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In this paper we consider a linear programming problem with the underlying matrix unimodular, and 
the other data integer. Given arbitrary near optimum feasible solutions to the primal and the dual 
problems, we obtain conditions under which statements can be made about the value of certain variables 
in optimal vertices. Such results have applications to the problem of determining the stopping criterion 
in interior point methods like the primal-dual affine scaling method and the path following methods for 
linear programming. 
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1. Introduction 

We consider the following linear programming problem: 

Minimize cTx 

subject to A x  = b, 

x~>O, 

where A is an unimodular matrix (i.e., the determinant of each Basis matrix of A 

is - 1 ,  1, or 0), and b, c are integers. For such linear programs, it is well known that 
all extreme vertices are integers. 

In this paper we consider the problem of  determining optimal solutions o f  this 
linear program from information derived from a given pair of primal and dual near 
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optimum feasible solutions. An example of such a result is the strong duality theorem 
which asserts that if the objective function value of the given primal solution is 
equal to the objective function value of the given dual solution, then we can declare 
the pair to be optimal for the respective problems. Here we investigate the problem 
of determining optimal vertices of the two problems given that the difference in the 
objective function values (i.e., the duality gap) is greater than zero. For the special 
case of unimodular systems, under the hypothesis that the duality gap is small (not 
necessarily zero), we obtain results that assert the integrality of variables in optimal 
solutions. An example of such a result (Corollary 3) is that if the duality gap is less 
than ½, and the optimum solution of the program is unique, then the optimum vertex 
can be obtained by a simple rounding routine. 

These results have applications in determining stopping rules in interior point 
methods. The study of these methods was initiated by the seminal work of Karmarkar 
[3]. Our results are particularly applicable to the methods which work in both the 
primal and the dual feasible regions. These include the methods of Choi, Monma 
and Shanno [1], Kojima, Mizuno and Yoshise [4-6], Monteiro and Adler [9], Saigal 
[10], and Ye [12]. These results can also be used in the primal methods where a 
lower bound on the objective function value is available; and, in the dual methods 
where an upper bound on the objective function is available. In case the data of 
the linear program is integral (i.e., A, b, ¢ are integers) it can be shown that an 
optimum solution of the linear program can be readily identified when the duality 
gap becomes smaller than 2 -°~L~, where L is the size of the binary string needed to 
code all the integer data of the linear program. Compare this to the result just 
quoted above for the unimodular systems, which include the transportation and 
assignment problems. For such systems, the first such results were obtained by 
Mizuno and Masuzawa [8] in the context of the transportation problem, Masuzawa, 
Mizuno and Mori [7] in the context of the minimum cost flow problem, and Saigal 
[11] in the context of the assignment problem. 

After presenting the notation and assumptions in Section 2, in Section 3 we prove 
our main results that show how to identify an optimal solution from the duality 
gap; and, in Section 4, we present the concluding remarks. 

2. Notation and definitions 

We consider the following primal and dual linear programming problems. 

(P) Minimize cTx 

subject to x ~ G x = { x : A x = b , x > ~ O } .  

(D) Maximize bTy 

subject to ( y , z ) ~ F y z = { ( y , z ) : A V y + z = c , z > ~ O } .  

Throughout the paper, we impose the following assumptions on (P) and (D). 
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Assumption 1. The vectors b and c are integral and the matrix A is unimodular. 

Assumption 2. The feasible regions G~ and Fyz are nonempty. 

From Assumption 1, all the vertices of the polyhedral sets Gx and Evz are integral. 
From Assumption 2 and the duality theorem of linear programming, the problems 
(P) and (D) have optimal solutions and their optimal values are the same, say v*. 
Let Sx and Syz denote the optimal solution sets of (P) and (D), respectively: 

Sx : { x ~  Cx: c T x  : v*}, 

Sy~ ={(y,  z)~Fyz: bTy = V*}. 

We define the orthogonal projective sets of Fyz and Syz onto the space of z: 

Fz = {Z: (y, z) ~ Fyz}, 

sz = {z: (y, z) c sy~}. 

We also define 

G,:(x °) = {x c G~: [x °] <~ xj ~< [x °] for each j} 

for each x°~ Gx and 

F~(z °) = {z c Fz" [z°J ~< zj ~< [z °] for each j} 

for each z°e F~, where [xJ and Ix] denote the largest integer smaller than or equal 
to x and the smallest integer larger than or equal to x, respectively. 

3. The main results 

Suppose x' denotes some primal feasible solution, z' denotes some dual feasible 
solution, and v* denotes their common optimum objective function value. Theorem 
2 develops a relationship between cTx ' -  V*, (the measure of non-optimality of x'), 
and the distance of xj from [xjJ and [xj]. In particular, one part of the theorem 
asserts that if cTx ' -  V* is less than xj - [xj] then there is an optimal integer solution 

x*( j )  such that x*( j )  = [x~]. These results are used in Corollary 3 to establish that 
in the case the optimal solution is unique, and cTx'--V*< 1, rounding x' to the 
nearest integer gives the optimal solution. 

Except in the case that the optimal solution is unique, Theorem 2 and Corollary 
3 do not guarantee that there is a solution x* obtained by rounding each component 
of  xj to the nearest integer. However, Theorem 4 gives conditions under which some 
components of a feasible solution x' can be simultaneously rounded. In particular, 
Theorem 4 states that there is an optimal solution x* with the property that x f is 
the closest integer to x~, for all j such that x~ is within (1 - (CTX ' -  V*))/(1 + dim(Sx)) 
of an integer. Theorem 6 gives bounds on a dual feasible solution zj under which 
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an optimal solution x* must have x* = 0. It also gives bounds on a primal feasible 
solution xj under which an optimal solution to the dual must satisfy z* = 0. We 
now prove these theorems. 

Assume that feasible solutions x°e  Gx and (yO, z 0) e Fyz are available. Since the 

feasible region Gx(x °) is a bounded polyhedral convex set and x°e  Gx(x°), there 
exist vertices u ~ (i = 1 , . . . ,  m) of  G~(x °) such that 

X 0 : ~ AiUi~ 
i=1  

~ h i  = 1, hi > 0 for i = 1, 2 , . . . ,  m, 
i=1  

where m ~< 1 + dim(Gx(x°));  dim(S) denotes the dimension of the set S. By Assump- 

tion 1, each vertex u i is integral (this follows from the fact that the inverse of the 
basis matrix is integer, and that a basic feasible solution for a bounded variable 

linear program has non-basic variables at either upper  or lower bounds),  so 

i [x°J or rx;'l Uj  = 

for i = 1, 2, . . . ,  m and j = 1, 2 , . . . ,  n. Some of the vertices u ~ are optimal, but the 
others are not. We divide the vertices into two index sets Io and IN (possibly Io = 0 
or [N = 0) and rewrite the relation above as follows: 

x°= y. alum+ Y. &u ~, 
i c l  0 i c l  N 

hi+ ~ h i = l ,  hi~>O for ie lo~OlN,  
i ~ l  0 i E l  N 

(1) 

where 

I o = { i : u  i e S ~ , i = l , 2 ,  . ,m} ,  IN {i: i m}. -- = U ~Sx, i = 1 , 2 , . . . ,  

Similarly, there exist optimal vertices w i e S~ c~ Fz(z °) (i ~ Jo) and nonoptimal 

vertices w*eFz(z°)\S~ ( icJN)  (integrality of these vertices is established in 
Theorem 1 of Hoffman and Kruskal [2]) such that 

Z 0 ~ i i = l~iw + ~£ I~iW, 
i E J  0 i C J  N 

Y. /*i+ Y. / z i= l ,  tz~>O f o r i ~ J o U J N .  
l e d  0 i E J  N 

(2) 

Theorem 1. Let x°e  Gx and (yO, zO)eFyz, and let v* be the optimal value of (P). 

Suppose that x ° and z ° are expressed as (1) and (2), respectively. Then we have 

c~x ° -  v* > 2 a,, v * -  b ~  °/> Z m, (x° )% ° >1 y~ a, + y~ t*,. 
i E [ N  i ~ J  N i E l  N i ~ J  N 
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Proof .  We easily see tha t  

e T x  O -  V* : ~,, A i c T u  i "~- ~ A c T u  i - -  V* 

i~l 0 ic l  N 

= E ~ti( c T u i  -- Vg<) ~- 2 1~i( e T u i  -- V*)  
i~l 0 i~l N 

i E I N 

where the last inequal i ty  follows f rom cTu ~= V* for  each i~  Io  and crui>~ v*+ 1 

for  each i ~ Ire. 

In  the same  way, we also have the second inequal i ty  of  the theorem.  The third 

inequal i ty  follows f rom the first two inequali t ies and  

(x°)Tz° = cTx ° -- b ry  ° = (cTx ° -- V*) + (V* -- bry°).  [] 

The  above  theorem can be used to obta in  some in format ion  abou t  an opt imal  

solution. 

Theorem 2. Let  x° c Gx, and let v' be a lower bound on the optimal value v* o f  (P). 

(a) I f  x ° is integral and cTx ° -  V' < 1 then there exists an optimal solution x* ~ S~ 

such that x~ = x °. 

o_  [xOj then there exists an optimal solution x* ( j )  ~ Sx such that (b) I f c r x  ° -  v '<  xj 

V ( J )  = [ x ° ]  • 

(c) I f  crx  ° - v' < Ix  ° ] - g then there exists an optimal solution x * ( j )  c S~ such that 

x*(j)  = Lgl .  

Proof .  Suppose  that  x ° is expressed  as (1). 

I f  x ° is integral  then uj = x ° for  each i. I f  Io  = 0 then Theo rem 1 implies  

c T x O - - v ' ~ c T x O - - v * ~  ~ Ai=I. 
i C I N 

Hence ,  if  cTxO--v '< 1 then  I o ¢ 0 ,  i.e., there exists an op t imal  solut ion u i ( i c  Io)  
such that  uj = g .  

Unde r  the condi t ion of  (b) x ° cannot  be integral. Thus 

f g ]  = Lx°d + 1. 

I f  x* # Ix °] for  each x* e Sx, we have 

i u j # [ x  °] for  e a c h i c I o ,  

or  equivalent ly  

u~. = [x~] for  each  i c Io .  
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Then we see 

x°= 
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AiU j -~- ~, AiU,] 
ieI  0 i~I N 

E a., L x°] + Z a,( Lx°J + 1) 
icI  0 ielN 

: [x°J + Z /~i 
iE I N 

[x°J + (¢Tx°-- v*) 

<-- tx°J + (¢Tx°-- v'). 

(by Theorem 1) 

Hence we have (b). 

In the same way, we can prove (c). [] 

As a special case of the above theorem, we get the following useful result. 

Corollary 3. Let x° c Gx and (yO, z o) c Fy.. I f  (xO)Tz0<½, for each j, there exists an 

x*(j)  e Sx such that 

[x°J / f x ° - [ x ° J  ~<½' (3) 
x:u)=  {rxO ] ifxO_txOj>½ 

In case the problem (P) has a unique optimal solution x* c $x, we can compute each 
coordinate of the optimal solution by (3). 

o is integral, Theorem 2(a) implies that x* = [x °] for an x*~ S~. So we Proof. If x s 
only consider the case where x ° is not integral. If x ° -  [x °j ~< ½, we have 

[x~] - x °/> ½ > (xO) Tz ° : cTx ° -- b Vy °. 

Since bTy ° is a lower bound of v*, by Theorem 2(c), there exists x* c Sx such that 

x* = [x~J. If g -  [x°J > ½, we have 

o [x o]>½>(xo)vzo : cTxo  bTyO. x j -  

Hence, by Theorem 2(b), there exists x*c  Sx such that x~ = [x°]. [] 

Theorem 2 gives information about an element of an optimal solution. The next 
theorem shows a relation between a feasible solution and coordinates of an optimal 

solution. 

Theorem 4. Let x° ~ Gx, and let v* be the optimal value of (P). I f  cTx ° -  v* < 1, there 
exists an optimal solution x* c Sx such that 

I[x°J f o r e a c h j ~ { j : x ° - [ x  °] 1--(cTx°--V*)~, 
"" 1 +~lm(~) J 

X~ 
1 - (cTx ° -- V*)~ (4) 

for eachj ~ ~j: Irx °] rx °I-x°< i TUdl m j" 
k t 
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Proof.  Suppose  that x is expressed as (1), where we may assume without  loss of  

generali ty that  the number  of  optimal vertices is less than or equal to 1 + dim(Sx): 

#Io<~ 1 + dim(Sx).  

By Theorem 1, we have 

A i = l - ~  A i > ~ I - - ( c T x ° - - O * ) > O .  
i ~ l  0 i c [  N 

Hence  0 < # I o  and there is an index i'c Io such that 

1 - (e'~x ° -  v*) 
Ai,>~ 

1 + dim(S~) 

From (1), we see 

xO_txOj= 

rxO]_ o X j  = 

A , ( u j -  Lx°J)+ 2 A,(uj- Lx°J), 
i~ l  o iClN 

E E 
i~I  o iCIN 

Hence  we obtain 

o LxOj 1 + dim(Sx)  
,, LxOj ~< xj - < (xO_ [x o] ), 

uj - Ai' 1 - -  ( c T x  0 - -  V :g) 

o , - 1 +d im(S~)  rx, l_u;_< rx°  x°< (rxO _xO). 
• L' 1 - ( c T x  ° -  V*) 

Since the vertex u i' is integral,  x* = u i' satisfies (4). 

Corollary 5. Let x°cGx and (y°,z°)cFyz. I f  [cTx °] = [bTy °] (=V*; the optimal 
value) and 

o o (1--(cTx°--V*))(1--(v*--bTy°)) foreachj, 
x j z j<  (1 + dim(S~))(1 + dim(S~)) 

(5) 

the following system has a solution and each solution is an optimal solution of (P): 

Au=b, u>-O, (6) 

o 
u j = 0  f o r e a c h j e K =  j : x j <  l+ - - -~m(ST)J"  (7) 

Proof.  Suppose  that [cTx°J = [bVy°]. Then  we have cTx ° -  V* < 1 and v* - bTy ° < 1. 

In the same way as Theorem 4, there exists a (y*,  z*) ~ Syz such that 

1 - ( v * -  bTy°)'~ 
z * =  {z °j f o r e a c h j e { j :  z ° -  [z °] < l + ~ m - - - ~ )  J"  (8) 
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From (5) and the definition of K, we see that 

1 - (cTx ° -- V*) 
0 x s < for each j  • K, 

1 + dim(Sx) 

zO < 1 - ( v* - b Ty °) 
1 +dim(Sz)  for e a c h j ~  K. 

From (4) and (8), there exist x* • Sx and (y*, z*) • Sy~ such that 

x* = 0 for e ach j  • K, (9) 

z * = 0  for e ach j  ~ K. (10) 

Since x* c Gx and (9) holds, x* is the solution of the system (6) and (7). 

Let u* be any solution of the system (6) and (7), then (7) and (10) imply u*Tz * = 0, 

or cru * = bYy *, from which it follows that u* is an optimal solution of (P). [] 

Now we show that some coordinates of  all the optimal vertices can be fixed when 

feasible vertices of (P) and (D) are available. 

Theorem 6. Let x ° • Gx and ( yO, zO)•Fyz, and let v' and v" be a lower bound and 

upper bound o f  the optimal value v* o f  (P), respectively. 

(a) I f  z ° > v ' -  bXy °, then x f = 0 for  any optimal vertex x* • S~. 

(b) I f  x ° > cXx ° -  v', then z* = 0 for  any optimal vertex (y*,  z*) • Syz. 

Proof. Let x* • Sx be any optimal vertex of (P), then we see 

o Xj zj ~< x*Tz ° = X*r(c - AVy °) = v* - bTy ° ~< V"-- bTy °. 

I f  Z ° > V" - -b f y  °, we have 

v" - bTy ° 
x * < - ~ < l .  

Zj 

Since x* is integral, we obtain (a). 
In the same way, we also have (b). [] 

4. Concluding remarks 

In this paper  we obtained results under the assumption that the linear program (P) 
is in the standard form. In the case the problem is given in inequality from, we can 
derive all the results of  Section 3 with the added assumption that the matrix be 
totally unimodular.  Similar results can also be derived for other forms of the problem, 
i.e., problems with upper  and lower bounds on variables, etc. 

These results have implications for solving integer programming problems via 

interior point methods. This will be a topic of  a subsequent paper. 
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