, X*(Nt, s(Nt)) 
X*, and consequently xp(N~, s(Nl))~ x'~, [19, Theorem 3.4] so that 

xp(Nt, s(Nt))jo-*(x*)jo, as l , o o .  

Hence, by the triangle inequality, 

djo(Xp(N,, s(Nt))io, x*p(Nt, S(Nt))jo)-O, as l-~oo, 

which is a contradiction. 

If the convergence condition of Theorem 5.7 holds, then the Stopping Rule will 
be satisfied eventually. What remains is to give a sufficient condition for this 

convergence to take place. 

Theorem 5.8. Let s ( N ) e S ( N ) ,  all N. I f  (P) has a unique solution, then 
X*( N, s( N) ) ~ X* in Y{( Y), as N ~ ~ and hence the Forward Algorithm will finitely 
terminate for any choice of k and 6. 

Proof. By the proof  of Lemma 5.3, we have that lim sup X*(N, s(N)) ~_ X*. On the 
other hand, X * ~ l i m i n f X * ( N , s ( N ) )  by Corollary 2.2 of Schochetman and 

Smith [19]. [] 

6. An application to production planning 

The theoretical development of (P) in the previous sections proceeded from three 
major assumptions: separability, lower staircase structure and reachability. Sequen- 
tial decision making over an unbounded horizon constitutes an important class of 
problems which typically meet these assumptions. In particular, the lower staircase 
structure can be obtained by introducing inventory-like surplus variables which 
summarize the effect of past decisions on current and future decisions. Examples 
include production and inventory planning and control, capacity expansion and 
equipment replacement. We will illustrate the previous development by an applica- 
tion to production planning. 

Consider the problem of scheduling production to meet non-stationary, deter- 
ministic demand over an infinite horizon. The objective is to optimally balance the 
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scale of production against the cost of carrying inventory. The problem may be 
formulated by the following mathematical program [6, p. 87]: 

oo 

(Q) minimize • ( k j (~ )+h j ( I j ) )d  1 
j=l 

subject to /~ l + P i - I ~ = D i ,  i = 1 , 2 , . . . ,  

0 < ~ < ~  P, j = l , 2  . . . .  , 

-B<~Ij<~I, j = l , 2 , . . . ,  

where /j is the net inventory ending period j with Io = 0, ~ is the production in 
period j, Dj is the demand for production in period j, kj is the production cost and 
hj is the inventory holding/backorder cost for period j , j  = 1 ,2 , . . . .  The factor a is 
the discount factor reflecting the time value of money, where 0 < a < 1. We require 
that P > 0, I > 0, B/> 0 and P ~> Dj ~> 0, all j. If B > 0, then backlogging is allowed. 
We impose the following assumptions on (Q). 

Assumptions. 
(I) For each j, the production cost kj and inventory holding cost hi are continuous, 

convex and uniformly bounded by an exponential function with rate at most I / a ,  
i.e., there exists G >  0 and 0 <  y <  1/c~ such that 

max[  sup kj(~),  sup h i ( I j ) ] ~ G 7  j, j = l , 2 , . . . .  
I O ~ P  ~ P  - - B ~ ! i ~ l  

(II) lim inf Dj < P and lira sup Dj < O. 

Assumption I provides for existence of an optimal solution and for flexibility in 
choosing p in Y for nearest-point selection. Assumption II is a regularity condition 
required to guarantee reachability for (Q). 

Our first task is to show that (Q) may be reformulated as a special case of  (P). 
For each j, define 

I / J ]  and ~ = [ - B , I ] × [ O , P ] .  h = pj  

Then yj e I~ 2, all j, and the ~ are the same compact, convex subset of  R 2. The 
production planning problem (Q) may now be expressed in the form (P) as follows: 

cx3 

(Q) minimize • cj(yj) 
j = l  

subject to ai,~ l(yi-l)+a~i(yi)>~b~, i = 1 , 2 1 . . . ,  

yi C Yj, j = l , 2 , . . . ,  
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cj(yl)~_[kj(p.i)~_hj(ij)]oLj 1, j = l , 2  . . . .  , 

[ - i  1 11][I'  ] i = 1 , 2 , . . .  aii(Yi) = - Pi ' 

[1 oTri,-,1 
a,., l(Yi 1) = _ OJLPi-I_]' i = 2 , 3 , . . . ,  

alo is identically zero and 

-[ 
bi L - D i J  i = 1, 2 , . . . .  

By construction the program (Q) is convex and separable lower staircase. Moreover, 
since [o] 

YJ= D j '  j = l , 2  . . . .  , 

yields a feasible solution for (Q), we have that the feasible region X # 0. 
For each N =  1 , 2 , . . . ,  the finite dimensional approximation (Q(N))  to (Q) 

becomes a finite horizon approximation given by 
N 

(Q(N))  minimize • c)(yj) 
.]-- 1 

subject to  ai, i-l(yi 1)+ai~(y~)>~bi, i = l , 2 , . . . , N ,  

y c Y .  

Since the inventory levels I 1 , . - . , I N  are defined by the production schedule 
P I , . . - ,  PN via 

J J 

Ij = Z P~ - ~ Di, j = I , Z , . . . , N ,  
i - -1  i 1 

we will say that ( P 1 , . . . ,  PN . . . .  ) is feasible for (Q(N))  if 0<~ Pi ~< P, all j, and 

J i J 

- B +  ~ Di<~ ~ P~<~I+ ~ P~, j = I , . . . , N .  
i--1 i l i--1 

Suppose ( P I , . . . ,  PN, . . . )  is (Q(N))-feasible. The corresponding state s ( N )  is 
then given by 

[ ,  olr, 7 
s ( N )  = aN+,.N(yN) = _ 0JLPNJ = --IN ' 

i.e., s ( N )  can be identified with the feasible inventory IN at the end of period N. 
Moreover, if we let X ( N )  denote the non-empty set of (Q(N))-feasible production 
schedules, i.e., 

f 

X ( N )  = I(P1 . . . .  , PN , . . . ) :  0 ~< ~ ~< P, all j, 
t n n } 

-B<~ Z P j -  ~ Dj<~I , I<~n<~N , 
j = 1 .j = l 
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then X ( N )  is clearly a convex polytope. Also, since the mapping 

N N 

(P, . . . . .  PN . . . .  ) -~ 2 Pi - E Dr = IN 
j = l  j ~ l  

is continuous and affine on X ( N ) ,  its (non-empty) image is a compact, convex 
subset of I - B ,  1]. Thus, the set So(N)  of  all (Q(N))-feasible states may be identified 
with a closed subinterval of I -B ,  I] i.e., 

for some B and f satisfying - B  ~< - B <  f~< I. 
For the case of no backlogging, i.e., B--0 ,  and where either kj or hJ is strictly 

increasing on its respective domain, 1 ~ j  ~< N, it is clear that if ( P * , . . . ,  P * , . . . )  
is optimal for (Q(N)) ,  then the inventory IN ending period N must be zero. It then 
follows that X * ( N )  c X * ( N ,  0), where 0 = [0, 0] t. Since the opposite inclusion is 
also true, we have that X * ( N ) =  X * ( N ,  0). Therefore, when it is feasible to obtain 
a strictly positive ending inventory for period N (e.g., when B = 0, P = 2, I = l, 
Dj = 1, all j ) ,  we must have 

X * (  N )  c x* (  N, So(N)), 

i.e., strict inclusion. Thus, in general, x*(N,  So (N) )  is strictly larger than X * ( N ) ,  
all N. 

We turn next to the problem of establishing reachability for (Q). 

Lemma 6.1. Under Assumption II, we have 

(i) There exists O < ~ p < P  and a subsequence { D r , , : m = l , 2 , . . . }  of  { D r : j =  
1, 2 , . . .}  such that Dr,,, ~ p < P, .for all m. 

(ii) There exists 0 <  6 <~ P and a subsequence {De : n ~- l, 2 , . . . }  o f  { Di : i = 1, 2, . . . }  

such that 0 < ~ <~ De,  all n. 

Remark. Assumption II is necessary as well as sufficient for (i) and (ii) to hold. 

Proof. Omitted. [] 

By Lemma 6.1, since 0 ~< Dj ~ P, all j, it follows that inventory can be stockpiled 
by the amount P - D  r ~> 0 during periods of maximum production. In particular, 
this amount will be at least ~ = P - p > 0  during the periods jm, m = 1 , 2 , . . . .  
Analogously, inventory can be depleted by the amount Di during periods of no 
production, where this amount will be at least 8 during the periods i,, n -- 1, 2 , . . . .  
This is enough to guarantee reachability as the next lemma asserts. 
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Lemma 6.2. Suppose S * ( N ) c  S(N)c_ So(N), all N. Then, under Assumption II, 
{S(N) ,  N = 1, 2 , . . . }  is reachable from all feasible states. 

Proof. See the Appendix. [] 

Under Assumptions I and II,  we then have from Theorem 5.4 that efficient set 
convergence takes place for (Q) and, moreover,  from Corollary 5.5 that any nearest- 
point selection of points from the efficient sets will converge to an optimal solution 
of  (Q). More specifically, let 

P*( N )  = ( P*~ ( N)  . . . .  , P*  ( N) ,  . . .) 

be the production schedule for (Q(N) )  corresponding to a nearest selection to the 

origin 0 in Y for the efficient set x*(N,  So(N)), consisting of the closure of all 
optimal production schedules to all possible feasible inventories ending period N. 
Let 

p*  = ( p * ,  P * , . . . )  

be the production schedule corresponding to the unique optimal solution to (Q) 

nearest o. 

Theorem 6.3. Suppose (Q) satisfies Assumptions I and II. Then P * ( N ) ~  P*, as 
N ~ oo, i.e., 

P * ( S ) ~  p~[, as N ~ o o ,  

for all j = 1, 2, 3 . . . . .  [] 

Since the states, i.e., inventories, are one-dimensional,  it is not difficult to calculate 
the efficient sets and hence, the nearest-point selections P*(N) ,  N = 1, 2 , . . . .  The 
previous theorem assures us that these approximations to the infinite horizon optimal 
production schedule will converge to P* as the horizon N lengthens. The Forward 
Algorithm of Section 5 may, moreover,  be used to attempt discovery of a horizon 
N sufficiently far off to generate the desired accuracy in our estimate of the optimal 
first production decision P*.  

It is interesting to note that in the discrete case of  no backlogging corresponding 
to B = 0, the monotonicity of the optimal production schedule P * ( N )  in the horizon 
N [6, p. 105] yields, for all selections, that P * ( N ) ~  P*, as N-~oo, for all j, and 
hence, P * ( N )  ~ P*, as N-~ oo. One can show from this same monotonicity property 
that the efficient set point closest to the origin is the closest amongst those with zero 
ending inventory, ie. the closest from the finite horizon opt ima X * ( N ) .  Therefore, 

the selection procedure reduces, in the no backordering case, to the classical result 
that P*(N)  ~ P*, as N ~ co. However, in the presence ofbackordering,  the monoton- 
icity property no longer holds [6, p. 105]) and nearest-point selections are thus 
employed to ensure convergence. 



L E. S c h o c h e t m a n ,  R .L .  S m i t h / I n f i n i t e  M a t h e m a t i c a l  P r o g r a m m i n g  331 

Appendix 

In this appendix, we give the proof of Lemma 6.2. 

Proof of Lemma 6.2. We will show more generally that {S0(N): N = 1, 2 . . . .  } is 

reachable from any state s(k) in So(k) at any period k = 1, 2 , . . . .  

Accordingly, suppose we are given period k with feasible ending inventory J and 
a sequence of feasible ending inventories K~, K 2 , . . . ,  KN, • • • • Then there exists 

(Q(k))-feasible (Yl, . . - ,  Yk,...) with Ik = J. 
Suppose for the moment that J = - B and we wish to reach inventory level I at 

some time in the future. By Lemma 6.1(i), there exists unique N~ such that 

k+N~ 

- B +  y, ( e - D j ) < ~ I ,  
, i=k+l  

while 

k + N ~ + l  

- B +  y, ( P - D j ) >  I. 
j = k + l  

Analogously, suppose that J = I and we wish to reach inventory -B.  By Lemma 

6.1(ii), there exists N~ such that 

k+N~" 
I-- y, Dj>~-B, 

j = k + l  

while 

k-c N~( + l 

I -  y, Dj < -B .  
j ~ k + l  

Now set N k = m a x ( k + N ' k + l ,  k + N ~ + l )  and let N ~ N k .  We will show that we 

can feasibly reach from inventory level J at the end of period k to inventory level 

KN at the end of period N. Recall that we have Q(k)-feasible productions 

P I , . . . ,  Pk . . . .  with inventories satisfying lk = J. 

Fix N ~ Nk. There are three cases to consider: J = KN, J < KN and J > KN. If 

J = K N ,  define ~ = D j ,  j = k + l , . . . , N  and zero, say, thereafter. Then 

( P 1 , . . . ,  PN,- . . )  is (P(N))-feasible with ending inventory 

N N k k 

IN =y ,  P j - E  Dj= Y, P i - y ,  D j = J = K N .  
j = ] j - -  1 .j = I .j - -  I 

If  J < K N ,  then as above, there exists unique n' such that k+n'<~k+N'k,  i.e., 

k+n '+l<~N,  and 

k+n '  

J+ ~ ( P - D j ) ~ K N ,  
j = k + l  
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while 

J +  

Define 

~ =  

Then ( PI , . . . , 
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k+n '+ l  

E (P-D2)> KN. 
j = k + l  

P, 
k + n '  

Dk+,~ ,+,+KN-J-  E ( P - D r ) .  
j = k + l  

.0, 

j = k + l  . . . .  , k + n ' ,  

j = k + n ' + l ,  

j = k + n ' + 2 , . . . , N ,  

j > N .  

PN, ' '  .) is (P(N))-feasible with ending inventory 

N N 

IN= ~ Pj-~ Di 
,j = 1 i = 1 

k+n '+ l  k + n ' 4  1 

= E ~ -  2 Dj 
j=l j : l  

k+n '+ l  

=J+ Z (g-Dr)  
j = k + l  

k + n '  

= J +  Z (P-D~)+Pk+~,+,-Dk+.,+, 
j= l  

K N .  

Finally, if J > K N ,  then there exists unique n" such that k+n"<~k+N[~, 

k + n " + l < ~ N ,  and 

k + n "  

J -  }~ Dj >~ KN, 
j ~ k + l  

while 

k ÷ n " + l  

J -  ~ Dj < KN. 
/ = k + l  

In this case, define 

0, j =  k + l , . . . ,  k+n" ,  

k + n "  

Dk+n,,+,-J+ ~ D)+KN,  j = k + n " + l ,  
j - - k + l  

Dj, j = k + n " + 2 , . . . , N ,  

O, j > N .  

i.e., 
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Then (P1,. . . ,  PN,...) is (P(N))-feasible with ending inventory 

N N 

IN= ~ P i - E  Dj 
j = 1 j = 1 

k + n " ÷  1 k + n " +  I 

= E P j -  2 Dj  
j = l  j=l  

k + n "  

= J -  5~ D~+Pk+n,,+,-Dk+n,,+, 
j = k + l  

= K N ,  

as required. [] 
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