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We present necessary and sufficient conditions for discrete infinite horizon optimization problems with 
unique solutions to be solvable. These problems can be equivalently viewed as the task of finding a 
shortest path in an infinite directed network. We provide general forward algorithms with stopping rules 
for their solution. The key condition required is that of weak reachability, which roughly requires that 
for any sequence of nodes or states, it must be possible from optimal states to reach states close in cost 
to states along this sequence. Moreover the costs to reach these states must converge to zero. Applications 
are considered in optimal search, undiscounted Markov decision processes, and deterministic infinite 
horizon optimization. 
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Introduction 

Many important planning problems, such as capacity expansion, equipment replace- 
ment and production planning, involve sequences of  related decisions over an 
indefinite time horizon. The mathematical formulation and solution of such problems 
is called infinite horizon optimization. A common approach to solving these problems 
involves truncating the infinite horizon problem to a finite horizon problem. This 
approximation may lead to error, although it may be possible to establish a bound 
on this error as a function of the horizon employed (see for example, [12] and [1]). 
In some cases, if the finite horizon is sufficiently distant, the error can be isolated 
to later decisions. In this way optimal early decisions are obtained and can be 
implemented without error. At the end of the time interval covered by these early 
decisions, the problem is solved again for the next set of decisions. 

A horizon time sufficiently long to eliminate error from at least the first decision, 
for that horizon or longer, is called a solution horizon [6]. To find solution horizons, 
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practitioners commonly employ forward algorithms. Such techniques solve finite 
horizon problems of increasing horizon length. A stopping rule indicates that they 
have gone far enough to ensure that the first decisions can be implemented without 
error. We typically must solve beyond the solution horizon to determine that a 
shorter horizon would have sufficed. The longest horizon actually solved in this 
search is called a forecast horizon since the planner must forecast data to this time. 

Not all problems have solution horizons. As we increase the horizons, if two 
different initial decisions indefinitely interchange as finite horizon optimal, and both 
are optimal in the infinite horizon model, no solution horizon exists. This is not a 

problem theoretically since we do not care which one we choose. In practice, 
however, it is difficult to differentiate this case from the case where only one of the 
two is optimal (over an infinite horizon), but we have not looked far enough out 

in time to determine this. 
Historically, papers considering solution horizon approaches have ignored this 

problem, reporting algorithms that are not guaranteed to stop in finite time. The 
classic example is the Wagner-Whitin algorithm with stopping rule [19]. Recently, 
more attention has been paid to this issue. In [3], solution horizon existence is 

shown for a general class of deterministic discounted problems under the condition 
of a unique optimum. In [7] and [10], these results are extended to discounted and 

weakly ergodic stochastic models, respectively. 
However, existence of a solution horizon alone is not sufficient to guarantee 

existence of a finite algorithm. It must be shown, given that a solution horizon 
exists, that a stopping rule exists that is certain to recognize it. Most forward 

algorithms in the literature fail to satisfy this property. Exceptions include [3-5, 8, 

11, 15, 17]. 
As is common with an emerging literature, the arguments supporting the existence 

results for each special problem have been as varied as the problems themselves. 
Reference [17] relies on algebraic arguments, [3] on discounting, [8] on regeneration 
sets, [ 11 ] on (strong) reachability, and [ 10] on weak ergodicity of Markov processes. 

This paper seeks an underlying explanation for the existence of solution horizons, 
common to most of these approaches, where explicit or implicit discounting is 
present. It presents a general sequential decision problem framework and also unifies 
many of the stopping rules now found in the literature. Included within this 
framework are stochastic as well as deterministic problems. In the presence of a 
unique infinite horizon optimum, we state conditions that are both necessary and 
sufficient for forward procedures to converge to the optimal solution. We also 
provide a general forward algorithm with a stopping rule that, under these conditions, 

finds the optimal first decision in finite time. 
Section 2 introduces the notion of weak reachability. Weak reachability is then 

shown to be a necessary and sufficient condition for solution horizon discovery. 
Section 2 also presents a general forward algorithm and stopping rule for the 
discovery of solution horizons in the presence of weak reachability. Section 3 
establishes weak reachability for a number of general problems. New algorithms 
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are proposed for discrete optimal search and Markov decision processes that are 

guaranteed to finitely terminate. Section 4 contains a summary and conclusions. 

1. Existence theory 

1.1. Problem statement 

Consider the following general infinite horizon sequential decision problem. We 

begin with a countably infinite directed graph, (N, ~/), with single root node of 
in-degree zero together with a real-valued cost function C : M - ~ .  We refer to 
(dV, sO, C) as the decision network, arcs (i, j ) c  ~ as decisions, nodes i~ dV as states, 
and arc costs C(i, j )  as decision costs. The decisions could represent, for example, 
order quantities or capacity additions, and would induce states representing inven- 

tory levels and excess capacities over time, respectively. 
We impose two structural assumptions on the decision network, (N, ~,  C). First, 

we assume that the set of decisions available at any node is non-empty and finite, 
i.e., all node out-degrees are non-zero and finite. Second, we assume that there are 

at most a finite number of  preceding decisions associated with every state, i.e., that 
the nodes have finite predecessor sets. More precisely, we assume that all nodes 

have finite cumulative in-degrees where the cumulative in-degree associated with a 
node is the sum of  the in-degrees associated with that node and all nodes from 
which there is a directed path to that node. From the second assumption, we can 
number the nodes N = { 0 ,  1, 2 , . ,  .} such that (i, j ) c  M only if i < j  [18, p. 230]. 
Hence, the node numbers can serve as a surrogate for time. Also since there is a 
unique root node by assumption, it follows that there is a directed path from the 

root node to each node in 2(. Moreover since all nodes have non-zero out-degree, 

each path can be feasibly continued to form a path covering the infinite horizon. 
An (infinite) path is an infinite sequence of states (So, sl, s2 . . . .  ) where so is the 

root node and (Si, Si+l)U:M for all i = 0 ,  1 , 2 , . . . .  We shall also refer to 
(si, s i + l , . . . ,  s t) as a path from s~ to sj. The cost C(s~, si+~) associated with the 
decision (s~, s~+l) will also be referred to as the length of arc (s~, s~+~). The length 

of the path (So, sl, s2 , . . . )  is then given by Y~0 C(si, S~+l). Following the notation 
in [3], define a strategy 7r-- (Tra, *r2,. . .)  as the infinite sequence of decisions ,ci 
along a path {s~}~_o where ~ = ( s H ,  s~). The set of  all feasible strategies is denoted 
H. The cost, f~, of strategy ~r is then the length of  the path corresponding to ~-, i.e., 

o o  

f=--Y~=o C(~'~). Our problem is to find an optimal strategy, 7r*, which minimizes 
f~ over ~r c H. 

Drawing on the analogy relating node numbers to time, ~-* will be referred to as 
the optimal infinite horizon strategy. Let f be the length of a shortest path covering 
the infinite horizon so that f = f=..  Define the optimal value functions f ( s )  and f ' ( s )  
as the shortest distance from the root node to node s and the shortest distance from 
node s through the infinite horizon, respectively. Let f (  I s) be the length of a shortest 
path from the root node, covering the infinite horizon, which passes through node s. 
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By the principle o f  optimality,  we have f ( l s )  = f ( s )  + f ' ( s )  for all s ~ N. Note  that 
some o f  these values will not  be well defined in general. Sufficient condit ions for 

their existence will now be established. 

In [3], a metric topo logy  on H is constructed which metrizes the p roduc t  topology  

of  componentwise  convergence.  Specifically, define the metric, p, as 

o3 

p(~r, or ' )=  5~ ~b~(~-, ~r')2-', 
i = 1  

where 

0, if ~'i = ¢r'i 
4~i(¢r, ~r') = 1, otherwise" 

Under  this topology,  a sequence,  {~.n} in H, converges to ~- i n / / i f  and only if 

its components ,  {Try}, converge to ~r~ for all i. That  is, ~r ~ ~ 7r as n -~ oe if and only 

if, for  all i, there is an N~, such that 7r7 = 7r~ for n ~> Ni. The metric is motivated by 

the fact that  under  this metric the closeness o f  two strategies is measured  by the 

number  o f  initial decisions over which they agree. This topo logy  is extended to a 

general class o f  stochastic problems in [7]. For  further details the reader  is referred 

to these papers.  

Lemma 1. H is complete and, hence, compact. 

Proof.  / /  is complete  if every Cauchy  sequence o f  paths converges to a feasible 

path. Cons ider  any Cauchy  sequence o f  paths {~r~}. Take e = 2 -~, i/> 1. Then for 

each i/> 1, there exists an integer N ( i ) ,  such that for all n, m >~ N( i ) ,  p(Tr n, ~r m) < 2 -~ 

implying that 7rl -= 7r~' = ~r? for  all l = 1, 2 , . . . ,  i. Hence 7r n -~ ~r as n ~ eo. Moreover  

one inductively infers that  7r is a feasible path  in the network,  i.e., 7r ~/7. Hence H 
is complete.  Compactness  then follows f rom completeness  and the fact that  H is 

totally b o u n d e d  since all out-degrees are finite. []  

We make the fol lowing assumpt ion about  C. 

Assumption 1. f~ is un i formly  convergent  over ~r 6 H. 

Assumpt ion  1 states that  for  all e > 0, and all ~-~ H, there exists N~ that is 

independent  o f  ~r, such that  ~ - n  [C(si, si+l)[ < e, for all n ~> N, ,  where {si} is the 

state path  cor responding  to ~-. It is equivalent to say that f (sn) converges uniformly 
over all feasible paths, {Sn}n~_-0. A sufficient condi t ion is for  example that decision 
costs C(si, s~+~) are d iscounted by a factor  a i where 0 <  a < 1 and the undiscounted  

costs are uni formly bounded .  
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Lemma 2. f~ is a continuous function of  zr c H. 

Proof. We have by definition and Assumption 1 that f= = limn_~ ~7=1 C(zr~) is the 

limit of  a uniformly convergent sequence of continuous functions and is therefore 

continuous. [] 

Theorem 3. Under Assumption 1, f exists and is attained by some strategy or*. 

Proof. A continuous function on a compact  set attains its minimum. [] 

2. Weak reachability 

Sufficient conditions for the existence of solution horizons have only recently 

appeared in the literature. In [3], a general deterministic infinite horizon problem 
is formulated that relies on discounting for existence. It is assumed that at each 

time the optimal strategy through that time is found, and proven that, in the absence 

of multiple infinite horizon optima, these finite horizon opt ima converge to the 

infinite horizon optimum. In [7], this same technique is used in a stochastic problem. 

In [11], a concave cost inventory problem is considered. It is assumed that any state 

is (strongly) reachable from any other state (in the sense of  [13], see below), and 

it is shown that f ( s , )  ~ f  for any sequence of states So < sl < s2" • • < which diverges 
to infinity. Nonhomogeneous  Markov decision processes are considered in [10] 

where solution horizons are shown to exist in the absence of discounting, provided 

the transition matrix of  every policy is weakly ergodic (see [16]) and provided a 

unique infinite horizon opt imum exists. In [20], an infinite search problem is 

proposed and existence of solution horizons is established. In this case the result 

follows from finiteness of  the expected time to capture. 

In these papers,  different problem characteristics are exploited to show existence 
of solution horizons. We seek, in this paper,  to unify these results by showing that 

in each case a single necessary and sufficient condition for solution horizon existence 
must hold. We call this key condition weak reachability. 

To understand weak reachability, we begin by contrasting it to the traditional 

notion of strong teachability. I f  a sequence of  states is strongly reachable, then, 

eventually, there is a connecting path from some state on an optimal path, to each 

state in the sequence, at a cost converging to zero. Qualitatively, we are requiring 
that our sequence of states not be so far off that it is isolated from all optimal solutions. 

This notion is too restrictive for general infinite horizon optimization. For example, 
if the underlying graph is a tree, once you leave the optimal path, there is no longer 

any chance of reconnecting. Weak teachability relaxes the requirement so that we 
need not get from a state on the optimal path to each state in our sequence, but 

only to some other state that is close to the state in our sequence, where close means 
close in optimal costs through the states. 
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Definition (weak reachability). The sequence of states {s.}.~_l with sn ~ oo is called 

weakly reachable if there are associated sequences of  states {un}.~__l and { t .}.~l such 

that for every e > O, the following three conditions are satisfied for all sufficiently 
large n: 

f ( s , )  < f ( t , )  + e, (1) 

c(u,, t,) < e, (2) 

f ( u , )  < f +  e, (3) 

where c(un, t,) is the cost of  a path from u, to t,, n = 1, 2 , . . . .  (For maximization 
problems, the inequalities are reversed in (1) and (3) with e replaced by -e . )  

Figure 1 depicts the intent of  this condition. Roughly speaking, the first condition 
requires that the cost of  the shortest path to s, be no more than e greater than the 

cost of the shortest path to t,. The second two conditions require the state t, be 
reachable at cost e from a state u, that itself is within e of  being infinite horizon 

optimal. Perhaps the most natural choice for {u,} is a sequence of infinite horizon 
optimal states {s*} with s* -+ oo since condition (3) then follows automatically from 

f (s*)  -+f as n ~ co (see below). 

$1 

s2 sa 

. , . 0  • • 

• • S n 

j e  to 
Un 

c(u., tn) 
Fig. 1. Illustration of weak reachability. 

2.1. Value and policy convergence 

Consider the sequence {s*} of states passed through by an optimal strategy ~-*. 

Since f (s*)  +f ' (s*)  = f  by the principle of  optimality and f ' ( s*)  -~ 0 by Assumption 
1, we have 

f ( s*)  ~ f  as n ~ oo. 

We extend this value convergence property to arbitrary state sequences by showing 

that weak reachability is necessary as well as sufficient for value convergence to hold. 

Theorem 4 (value convergence). Under Assumption 1, for any sequence of states 
{s.}.~_o such that s. -~ oo, 

f (s , ) -~ f if and only if {s,},~o is weakly reachable. 
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Proof. Sufficiency: Assume {s.} is weakly reachable and that s. ~ ~ .  Since f ( I s . )  = 
f ( s . )  +if(s . )  and l i m n f ' ( s . ) =  0 by Assumption 1 and the fact that s. ~ ~ ,  we have 

l i m . f ( s . )  = f  if and only if l im. f ( I s . )  = f  Pick any e > 0. Since s. ~ e% Assumption 

1 implies that i f ( s . ) <  e for all sufficiently large n. This and weak reachability 
guarantee that, for all sufficiently large n, 

f ( I s . )  = / ( s . )  +if(s . )  

< f ( s . ) + e  

< f ( t . )+2e  

<~f(u.)+c(u., t.) +2e  

< f + 4 e .  

Since the above inequality holds for all e > 0, we conclude that lim s u p . ~ f ( I s . )  ~<f 
It remains to show that l i m . ~ f ( ] s . ) = f  If  not, then there exists a subsequence 
{s.k} for which lim supk_~ f(Is.k) < f  By the compactness of /7 ,  we may pass to a 

subsequence if necessary to get l i m k ~  ~'-k = ~r for some strategy Tr c H. By Lemma 

2, limk_~ f ( ~ % ) = f ( ~ r ) < f  contradicting the optimality o f f  
Necessity: Suppose {s.} satisfies f ( s . ) ~ f  and s. ~ ~ .  For each n, let t. = s. so 

that (1) is trivially satisfied. Let (u.,  s.) be the final arc on a path to node s. whose 
length equals f (s . ) .  By the finite out-degree assumption, only finitely many arcs 
emanate from each node so it must be that u . ~  as n~e~.  Pick any e > 0 .  

Assumption 1 then guarantees that c(u., t.) = C(u.,  s . ) <  e for all sufficiently large 
n, so that (2) is satisfied. Finally, by hypothesis, f ( u . )+  C(u.,  s . ) = f ( s . ) ~ f  and 
C(u.,  s . )~  0 so that (3) holds. Hence, weak reachability is satisfied. [] 

Remark. From the proof  above, we also have that weak reachability is a necessary 

and sufficient condition for f ( I s , )  -~f  as n ~ oo. 

With an additional uniqueness assumption we obtain the far stronger result that 
the optimal strategies to a sequence of weakly reachable states converge to the 
infinite horizon optimal strategy. 

Assumption 2. The optimal infinite horizon strategy, ~-*, is unique. 

Although it is hard to construct (discounted) problems for which Assumption 2 
fails to hold, sufficient conditions for it to hold are difficult to come by. It is shown 
in [3] that if discounting is present and there are at most countably many potentially 
optimal strategies, then Assumption 2 holds for almost all interest rates. More 
generally, a tie-breaking rule is provided in [15] that forces policy convergence 
when Assumption 2 fails to hold. 
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Corollary 5 (policy convergence). Under Assumptions  1 and 2, ~ * ( s , )  ~ 7r* as n ~ 

i f  and only i f  {s,} is weakly reachable, where 7r*(s,) is any strategy that attains f ( s , ) .  

Proof. If ~r*(s,) does not converge to ~-*, then there is an infinite subsequence 
bounded away from 7r*. This, in turn, has a convergent infinite subsequence. By 

Theorem 4 the optimal values of these strategies to these states converge to the 
infinite horizon optimal value. Hence, by Assumption 1 and the continuity of f=, 
the limit of this subsequence is also infinite horizon optimal. This contradicts 
Assumption 2. The only if direction is omitted. [] 

Under the p-metric, ~-*(s,)~ ~r* as n-~cc implies that there exists an N* such 

that for all n/> N*, zr*(s,) = ~-*. The value N* plays the role of a solution horizon 
here, although sn is not restricted here to be an optimal finite horizon state. Hence, 
a first decision on an optimal path to s,, for sufficiently large n, will also be optimal 
for the infinite horizon problem. The next section gives a stopping rule to numerically 

establish how large n must be. By fixing the first decision to be zr*, we can repeat 
this procedure to establish 7r*, and in this fashion recursively recover zr*. It is 
interesting to note that policy convergence takes place here in the absence of terminal 

values to "steer" the finite horizon solutions. 

2.2. General forward algorithm 

S o Define a sequence of stopping sets as a sequence of finite sets of states, { i}~=o, such 
c ~  

that if {Si}i°°=O ~ Xi=0 Si then limi~o~ si = oo. 
We propose the following general forward algorithm. The algorithm is an abstrac- 

tion of many problem specific algorithms in the literature including [2, 3, 5, 8, 11]. 

Forward Algorithm. 
Step 1. Set i =  1. 
Step 2. Solve for an optimal strategy, 7r*(s), to all states s ~ &. If ~rl*(S) is invariant 

over all s e Si, stop. Otherwise, set i = i + 1 and go to Step 2. 

Theorem 6. Under Assumptions  1 and 2, the Forward Algori thm is guaranteed to stop 

at some finite time N *  with 7r*l (s) = 1r* for  all s ~  SN* if: 

(1) Every sequence o f  states in X °~ i=o Si is weakly reachable. 

(2) Every stopping set, Si, contains an infinite horizon optimal state. 

Proof. We first show that the forward algorithm must finitely terminate. Suppose 
! c o  

not. Then there exists s l c  Si for all i such that ~r*(s'i)=/~r*l for all i. But {si}i=oC 
X~°=o Si and hence is weakly reachable by (1). Then by Corollary 5, we have 
limi ~r*(s~) = ~r*. Contradiction. When the algorithm does stop, at N* say, then by 
(2) and the principle of optimality, we have that ~-~*(s) = 7r*(s*) = 1r~* for all s ~ SN* 

where s* is an infinite horizon optimal state in SN..  [] 
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Remark. Even in the absence of  a unique infinite horizon optimum, if  the Forward 

Algorithm stops, then the invariant first decision obtained must be infinite horizon 

optimal. 

Under conditions (1) and (2) of Theorem 6, the Forward Algorithm will finitely 
terminate with an invariant optimal first decision that is optimal for the infinite 
horizon problem. It is interesting to note that N* here is a forecast horizon in that 
the infinite horizon optimality of the invariant first decision ~r* is not dependent 
upon problem data beyond time N*. The difficulty in constructing such a sequence 

of stopping sets lies in making each sufficiently small to satisfy condition (1) and 
sufficiently large to satisfy condition (2). The first paper to construct minimal 

stopping sets for the lot sizing problem is [8]. By doing so, they were able to find 
the minimum possible stopping time for this specific problem structure. 

Blocking sets are a common choice of  stopping sets that automatically satisfy 
condition (2). A stopping set is a blocking set if every strategy must pass through 
it; that is, every strategy must share at least one state with the blocking set. 

Corollary 7. I f  all stopping sets in the Forward Algorithm are blocking sets, then the 
conclusions of  Theorem 6 hold under condition (1) of Theorem 6 and Assumptions 1 
and 2. [] 

Though this Corollary is an obvious implication of Theorem 6, it is presented to 
better show the connections between the general theory and the specific applications 
from the literature discussed in Section 3. Many previous results are implementations 
of Corollary 7 rather than the more general Theorem 6. 

3. Applications 

The existence proofs and stopping rules in the literature present a wide variety of 
problem specific results and algorithms. The key ideas behind these results vary as 

greatly as the underlying problems. We consider in this section three general classes 
of problems from the unifying perspective of weak reachability. Two are in the area 
of stochastic optimization while the third lies in deterministic optimization. One is 

discounted and two are formally not. The Forward Algorithm of Section 2 is applied 
to all three problems, resulting in new algorithms for the stochastic problems that 
are guaranteed to converge in the unique optimum case. 

3.1. Discrete optimal search 

In [20], a target is considered that randomly moves among the points of a finite 
lattice L c {a e Z m I -oe < _a~ ~ ai ~< ai < co, i = 1, 2 , . . . ,  m} where Z is the set of all 
integers. Let 32, be the target's position at time n where n = 0, 1, 2 , . . . .  Departing 

from [20], we assume knowledge of the probability distribution of the stochastic 
process {X,, n = 1, 2 , . . .} ,  where Xn, n = 1, 2 , . . . ,  are independent but not identically 
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distributed r andom variables. A search strategy, ~: ~ % is any sequence o f  points in 

L such that a point  differs f rom its successor point  by  at most  one in each coordinate.  

We assume ~: is nonadapt ive  and the target is nonevasive,  so that the distribution 
o f  {X,,  n = 1, 2 , . . . }  does not  depend u p o n  ~:. 

Let P~(~'n) be the probabi l i ty  that  the searcher meets the target at t ime n under  

strategy s c, i.e., that  the target and the search posit ions are identical at t ime n. We 

suppose  that  if target and searcher meet  at time n, there is a nonnegat ive  expected 
reward, R~, obtained,  where ~ = 1  R~ < ec. The problem is to find a search strategy, 

s c, that  maximizes the expected total reward,  E[R(~:)]  = ~,°~__ 1 R~p~(~). In  the special 

case, R~ = a ~, where 0 < a < 1, we conjecture that as a converges to zero, a revenue 

maximizing search strategy converges to a strategy that  minimizes time to capture. 

Since the feasibility and return associated with decision ~:,,+1 depend  only on ~:n, 

the nodes  or  states in the decision network cor respond to the number  of  points 

visited together  with the current  lattice point  o f  the searcher, sen, while arcs correspond 

to adjacent  lattice points that  differ f rom the current lattice point  by at most  one 

in each coordinate.  Moreover ,  there are a finite number  o f  points adjacent  to any 

point  in the lattice so that  all node  out-degrees are finite. Moreover  all cumulat ive 

in-degrees are finite since there are always a finite number  n o f  initial decisions 

leading to any state. 

Theorem 8. The discrete optimal search model satisfies Assumption 1. Further, all state 
sequences are weakly reachable. 

Proof.  Assumption 1: Since 3~=1R~<oe,  for all e > 0  there exists N~ such that 

i=~ R ; P ~ ( ~ ) < ~ = n  R i < e  for all n>~N~ and all ~:~ ,, 

Weak reachability: We establish weak reachabil i ty for any sequence o f  feasible 
_ N m states {n, an}~=~ with a n e L for  all n. Let = ~=~  (8~ - a,.) where m is the dimension 

of  the space containing L. Then for  all n t> N, there is a path f rom SC*_N+~ at time 

n - N + l  to a ~ at some time n'<~ n since we have up to N - 1  steps to get there. 

Having arrived at the point  a"  at time n', we can remain there f rom n '  through n. 

Hence,  there is also a path  f rom ~*-N+I at time n - - N +  1 to a ~ at time n. Consider  

a path,  {~:~}, that  passes th rough  the lattice points  ~*-N+~ at time n -  N +  1 and a n 
oo  

at time n. Since for all n, E [ R (s c~ ) ] = 2 ~= 1 Ripi (s c~) < }~ i= 1 Ri < oo, we have that the 

cost o f  those paths, S~7=,-N+~ R~pi(~7)-~O as n-~ oe. Hence,  by setting t, = (n, a n) 
and u~ = ( n -  N +  1, (*-u+~)  for all n, we conclude that  {n, a"},~=~ is weakly reach- 
able (in fact, strongly reachable).  []  

Consider  now the fol lowing implementa t ion o f  the Forward  Algori thm of  

Section 2 for  finding the initial move of  an opt imal  search strategy. Find ~*n(x) for 

all feasible x c L that solves the problem 

max ~ Ripi(~i) 
i = l  

s.t. ~:n = x, seeS.  
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I f  £*"(x) is invariant over all feasible x 6 L, then stop. Otherwise increment n 

and repeat. Since the set of  states in L attainable in n steps is a blocking set, under 

the assumption that ~* is unique, we have by Corollary 7 that this algorithm will 

finitely terminate with ~:1" = ~*n(x) for all feasible x c L. By repeating recursively, 

we can recover ~:*. 

3.2. Deterministic infinite horizon optimization 

Consider a general deterministic sequential decision problem with the following 

special conditions: nonnegative cost flows are sufficiently discounted to ensure that 

infinite horizon costs are uniformly finite, decisions are made one at a time and we 

solve the infinite horizon problem by solving increasing time finite horizon problems. 

For details the reader is referred to [3]. 
The implicit decision network in [3] is sufficiently general that states are defined 

by the sequences of decisons leading to them. That is, problem characteristics may 
be entirely path dependent.  In this case states are equivalent to leading segments 

of  strategies, e.g., (~rl, ~ r2 , . . . ,  ~rn) defines a state for any ~ r ~ H  and n. Each state 

has an assigned time denoting the time frame covered by the preceding sequence 

of  decisions. Finite out-degrees follows from the assumption of finiteness of  each 

decision set and finite cumulative in-degrees from finiteness of  the decision sequence 

preceding any state. 

Theorem 9. The deterministic infinite horizon optimization model satisfies Assumption 
1. Further, all sequences of  finite horizon optima are weakly reachable. 

Proof. Assumption 1: In [3], it is assumed that cost functions are eventually bounded 

by an exponential  function, uniformly over H. More formally, let C~(t) be the 

cumulative cost incurred under strategy ¢r through time t. Then it is assumed that 

C=(t)<~Ke vt for some K, y > 0  and all t~>0. It is further assumed that the costs 
are continuously discounted by a factor e - r t  s o  as to make infinite horizon costs 

finite, i.e., r > 3/. From this we can show that the f~ are uniformly convergent and 
Assumption 1 is satisfied. 

Weak reachability: Given any finite time T define f ( T )  to be the minimum cost 

that covers the time frame [0, T], that is, the lowest cost of  any strategy to any state 

which has a time identification at or beyond time T, only including costs incurred 

up to time T. Then zr*(T), an optimal strategy that attains f ( T ) ,  together with T, 
defines a finite horizon optimal state. Any sequence of times going to infinity, 
together with a corresponding ¢r*(T), define a state sequence, {sn}. We will now 
show that {s~} is weakly reachable. 

Let {s*}~=0 be an infinite horizon optimal path. Then let j ( n )  = max{j l s*  < sn}, 
the last optimal state on that infinite horizon optimal path with index lower that 

state s,. Let tn * - * Since = sj(n)+l, the subsequent optimal state, and set u , -  sj(n). 
f(sj*(n))-~f as n-~ oo, condition (3) holds. Then C(s~n), * sj(,)+l) -~ 0 as n --~ oo since 
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f < ~  implying (2). Moreover, f(sn)~<f(s~n)+l) since sn is optimal for horizon T 
implying (1). Hence weak reachability holds. [] 

Since {~-*(T), T~>0} is weakly reachable, we conclude from Theorem 4 that 
f ( T ) - ~ f  as T-~ oo. If  the optimum is unique, the Planning Horizon Theorem of [3] 
follows immediately from Corollary 5. 

3.3. Undiscounted Markov decision processes 

We consider the homogeneous version of an undiscounted nonhomogeneous Markov 
decision process (MDP) problem considered in [10]. Every limit point of finite 
horizon optima is shown to be average optimal. The uniqueness of such a (limit 
point) average optimal solution was also shown to be a sufficient condition for 

solution horizon existence. However, no algorithms were provided for its discovery. 
We will extend their result for the homogeneous case through the device of weak 
reachability to provide a new finitely terminating algorithm for solving Markov 
decision process problems. 

We begin with some notation. Let p~ be the probability that we next will be in 
state j if we adopt action k in state i where both the state and action sets are finite. 
The rewards R k earned by adopting action k in state i are assumed to be uniformly 

bounded in absolute value by /~ as in [10]. The problem is to find, if possible, a 
sequence of policies 7r = (Try, ~'2, • • .) that maximizes the average reward per period. 

The states we consider for this problem are not the stochastic states of the 
underlying Markov process. This choice is unsatisfactory since the destination state 
is not known when given a partial strategy. Instead, we define states, as in Section 

3.2, as partial strategies. That is, a state, s, associated with time n, is defined by a 
partial sequence of policies, ~'1, ¢r2, • • . ,  ~',. The decision network within this formu- 
lation is a tree whose arcs are policies and whose nodes are determined by the 
sequence of arcs or policies leading to that node. The MDP problem has thus been 
recast into a problem with deterministic states. Finite cumulative in-degrees and 
out-degrees follows immediately from the tree structure. 

The key to existence of solution horizons for undiscounted Markov decision 
processes is (weak) ergodicity. While there are several measures of ergodicity, the 
one used in [10] is 

= max{1 - max(m)n p ~  }. 
/3 • U 

For the undiscounted problem, it is assumed that/3 < 1. That is, all transition matrices 
have an ergodicity measure uniformly bounded below 1. 

The optimal value of a state, either to or from, would naturally be taken to be 
the associated expected reward. This is not satisfactory since, in the absence of 
discounting, the infinite horizon rewards are not certain to converge as required by 
Assumption 1. 
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For a homogeneous MDP with/3 < 1, it is shown in [14] that the undiscounted, 

average reward problem can be replaced by a discounted problem without loss of 

optimality. Rewards and the decision structure remain the same. Transition prob- 

abilities are altered and future values discounted with factor/3. In this discounted 
problem, the infinite horizon rewards converge and the optimal strategy is stationary. 

For the following lemma and theorem we work with the deterministic version of 
this equivalent discounted problem referred to henceforth as the equivalent problem. 

Lemma 10. For the equivalent problem, for any states s and s', both associated with 

time n, ]f'(s) - f ' ( s ' ) ]  <~ Kfl ' ,  where K is a constant and/3 < 1. 

Proof. Since rewards are not changed in the transformation, rewards remain 
bounded by /~  in the equivalent problem. Hence for any state s at time n, 

f '(s)<~ ~ R / 3 " = R / 3 " / ( 1 - / 3 ) .  
m = l q  

Letting K = 2 /~ / (1 - /3 ) ,  the result follows immediately. [] 

Theorem 11. Suppose /3 < 1. Then the equivalent problem satisfies Assumption 1. 
Consider the stopping sets {S~, n =0,  1, 2 , . . .}  where S, is the set of  all states s with 

associated time n such that f ( s )  >~ f ,  - K/3 ~ where f ,  is the optimal value over all states 

at time n. Then (1) every sequence of  states in X~=o S, is weakly reachable, and (2) 
every stopping set S~ contains an infinite horizon optimal state. 

Proof. Assumption 1: Since rewards are uniformly bounded, Assumption 1 holds 
by the same argument given in Theorem 9. 

Weak teachability: Note that f (s)<~f,  for all s in S, and for all n since we are 

maximizing reward. 
We first show that s* c S, for all n, where {s*} is a sequence of states along an 

infinite horizon optimal strategy. If  not, f(s*~) < f ,  - K/3 ~ for some n. But then by 
Lemma 10, the path through s* cannot overtake that defining f , ,  which contradicts 
the definition of s,.* Hence, s* ~ S,. 

We now show that any sequence {sn} c X,~_o S, is weakly reachable. Given e > 0, 
let N~=min{n[K/3"<e} .  Now for n>~N~, set t . = u n = s * ,  so that c (u . , t . )=O.  

Since s. and t. are both in S. and each is less in value than s., we know that 

[ f ( s n ) - f ( t . ) [  < e. Hence, f ( s . )  > f ( t . ) -  e and {s.} is weakly reachable (in the 
maximizing sense). [] 

From Theorem 6, if the optimal solution to the equivalent problem is unique, the 
Forward Algorithm will stop in finite time with an average optimal policy. This is 
in contrast to conventional value iteration that can only approximate the optimal 
value and hence optimal policy. Also, the algorithm presented here differs in 
approach from that presented in [9], which deals with variations in terminal values 
associated with stochastic ending states. 
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4. Summary and conclusions 

Many  papers  derive solut ion horizons and  algori thms for their  discovery based on 

special p rob lem structure, inc lud ing  the three appl icat ions  discussed above. We 

present  a condi t ion  that  is bo th  necessary and  sufficient for the existence of solut ion 

horizons that  subsumes  or extends these previous results. U nde r  un i fo rm finiteness 

and  addit ivi ty of the value funct ion,  the condi t ion  is weak reachabil i ty.  From this 

we obta in  convergence of the value funct ion.  To guarantee  policy convergence as 

well, we assume un iqueness  of the infinite hor izon opt imal  solut ion.  A general  

forward algori thm is p rovided  that is guaran teed  to finitely terminate  with the infinite 

hor izon opt imal  initial  decision. 
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