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We consider the problem of finding the nearest point (by Euclidean distance) in a simplicial cone to a 
given point, and develop an exterior penalty algorithm for it. Each iteration in the algorithm consists of 
a single Newton step following a reduction in the value of the penalty parameter. Proofs of convergence 
of the algorithm are given. Various other versions of exterior penalty algorithms for nearest point problems 
in nonsimplicial polyhedral cones and for convex quadratic programs, all based on a single descent step 
following a reduction in the value of the penalty parameter per iteration, are discussed. The performance 
of these algorithms in large scale computational experiments is very encouraging. It shows that the 
number of iterations grows very slowly, if at all, with the dimension of the problem. 
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Newton step, SOR methods. 

I. Introduction 

We consider  the nearest point problem, which is that  of f inding the nearest  po in t  

by Euc l idean  dis tance in a convex polyhedra l  cone K c E n to a po in t  q c R n. 

It is a special convex quadra t ic  p rogram with many  impor tan t  appl ica t ions  

[1, 2, 4, 8, 16, 17]. The K K T  opt imal i ty  condi t ions  for the problem,  form the l inear  

complementar i ty  problem (LCP) associated with it. The nearest  po in t  p rob lem can 

be solved by special izat ions of descent  or active set methods  for l inearly cons t ra ined  

non l i nea r  programs [3, 15, 16], or through the associated LCP using any of the 

avai lable algori thms for solving LCPs such as complementa ry  and  pr incipal  p ivot ing 

methods  [2, 13, 14, 16], inter ior  point  methods  [12, 24], and  special methods  based 

on  its geometry [2, 8, 17, 22, 23]. Thus  a variety of methods  are already avai lable  

for the nearest  po in t  problem. However,  since it appears  often as a large scale 

problem,  there has been  a con t inu ing  mot iva t ion  to develop new algori thms which 

are faster. This is our  mot iva t ion  too and  our inspi ra t ion  comes from recent  reports 
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of significant improvements in computat ional  performance for solving large scale 

linear and convex quadratic programs through the use of  barrier methods in novel 
ways. We discuss a family of  penalty methods for our problem and report on their 
encouraging computational  performance.  

For any matrix D, we denote its ith row, j th  column by Di., D.j respectively. The 

symbol (xj) denotes the vector whose j th  component  is xj. For any real numbers 
a l , . . . ,  am, d i a g ( a ~ , . . . ,  am) denotes the m × m diagonal matrix with entries in the 
principal diagonal equal to al . . . .  , am. The symbol S \ T  denotes the set of  all 
elements in the set S which are not in the set T. For any vector x, ]lx[I denotes its 

Euclidean norm. For a square matrix A, IIAll denotes its matrix norm which is 
max{llAxll: IJxll = 1}. Given a matrix Q, Pos(Q)={Qy: y~>0} is the cone which is 
the nonnegative hull of  its column vectors. A square matrix A is said to be positive 
definite (PD) if yTAy > 0 for all y # 0, or positive semidefinite (PSD) if yTAy >~ 0 
for all y. Given any differentiable real valued function h(x) defined over ~n, we 
denote by Vh(x) its gradient vector at x, writen as a row vector. 

There are two forms of the nearest point problem, depending on the way the 
polyhedral cone K is specified. In one form K is specified as Pos(Q) for a given 
matrix Q. In the other form K is specified as {x: Ax>~O} where A is given. Both 
forms appear  in applications. When the problem is given in one of these forms, to 

transform it into the other form typically requires exponential effort. We develop a 
family of  exterior penalty methods for the nearest point problem when K is given 
as Pos(Q).  Our convergence analysis and computational  experiments treat the 

problem in this form. However, we show how the methods can be easily adopted 
to handle problems in the other form, and convex quadratic programs in general. 

Without any loss of  generality, we assume that the cone K is of full dimension. 

2. Penalty algorithms when K is a simplicial cone given in the POS form 

Let K = Pos(Q) where Q is a nonsingular square matrix of  order n. This special 

case of  the nearest point problem itself has many applications [1, 4]. In this case, 
the nearest point problem is: find h = (A1, • • . ,  An) r to 

minimize II q - QA II 2 
(1) 

subject to A/>0. 

It is well known that this problem always has a unique opt imum solution. I f  A* 

is the opt imum solution of this problem, x* = QA* is the nearest point in K to q. 
The penalty approach transforms the problem into one of unconstrained minimiz- 

ation of a composite function which is the sum of  the original objective function 
and a penalty function associated with the feasible region. The various penalty 
methods differ in the choice of  the penalty function. In this study we consider 

n 
penalty functions of  the form Pr(A)= ~j=l (max{0, - - l~ j} )  r for r = 2, 3, 4. This leads 
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to the fol lowing unconst ra ined minimizat ion problem in )t, where /~ is a positive 

penal ty parameter .  

Q)t i i ~ + i  " minimize f i ( ) t , / z ) = ] ] q -  • (max{0,- ) t j})  r o v e r ) t c ~ " .  (2) 
1,~ j = l  

f i () t , /z)  is convex in the )t-space for fixed tz > 0. fz()t,/~) is cont inuously  differenti- 

able in )t up to the first order, f3()t, Iz) and f4()t,/~) are twice cont inuously  differenti- 
able in )t. Let gr()t, IX), H(fr()t,/~)) be the gradient  as a row vector, and the Hessian 

matrix o f f i ( ) t ,  iz) with respect to )t. gr()t, /Z) for r = 2 ,  3, 4; and H(f i ( ) t ,  t t ))  for  
r = 3, 4 are given below. 

where 

gr()t,/~) = Vf~(A,/x) = --2qTQ+2)tTQTQ+ f-  ( ( ) t~)~- l~ , , . . . ,  ()t,) ~ 16,), 
/z 

(3) 
H(fi ( ) t ,  tx)) = 2QrQ+ r ( r -  1) diag(()tl) ~ 26~ , . . . ,  ()t,)r 2~,), 

/X 

~j : ~j()ti) = ¢ ~0 if 0, 

" ( - 1 )  r if )tj < O. 

In penal ty algorithms, the uncons t ra ined  minimizat ion o f f i ( ) t , / z )  in )t is carried 
out  by a descent method.  This me thod  begins with an initial point  )t o and goes 

th rough  several steps. In  each step a descent direction at the current point  )t k for  

fi()t , /~) is generated,  and a step is taken f rom )t k in that direction. The step length 

to move in that direction is either l(  for algori thms based on s tandard  Newton ' s  

method)  or the op t imum step length determined by a line search in that  direction. 

We will now decribe the line search routine, and choice o f  descent directions that  

we will use. 

Line search routine for f,.( )t, I~ ) 

Let ~ ~ R" and suppose d = ( d l , . . . ,  dn) T is a descent direction for f i ( ) t , /z )  at 5. Then  

dfr(~ + ad, i~ ) _ (_2dV QTq + 2dT QT Q~ ) + 2adT QT Qd 
da 

1 " 
+ - -  Z r ( -a ) r (Xj  ~-' + adj) dj¢j(a) (4) 

]'~ j = l  

where ~j(a) = 0  if ~j+adj~O,  and 1 if ~ j + a d j  < 0 .  So d f ( ~ + a d , / ~ ) / d a  is a sum 

o f  at most  n + 2  terms. Determine the set o f  ratios {-~j/dj:  j such that  either Xj > 0, 

d i < 0, or Aj < 0, dj > 0}, and arrange them in increasing order. Suppose there are s 

distinct values in this set, a~ < a2 < • • • < as. Define ~+~ = oc. For  any u = 1 to s, in 

the interval a ,  < a < ~,+~, each of  the terms on the right hand  side o f  (4) is m o n o t o n i c  

and has the same sign. Since d is a descent direction for  f r ( ) t ,~ )  at ~ , d f i ( ] +  
ad, / z ) /do  < 0 at a = 0, and as fi  ()t, tz) is convex and has a minimum,  this derivative 
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becomes 0 at some point in this direction. So, if we begin computing df (X + a, Ix)/do~ 
for ~ =0 ,  a l ,  o~2,.., there will be a t such that it remains negative until we get to 
o~,, and at o/t+ 1 it becomes />0. Then, we know that the minimum o f f ( h ,  IX) in h, 
over the half-line {~ + oM: a ~> 0}, is attained by some a in the interval at < o~ ~< ~t+l, 

and it can be found by an efficient search for the zero of  d r ( X +  ad, Ix) /d~ in this 
interval, as all the terms on the right hand side of  (4) are monotonic and of the 
same sign. 

Selection of  search directions 

We basically consider two directions. 

Steepest descent search direction: Under this rule, the search direction at the current 
point h k for f ( h ,  IX) is - V f ( h  k, IX), and step length for the move in this direction 
is taken to be the opt imum step length determined as discussed above. The method 
based on this strategy is the steepest descent version of the method. 

Newton search direction: Under this rule the search direction y at the current 
poin t  h k for f ( h ,  IX) is a solution of the system 

H ( f r ( h  k, Ix))y = - (Vf , . (h  k, IX))T. (5) 

Since Q is square and nonsingular, H( f r (h ,  IX)) is PD and (5) always has a unique 
solution. When using the Newton search direction, we can take the step length for 
the move to be 1 in all the steps, this leads to the standard Newton method; or 
opt imum step lengths leading to Newton method with line seaches. 

The classical exterior penalty method 

This method, discussed extensively in nonlinear programming literature, goes 
through several iterations. In each iteration, the value of the penalty parameter  Ix 

is fixed, and an algorithm is used to find the unconstrained minimum o f f ( A ,  IX) 
over h c R n. This algorithm itself may take several descent steps in this iteration. 

Proofs of  convergence of the classical penalty method require that the uncon- 
strained minimum o f f ( A ,  IX) is obtained in this iteration, but in actual computat ion 
a sufficiently small positive tolerance, e, called the desired accuracy, is selected and 
the unconstrained minimization routine terminated whenever a point A satisfying 
(6) is obtained. 

[[gr(h, /'~)[I ~ 8. (6) 

Now the penalty parameter  is reduced from its present IX to/2 say, and the method 
moves to the next iteration to find the unconstrained minimum o f f ( A , / 2 )  beginning 
with A as the initial point. 

Let A(IX) denote an unconstrained minimum of f r (h ,  IX) over A, as a function of 

Ix. It has been shown [21] that it is possible to select a target value IX, > 0 for the 
penalty parameter,  such that when IX decreases to this value or becomes smaller, 
then A(IX) is within a specified tolerance of an opt imum h for the original problem. 
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New exterior penalty methods 

Our methods are based on the ideas of  the classical penalty method, but differ f rom 
it in one important  aspect. We do not find the unconstrained minimum of fr(A,/~) 
for each fixed/~. Instead we carry out only one descent step of the unconstrained 

minimization algorithm, then reduce the value of the penalty parameter,  and continue 
the same way. 

One can visualize a path in the A-space, parameterized by ~, {A: ~Tfr(A ,/.~) = 0 ,  
/~ > 0}, called the exterior path, and an envelope containing this path defined by 
{A: IIVfr(A,/x)ll ~< e,/x > O} for a certain e > O. We will later on prove that the points 
obtained in this new algorithm, can be interpreted as a sequence of points in this 
envelope converging to the limit of  the point on the exterior path corresponding to 
/z as /x  tends to O. 

Basic algorithm 

Initialization: Let e be the desired accuracy, and/2 the target value for the penalty 
parameter.  Select an initial point A ° satisfying QA °=  q, and an initial v a l u e / o  for 
the penalty parameter  (this could be large). Select a value for the factor p between 
0 and 1. With (A °,/~o) as the initial pair, go to Step 1. 

General step: Let (A k, ~L~k ) be the pair at the end of the previous step. Let/~k+l = P]Jbk. 
Find the descent direction (either steepest descent or Newton's)  d k at A k for 

fr(A,/~k+l). Select the step length t~k (1 for standard Newton method, or the op t imum 
step length for other methods). Let A k+l= A k-F Ctk dk. I f  Ak+I~ > --e for all j, or if 

/~k+l <~/2, Ak+l is a point within the specified tolerance of the opt imum solution for 
(1), terminate. Otherwise, with the new pair (A k+l , /~k+l) go to the next step. 

This is the basic algorithm. Details on how to select p, I~o etc. are specified later 

o n .  

Convergence results 

Classical penalty methods are known to converge to an opt imum solution of  the 
original problem [3, 7, 15, 19, 21]. However,  these proofs assume that an actual 
opt imum solution for the problem of minimizing f(A,/~) over A c A n is obtained 

for each fixed value of/~ in a sequence converging to zero. We do not really obtain 
the unconstrained minimum of fr(A, ~)  over A e ~ for any value of /~  before we 
change it. Hence standard proofs of penalty methods do not apply directly to our 
algorithm. We give a convergence proof  for Standard Newton version of  the 
algorithm (one Newton step following a decrease in the pena l ty  parameter  /~ in 

every step), using the composite function f4(A,/~), this has been selected because 
each component  of  its gradient is twice continuously differentiable, and our present 

proofs use this property. We denote f4(A, ~ )  by f(A,/~)  for the sake of simplicity. 
Likewise we denote the gradient vector and the Hessian matrix of f4(A, p~) with 
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respect to A by g(A, Ix), H(A, IX). So 

g(A, IX) = - 2 ( q  - QA )-rQ + 4  ((A,)3~1,... ' (An)3~n),_ 
Ix 

(7) 
H(A, IX) = 2QTQ +12 diag((A,)2tSb...  ' (A,)28n) ' 

IX 

where ~ = (~51,..., 8n) is a function of A defined as in (3). We denote by gj(A, it) 
the j th  component  of  g(A,/.t); and by H.i(A, IX) the j th  column vector of  H(A, IX). 

Since Q is nonsingular, QTQ is PD. Let oh be the smallest eigenvalue of  QTQ. 
Also, from (3), (12/ix) diag((Al)261 . . . .  , (A,):Sn) is PSD for every/.t > 0. These facts 

imply that H(A,/.t)  is PD for every IX > 0, and that its smallest eigenvalue is ~>2oq. 
Hence f(A, IX) is not only strictly convex, but is a strongly convex function in A for 
all Ix > 0. They also imply that II (H(A, Ix))-1 ]] ~< 1/(2o"1), for every Ix > 0 and A c 1~". 

Theorem 1. For each IX > O, the system g(A, IX) = 0 has a unique solution, A(IX) say, 
in A. A(IX) is a continuous function of  IX in {IX: IX > 0}, and as i x ~ 0 through positive 
values, IIA (tx)l I remains bounded above by a constant which depends only on q and Q. 

Proof. Fix IX > O. Select any point x c Pos(Q),  let q~ = [[q-xl] ,  S =  {y: [[q-yll  <~ ~}, 
F = {A: QA c S}. For all h ~ I ;  [[q - QA ]]2 > ~o2 and hence f (h ,  IX) > @2. Let X = Q-ix,  
then A ~> 0 since x e Pos(Q),  and hence f(A, IX)= 2 ;  and A c F. F is a compact  set 
and f(A, IX) is a continuous function in A, so it attains its minimum over F, at a 
point )t c F say. By the above f (~, / . t )  ~< 2 and since f(A, IX) > ~02 for all A ~ F, A is 
the unconstrained minimizer o f f (A,  IX) over A e N". Since f(A, IX) is strictly convex 
in A, its unconstrained minimum A is unique and is attained at the solution of 

g(A, IX) = 0. Hence, for any IX > 0, g(A, tx) = 0 has a unique solution in A, A (IX) say. 
Og(A, IX)/0A = H(A, IX) is nonsingular for all A whenever IX > 0. Hence, by the 

implicit function theorem, A(IX) is continuous in IX in the region IX > 0. 
I f  x* is the nearest point in Pos(Q) to q, and A*= Q-ix*,  then from penalty 

function theory we know that A (IX)-~ A* as IX ~ 0 through positive values. This and 
the continuity of  A(IX) implies that IIA(/x)[[ remains bounded above by a constant 
as IX ~ 0 through positive values, where this constant depends on ]]A*[[ which itself 

depends on q and Q. [] 

From Theorem 1 we know that {A(IX): IX >0} is a path in the A-space which we 
call the exterior path. For given e > 0, IX > 0 define 

~(ix, e)={a:  Hg(A, Ix)ll ~< e}. (8) 

The set U~>o/~(ix,  e) defines an envelope around the exterior path. We will show 

that it is possible to interpret the points obtained in our algorithm, as a sequence 
of  points contained in this envelope, converging to A* as Ix -~ O. 
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Lemma 1. For given e > O, the set I'I(Ix, e) is bounded for each Ix > O. 
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Proof .  Fix Ix > 0. Since f(A, Ix) is s trongly convex  in A, for  all A, A 1 C ~n, there exists 

a posit ive constant  Yo such that  Ilg('~, I x ) - g ( ' ~ ' ,  Ix)ll/> ~ollA -A'II (see [19]). Sub- 
stituting A ~ = A (Ix) in this inequal i ty  yields IIg(A, Ix)ll/> ~,oll A - ,~  (Ix)ll for all A. Hence,  
i fA ~ .O (IX, e) we have [[A -A(IX)]] ~< e/yo. The result in this l e m m a  now fol lows by 
using T h e o r e m  1. [] 

F rom L e m m a  1, we can establish a b o u n d  for  A ~ ~(IX, e) which depends  only 
on IX, e, and the input  data. Define 

y(Ix, e) = max{HA 11: h e O(Ix,  e)}. 

The  a lgor i thm will be init iated with a value for  Ix, Ixo > 0, and  its value will be 
decreased  in each iteration, until it reaches a sufficiently small  target  va lue , /2 ,  say. 

The a lgor i thm will te rminate  when  Ix reaches or  decreases be low /2. Let Ix, be  a 
n u m b e r  satisfying 0 < Ix, ~½/2. 

Define ~ ( o e ,  e) ={A: II-2qTQ+2ATQTQH ~< e}..O(oo, e) is a b o u n d e d  set since 
the matr ix  QTQ is nonsingular .  Define 

y ( e )  = max{y(Ix,  e): Ix 1> Ix.}. 

The  m i n i m u m  value for  f(A,  Ix) when  Ix =oo is a t ta ined at the unique poin t  
A (o0) = A ° = Q-lq. It is well known [7] that  f (A (Ix), Ix) increases monoton ica l ly  f rom 
0 to IIq- QA*II 2 (where A* is the o p t i m u m  solut ion of  (1)) as Ix decreases  f rom oe 
to 0. F rom this, and the fact that  g~(oe, e) is bounded ,  and the results in the p r o o f  
of  L e m m a  1, we see that  y ( e )  defined above is bounded ,  its value depend ing  on 

Ix . ,  e and the input  data. As e decreases,  the se t /~( Ix ,  e) becomes  smal ler  for  each 
Ix > 0. Hence  f rom the definit ion of  y ( e )  given above,  we see that  it decreases  as e 
decreases.  

Theorem 2. For given e > O, and Ix >/2, let A c ~(Ix, e ), i.e., [Ig(A, IX)II ~< e. Let p be 
a number satisfying ½ < p < 1 and fi = pix. Then there exists a constant ~ (e) depending 
only on the input data, and the bound y ( e )  defined above, such that 

1 - p  e 
IIg(A,  )11 ,6(e)+- .  p p 

Proof .  Let a = - 2 ( q - Q A ) T Q  and b=4((A1)38, , . . . , (A , )38, ) .  

a+b/ f i .  So 

, ,g(A,/2) , ,= a + p ~  1 ( p - 1 ) a + a +  b =  

1 - p  + 1  b 1 - p  e 
Ilall a+  I la l l+-  

P P ~ P P 

Then  g(A,/2)  = 
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II a [I = U-2(q - QA )Ton <~ 211qVOII +2([ I QVQ n)( [[A II) 

<~ 2]]qW Oll + 2llQT O[ly(e)= ~(e),  

by the definition of y(e) given above. So 

[[g(A,/2)ll<-l-P f l (e)+ e .  [] 
P P 

Theorem 3. For given e > 0, and/z > fi, let h c I~(/Z, e). Select a p satisfying 1 < P < 1, 
and let fi =p/z, 5 = h  - ( H ( & / 2 ) )  l(g(&/2))T. Then 

[[g(A,/2)[[ ~< c~ (e)[[g(A,/2)112 

where d(e)  is a constant depending on p, e, y(e), ~(e) ,  ix, and o- 1 defined earlier. 

Proof. Since the function g(h,/2) is twice continuously differentiable in A, from 
Taylor's theorem we have 

g j ( 5 , / 2 ) = g j ( A , ¢ ) + ( 5 - A ) T H . j ( A , / 2 ) + ~ ( 5 - A ) T w ( h , / 2 ) ( 5 - A )  (9) 

where W(h,/2) is the square matrix ( W,,v(h,/2)) of order n with W,,~(h,/2) = 0 for 
all (u, v) # ( j , j ) ,  and = ( 2 4 / / 2 ) ~ j  for (u, v) = ( j , j ) ;  5 = (hi) = (1 - 0)A + 05 for some 
0<~0~<1, and ~ =  3j(Aj) as defined in (3) for r = 4 .  From the definition of 5 we 
verify that g j (A, /2)+(5-A)TH.j(A, /2)  =0.  So from (9), 

gj(5,/2) = ~ (L - A Y 4 L ,  /z 

Jig(5'/2)[[2 = fi-  j = l  \ / Z , /  j = l  

From the definition of 5, 

[[5]] ~< [[A [[ + ([[(H(A,/2))-l[[)([[g(h,/2)]]) ~ y ( e ) +  r/(e) 

where y(e)  is the constant defined earlier and 

1 ( ~ _ ~  p )  
n(e)  = 2o---~ ~ ( e ) +  

from Lemma 1 and Theorem 2. So [[Sil~(~(e)+~(e)) ~. Since X=(Xj)= 
(1- 0)X + 0h for some 0 4  0 ~  1, 

(~j)2 ~< max{(aj)2, (5j)2} ~< max{ ii ~ ii 2, IiX [[2} ~< (~(e) + n(e)) ~. 

Substituting this in (10) yields 

,,g(~t,/2)],2~(12(y(e)-u+rl(e))12j~, 1 \ / *  / = (A.j-hi) 4. (11) 
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Now, 

L 
j = l  

~< ((]](H(A, t2))-l]12)(llg(A, ~)112)) 2 4°1 a - -  ]lg(A,#)114. 

Substituting in (11) we get 

Ilg(X, ~)11 ~ 3(y(e)  + n(e))  
- 2 

P~0-1 

Now, 

IIg(A, ~)112. (12) 

r/(e) = 2o.- ~ f l (e )+  ~< 20-~-~ (/3(e) + 2e), 

since ½ < p < 1. So, if we take 

ff(e)=--~(Y(e) + fl(e)+2e~ 1 ] 

then from (12), 

Ilg(X, ~)11 ~ '~(e)llg(A, ~)l l 2. [] 

We will now formally describe the detailed steps in the algorithm and show that 
there exists a value for the factor p < 1 which ensures that all the points A obtained 
in the algorithm are within the envelope around the exterior path mentioned earlier, 
and that the algorithm terminates in a finite number of steps. As mentioned earlier, 
let ~, a small positive number, be the desired accuracy; and fi the specified target 
value for the penalty parameter. The aim is to find A which satisfies Jig(A,/z)l[ ~< e 
for some /x ~</2, e~<L 

Def ine /x .  to be some positive number ~< ½/2, and 

= y(g) = max{y(~, g):/~/>/x.}, 

= ~(~) = 211qrQII + 2[[QTQ[[y, 
A A k= 3__L_/A t~+2A 

/x,0-2 ~ y + - ~ 1 2  ) ,  (13) 

p*=l-( % ) 
e ,  4max{k,  1}' \max{/?, 1} ' 

As defined before, let A o = Q-1 q. If A o ~ 0, q e Pos(Q), hence it is itself the nearest 
point in Pos(Q), and )t o is optimal to (1), terminate. If  A°;~0, define 

4 o<0)" 
/[/,0 = - -  4 ' ~  ((10)6: over j such that Aj 

E ~  

Verify that IIg(h °,/Xo)[[ ~< e , .  
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The algorithm 

Initialization: Initiate the algorithm with the pair (h °, tZo)- 
General step: Let (h k,/xk) be the pair from the end of  the previous step. Define 

tZk+l =p*tZk. Take one Newton step from A k for f(h,/Zk+l), i.e., 

A k+l = A k _ (H( f (A k, ~ k + , ) ) ) - l ( g ( a  k, /.Zk+l))T. 

If Izk+l ~</2, A k+l is a point within desired tolerance of the optimum solution of (1), 
terminate. Otherwise, with A k+~, /~k+~ as the new pair, go to the next step. 

We will now show that every pair (A k,/xk) obtained in this algorithm satisfies 
IIg(A k,/xk)ll ~< e , .  Suppose this inequality holds for k =p. From the definition of 
in (13) and the properties stated earlier, we see that ~ 1> the constant i f ( t , )  of  
Theorem 3 for e = e , ,  this leads to 

IIg(A ~+', ~,+,)11 ~ ~ l lg(A P, ~p+,) [ [2~ ~/"1 - p_~_* ~ e , \  2 

since Ilg(h p, iZp)[I <~ e ,  and by using Theorem 2. So 

.. , = 4~,e,"~' 2 

Since [[g(A °,  o)11 ~, ,  by induction ]Jg(A k,  k)ll ~, for all k. 
Since p* < 1, the value of the penalty parameter decreases strictly in the algorithm. 

So, after at most [-(log/2 - l o g  tZo)/(log p*)] steps of the algorithm, the value of the 
penalty parameter decreases to/2 or below. We terminate with the vector A at that 
time as the point near the optimum solution of (1) to the desired accuracy. 

3. Computational results 

We have so far solved several randomly generated nearest point problems in 
simplicial cones of  dimension n ranging from 10 to 1500 with implementations of 
these exterior point methods. In these problems, each element of q was generated 
from the uniform distribution between - 5  and +5 (of double word length of  8 
bytes) and each element of Q was drawn from the uniform distribution betwen -20  
and +20. The vector q and the matrix Q were fully dense in all the problems 
generated. None of the matrices Q was checked for singularity, but system (5) 
always had a solution in methods which used it to generate descent directions. Even 
though our convergence results have been proved for the standard Newton method 
using the composite function f4(A, tz), in our computational tests we tried a variety 
of  methods to compare their performance. The various methods tried are listed below. 
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Version 1: Using Newton direction with step lengths 1. In this version, exactly 
one descent step is carried out following a decrease in the penalty parameter in 

each iteration, fa(A, IX) and f4(A, IX) both have second derivatives at all A but f2(A, IX) 
has second derivatives only at points A in which all components are nonzero. It has 
been observed that all the Ak generated in the algorithm tended to have all com- 
ponents nonzero, even though some of the components were clearly converging to 
zero (as explained in [15], this might be due to the fact that exterior methods 
approach the optimum from outside the feasible region). So, we implemented this 
version also with the composite function f2(A, IX) using the formula for the Hessian 
given in (3) and the method never encountered any problems in thousands of runs 
in early experiments. 

Version 2: Using Newton direction with line searches. Unlike Version 1, here we 
implemented this version only using the composite function f2(A, IX), because of the 
simplicity of the line search routine for r = 2. Again, only one descent step was 
carried out per iteration. 

Version 3: Using steepest descent strategy. We implemented this version using the 
composite functions f2(A, Ix) and also fl(A, IX). Althoughfl(A, Ix) is not differentiable 
at points A with some components zero, the previous discussion on second order 
differentiability applies here. Unfortunately, this version based on fl(A, IX) did not 
converge in most cases. A dose  look at the gradient reveals that this divergence is 
expected since the gradient does not carry much information about negative Aj's. 
In this version we also experimented with carrying out several descent steps per 
iteration (i.e., several descent steps between changes in the value of the penalty 
parameter). 

Our convergence theory showed that there exists a value for the factor p < 1 (this 
is p* defined in (13)) which ensures that Version 1 with r = 4 (i.e., with the composite 
function f4(A,/x)) terminates with a desired point in a finite number of iterations. 
To actually implement the methods, we experimented with several trial values for 
p and pursued that one which seemed to give the best performance. This is a very 
standard practice in implementing optimization algorithms. In the same vein, in our 
computational studies we experimented with all composite functions fr(A, IX) for 
r = 2, 3, 4, even though our convergence analysis focussed on the composite function 
f4(A,/x), since the current proof  depended on the twice continuous differentiability 
of the gradient. We got significantly better computational results with r = 2. In most 
mathemztical programming implementations this phenomenon is typical. 

For all versions, the following criteria have been tried as signals for convergence 
in early experimentation. Small positive tolerances el, e2 have been selected, and 
the algorithm is terminated in iteration k if the penalty parameter Ixk and the vector 
A k satisfied both the following conditions: 

(i) A~>~--el for all j =  1 to n. 
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(ii) 1 Pr(k k) < e2. 
/Xk 

Condition (i) relates to "near  feasibility" (within the tolerance el). Both conditions 
have been used in early experiments, and it always turned out that when one held 
the other too held in the same iteration (depending on the choice of  suitable values 

for el and e2). Hence, in later tests, we used condition (i) as the sole termination 
criterion. 

In Figure 1 we povide the plot of  Z ([As[: over j such that As<0), which is a 
measure of  infeasibility of  the current A-vector, in each iteration of the standard 
Newton version based on f2(h,/x),  for a problem of dimension n=40 .  It can be 

seen that this infeasibility measure drops very sharply and becomes almost zero in 
about 6 iterations. 

Infeasibility 

409. ~ 
20 

10 

0 1 2 3 4 

Iteration # 

Fig. 1. Infeasibility versus number  of  iterations. 

For the algorithm to converge, we observed that the penalty pa ramete r / z  must 
reach a sufficiently small value (like 10 -12, this depends on the desired accuracy 

el). A lot of  experimentation has been done to determine the best value for ~0, the 
initial penalty parameter  value. The smaller the value of/Zo, the less the number  of  
iterations to drive ~ to its terminal value. However, since the initial A, k °=  Q-lq is 
the unconstrained minimum o f f ( A , / ~ )  only at /x = co, choosing a small value for 

~o puts the unconstrained minimum o f f ( A ,  ~o) far away from a °, resulting in slow 
convergence. In most experiments, selecting /z0 = 10 -2 yielded excellent results. 

In Versions 1 and 2, computationally the most expensive part  in each iteration 

is solving a system of  equation ((5) here) to get the descent direction. Since many 
optimization algorithms require a step like this in every iteration, this has been the 
object of  intense research activity over the years. For our computational runs we 
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e x p e r i m e n t e d  w i t h  s e v e r a l  s c h e m e s  a n d  f o u n d  t h a t  t h e  i t e r a t i v e  S O R  m e t h o d s  g a v e  

t h e  b e s t  r e s u l t s ,  h o w e v e r  t h e  b e s t  v a l u e  fo r  t h e  r e l a x a t i o n  p a r a m e t e r  to* in  t h e s e  

m e t h o d s  s e e m s  to  i n c r e a s e  w i t h  n ( see  T a b l e  2). T h e  p e r f o r m a n c e  o f  V e r s i o n  1, 2 

c a n  be  i m p r o v e d  s u b s t a n t i a l l y  b y  u s i n g  b e t t e r  s c h e m e s  to  s o l v e  (5) in  e a c h  i t e r a t i o n .  

Al l  v e r s i o n s  w e r e  c o d e d  in  F O R T R A N  77 u s i n g  d o u b l e  p r e c i s i o n  a r i t h m e t i c  a n d  

r u n  o n  a n  I B M  3033,  o r  o n  a n  A P O L L O  se r i e s  4000.  P r o b l e m s  w i t h  n > 700  w e r e  

r u n  o n  t h e  C o r n e l l  S u p e r c o m p u t e r  ( I B M  3090) .  

Table 1 

Results with Version 1 (time in IBM 3033 seconds) based on fr(A, Ix) 

n Number r = 2 r = 3 r = 4 Time 
of for 
problems Average Time Average Time Average Time QPROG 

number of number of number of 
iterations iterations iterations 

10 200 5.80 0.65 37.40 0.710 69.50 0.77 0.65 
20 200 6,01 0.68 38.00 0.877 70.10 1.07 0.68 
30 200 6,03 0.72 38.10 1.170 70.50 1.62 0.73 
40 200 6,04 0.80 38.13 1.610 70.60 2.44 0.82 
50 200 6.04 0.89 38.40 2.240 70.79 3.59 0.96 

100 100 6.08 1.98 39.10 9.270 71.20 16.35 2.88 
700 1 7.00 339.70 * * * * 652.00 

Accuracy = 10 -8. System (5) solved by direct factorization using 
* Not tried. 
Best p = 0.02, 0.30, 0.40 for r = 2, 3, 4 respectively. 

IMSL routines LFCSF and LSLSF. 

Table 2 

Results with Version 1 based on f2(A, Ix) on APOLLO series 4000 (time in seconds) 

n Number of Average Time Optimal w* Time for 
problems number of p HH 

iterations 

10 10 6.0 6.12 0.02 1.02 6.07 
50 10 6.0 4.05 0.02 1.05 4.50 

100 10 6.0 24.0 0.02 1.25 34.0 
200 10 6.1 150,0 0.02 1.30 259.6 
300 10 6.3 405.1 0.02 1.30 890.0 
400 10 6.3 902.3 0.02 1.30 2123.0 
700 2 6.5 4302.0 0.02 1 . 4 5  11768.0 

Accuracy = 10 -7. System (5) solved by SOR with relaxation parameter to* (found 
best by experimentation). In all cases, ~ SOR iterations gave an accurate solution. 

Problems with 700< n ~< 1500 were run on a different computer (IBM 3090) and for 
these the average number of iterations was also 6.5. But we do not show those results 
in the table because the times on the computers are not comparable, and the algorithm 
HH was not available on that system. 
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In Version 1 based on Newton directions and constant step length of 1, it can be 
seen from Table 1 that the number  of  iterations grows extremely slowly, if at all, 
with the problem dimension. As mentioned earlier, there is tremendous scope for 

improving the computer  time taken for solving (5) in each iteration, hence the 
number  of  iterations is a more reliable guide of algorithm performance,  than 
computer  time, and this is almost independent of  problem dimension. This almost 
constant number  of  iterations was about 6 for versions based on f2(A,/z), 38 for 
versions based on f3(A, tz), and 70 for versions based on f4(A, tz). The main reason 
for this may be the fact that f2(A,/z) is very nearly quadratic in A, thus making it 
well suited for Newton method. Since fz(A,/z) is almost quadratic, one Newton step 
almost always leads very close to the unconstrained minimum of this function in 
each iteration, thus enabling a much faster reduction in the value of ~. The barrier 

terms based on logarithmic functions employed by interior point methods do not 
share this nice property. 

In Version 2 based on Newton's  method with line searches, the step length ranged 
between 0.8 to 1.2, and was very close to 1 in most iterations. The total number  of 
iterations was only marginally less than that for Versions 1 based on constant step 
length of 1. 

We compared the performance of  Version 1 with M.J.D. Powell's implementat ion 

of  A. ldnani and D. D. Goldfarb 's  dual quadratic programming algorithm (available 
through IMSL as subroutine QPROG),  Haskell  and Hanson 's  [10] routine available 
through ACM algorithm 587 for linearly constrained least squares (called H H  in 
Table 2), and with our implementat ion of  Wilhelmsen's nearest point algorithm 

[22]. Our algorithm was superior to each of  these, but we display comparative 
figures only for Haskell and Hanson 's  code and QPROG to conserve space (compara- 
tive timings for the other algorithm can be obtained from the authors). 

In Version 1 we found that the total number  of  iterations depends critically on 
the value of the factor p used. We found that once a Aj becomes positive, it remains 
positive in almost all subsequent iterations. This may explain the excellent perfor- 
mance. 

For Version 3 based on steepest descent directions, we found that it is better to 
do many descent moves between consecutive updates of  the penalty parameter.  In 

each iteration we continue making descent moves as long as there is significant 
change in the solution vector A. When this becomes small by the L~ norm we update 
/~ and go to the next iteration. In comparing Version 3 with those based on Newton 
directions one should bear in mind that each move in these methods is computa- 
tionally cheaper as there is no equation solving involved. 

Version 3 is more sensitive than Newton based versions to the strategy for updating 
the penalty parameter.  In general, the rate of  reduction of/x has to be slower, more 
so as n increases. The number  of  descent moves per iteration was almost constant 

at 15 independent of  problem dimension. The number  of  iterations itself averaged 
around 37 in problems with n up to 250. From Tables 1, 2, and 3 we see that our 
current implementat ion of Version 3 does not compare favorably with the 
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Table 3 

Results with Version 3 (time in IBM 3033 seconds) based on f2(A, p.) 

159 

n Number of Average Average Time Optimal Time for 
problems number of number of p QPROG 

iterations descent steps 
per iteration 

10 200 12 14.66 1.807 0.1 0.565 
20 200 12 15.16 1.170 0.1 0.670 
30 200 35 14.90 3.760 0.5 0.727 
40 200 36 15.56 6.260 0.5 0.815 
50 200 36 13.38 8.080 0.5 0.960 

100 100 36 15.58 32.90 0.5 0.233 
250 1 37 14.90 197.30 0.5 31.7 

Accuracy = 10 3. 

implementations of Newton based versions, or even with QPROG, in terms of  
computer  time. However,  there is t remendous scope to improve the coding of this 
version. There is also the possibility of using conjugate gradient based directions 
rather than steepest descent directions, this has not been tested yet. 

It has already been mentioned earlier that if Aj becomes positive, it tended to 

remain positive in subsequent iterations. In this problem, if we know the set 
J = {j: Aj > 0 in the opt imum solution}, it is well known that the nearest point itself 
can be found by orthogonally projecting q onto the linear hull of the face of  K 
corresponding to J. In some experiments we selected a tolerance e3 > 0 (about 10 3) 
and when the current solution vector A k satisfied A~ t>-e3  for all j, we have taken 

{j: A~> -e3} as an estimate for J and used the projection strategy. This has cut the 
number  of  iterations by about 31- on an average. 

4. Exterior penalty methods for nearest point problems in nonsimplicial cones and 
convex quadratic programs 

Consider the problem of finding the nearest point in Pos(Q) to q c ~" where Q is 
an n x m matrix of  rank n, with m > n. This is the problem of the same form as (1) 
with the present Q, however an opt imum A in this case may not be unique. I f  A* 
is an opt imum solution, then x * =  QA* is the nearest point in Pos(Q) to q, x* is 
always unique. We use the same composite functions fr(Z, IX) as before, for r = 2, 
3, or 4 and the formulas for gr(A, IX), and H(fr(A, tx)) are the same as before. 
However, in this case the hessian H(fr(A, IX)) of order m × m is PSD and may be 
singular, and (5) may not have a solution. In this case, we can use some of the 
standard modifications in the literature for defining the Newton search direction, 

one of which replaces (5) by 

(H(f~(A k, IX)) + rI)y = - Vf~(A k, IX) (14) 
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where ~-> 0, and I is the unit matrix of order m. The matrix on the left-hand side 

of  (14) is PD and hence (14) again has a unique solution which is a descent direction 
for fr(h,/z)  at h k. 

The steepest descent direction, and the line search routine for f~(h,/z) discussed 

earlier, remain valid as they are, in this case. So, all the exterior point methods 

discussed earlier for the simplicial cone case; can be implemented to handle this 

case directly, with only minor modifications. We conducted some computational 
experiments in which Q was rectangular, and our results were almost the same as 

those reported earlier. 

Now consider the general convex quadratic program 

minimize z(  x ) = cx + ½x'r D x  

subject to A x  >1 b, 

X~>0, 

where D is a symmetric PSD matrix and A is of order m × n. In the penalty approach 

we solve this problem through the unconstrained minimization problem of the form 

T 1 2 
minimize w r ( x , / z ) = c x + ~ x  D x + - -  L (max{O, b i - A i . x } )  ~ 

],~ i=1  

1 n 
+ - -  ~ (max{O,-xj}) ~ 

/.~ j -1  

over x e N n. 

Using the function wr(x, tx), versions of the new exterior penalty algorithms for this 

problem are constructed exactly as before. 
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