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Abstract

We generalize the Allais common consequence effect by describing three common consequence effect conditions
and characterizing their implications for the probability weighting function in rank-dependent expected utility.
The three conditions—horizontal, vertical, and diagonal shifts within the probability triangle—are necessary and
sufficient for different curvature properties of the probability weighting function. The first two conditions, shifts
in probability mass from the lowest to middle outcomes and middle to highest outcomes respectively, are
alternative conditions for concavity and convexity of the weighting function. The third condition, decreasing
Pratt-Arrow absolute concavity, is consistent with recently proposed weighting functions. The three conditions
collectively characterize where indifference curves fan out and where they fan in. The common consequence
conditions indicate that for nonlinear weighting functions in the context of rank-dependent expected utility, there
must exist a region where indifference curves fan out in one direction and fan in the other direction.

Key words: Rank-dependent expected utility, prospect theory, common consequence effects, fanning out, fan-
ning in, probability weighting function

1. Introduction

Maurice Allais presented the first serious challenge to the descriptive validity of expected
utility (Allais, 1953, 1979). When faced with what has become known as the Allais
Paradox, most individuals prefer a 10% chance at $5 million to an 11% chance at $1
million yet would rather have $1 million for sure than a lottery that gives a 10% chance
at $5 million and an 89% chance at $1 million. Note that the gambles in the second pair
are constructed by adding a common consequence, 89% chance at $1 million, to the
gambles in the first pair. Put differently, an 89% chance is “shifted” from the lowest
outcome ($0) to the middle outcome ($1 million). The choices described above are
inconsistent with the independence axiom and hence with expected utility. Whereas the
independence axiom requires that preferences be unaffected by changes in a common
consequence, the Allais Paradox demonstrates that individuals are indeed sensitive to such
shifts in probability mass. More generally, the common consequence effect defines a class
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of choice problems—of which the Allais paradox is one example—in which choices shift
as probability is moved from one common consequence to another.

In this paper we explore variants of the common consequence effect. Empirical dem-
onstrations by Kahneman and Tversky (1979) and MacCrimmon and Larsson (1979)
indicate that the Allais Paradox is not an isolated example—individuals violate the inde-
pendence axiom for small as well as large outcomes, for real as well as hypothetical
payoffs, and for small as well as large probabilities. Recent research has shown that the
common consequence effect is even more widespread: common consequence effect vio-
lations occur for lotteries that do not involve sure things as in Allais’ original example
(Prelec, 1990; Wu and Gonzalez, 1996), and in domains of uncertainty as well as risk
(Tversky and Kahneman, 1992; Wu and Gonzalez, 1997). These studies, as well as others,
suggest that expected utility is not a good descriptive model of choice under risk. The
natural question to ask then is: What non-expected utility model can accommodate what
is known about common consequence effect violations?

We address this question by cataloging three distinctly different common consequence
effects. Consider the first example from Wu and Gonzalez (1996):

Example 1
Question 1

RH 5 (.05, $240) vs. SH 5 (.07, $200)
[38%] (n 5 105) [62%]

Question 18

RH
8 5 (.05, $240; .30, $200) vs. SH

8 5 (.37, $200)
[65%] (n 5 105) [35%]

Question 19

RH
9 5 (.05, $240; .90, $200) vs. SH

9 5 (.97, $200)
[39%] (n 5 105) [61%]

As with the Allais example, the gambles in Question 18 and 19 are created from the
gambles in Question 1 by shifting probability from the lowest or third highest outcome
($0) to the middle or second highest outcome ($200). Note that RH

9 ~SH
9 ! first order sto-

chastically dominates RH
8 ~SH

8 ! which in turn first order stochastically dominates RH (SH).
Also note that the “R” gambles are riskier than the “S” gambles in the sense that they have
a higher probability of $0 (the worst outcome) and $240 (the best outcome). The pattern
exhibited in Example 1 is inconsistent with expected utility: the number of subjects who
chose the risky gamble increased from 38% (in Question 1) to 65% (in Question 18) and
then decreased to 39% (in Question 19). A denser ladder of common consequence effects
based on this example is given in Figure 1.

The results are also depicted in the probability triangle in Figure 2. The horizontal axis
refers to the probability of $0, the worst outcome, while the vertical axis refers to the
probability of $240, the best outcome. The middle outcome, $200, is implicit in the
diagram. Note that gambles improve (in the sense of first-order stochastic dominance)
with shifts in the west, north, or northwest direction. We refer to these as horizontal,
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vertical, and diagonal shifts respectively. The thick line bisecting the gambles is a sort of
“quasi indifference curve” inferred from the choices above. The steeper the line, the
greater the number of subjects choosing the safe gamble. If subjects were evenly divided
between the risky and safe gamble, the thick line would connect the two gambles.

Next consider the following example created by shifting probability mass from the
middle or second highest outcome ($100) to the highest outcome ($280)1:

Example 2
Question 2

RV 5 (.03, $280; .90, $100) vs. SV 5 (.97, $100)
[51%] (n 5 59) [49%]

Question 28

RV
8 5 (.33, $280; .60, $100) vs. SV

8 5 (.30, $280; .67, $100)
[15%] (n 5 59) [85%]

Question 29

RV
9 5 (.93, $280) vs. SV

9 5 (.90, $280; .07, $100)
[32%] (n 5 58) [68%]

The pattern exhibited is the opposite of that exhibited in Example 1: the number of
subjects choosing the risky option decreases from 51% (in Question 2) to 15% (in Ques-

Figure 1. Example 1 (Horizontal common consequence shift)
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tion 28), and then increases to 32% (in Question 29). Again, the questions in Example 2
are a subset of a more complete ladder found in Figure 3. The probability triangle
illustrating these vertical shifts is found in Figure 4.

Finally, consider a third set of common consequence effects in which probability is
shifted from the lowest or third highest outcome ($0) to the highest outcome ($25,000)
(Camerer, 1989):

Example 3
Question 3

Rd
* 5 (.10, $25000) vs. Sd 5 (.20, $10000)

[73%] (n 5 68) [27%]

Question 38

Rd
* 5 (.30, $25000) vs. Sd

8 5 (.20, $25000; .20, $1000)
[60%] (n 5 68) [40%]

Question 39
Rd

( 5 (.90, $25000) vs. Sd
( 5 (.80, $25000; .20, $10000)

[27%] (n 5 68) [73%]

Figure 2. Example 1 in the probability triangle
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In this example, the percentage of subjects who choose the risky option decreases as we
shift probability mass from Question 3 to Question 38 and decreases even more with a
shift from Question 38 to Question 39. Figure 5 depicts a more complete set of common
consequence shifts based on these gambles. Figure 6 shows the gambles in the probability
triangle.

Put together, these three common consequence effects show the following characteris-
tics:

1. The pattern observed (inverse U-shaped; U-shaped; or decreasing) depends on how
common consequences are shifted (from the third highest to second highest; second
highest to first highest; or third highest to highest).

2. The inflection point observed in Examples 1 and 2 seems to be roughly the same,
between .25 and .40.

3. The patterns in the three examples are inconsistent with Machina’s (1982) Hypothesis
II that indifference curve “fan out” in the probability triangle, or put differently, that
preferences become more locally risk averse as gambles get better in the sense of first
order stochastic dominance. The shifts increase preference for the safe option (SH

8 and
SH

9 ; SV and SV
8 ; SD, SD

8 , and SD
9 ), consistent with “fanning out”, as well as the risky option

(RH and RH
8 ; RV

8 and RV
9 ), consistent with “fanning in.” This can be seen visually in

Figure 3. Example 2 (Vertical Common consequence shift)
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Figures 2, 4, and 6. As a result of common consequence shifts, the quasi-indifference
curves sometimes become steeper (i.e., they fan out), and sometimes become flatter
(i.e., they fan in).

4. The effects do not involve sure things and thus do not rely on the certainty effect
(Kahneman and Tversky, 1979).

These four observations are not entirely new. Several previous studies have demon-
strated fanning in (Conlisk, 1989; Prelec, 1990; Camerer, 1992, Stylized Fact #3). Our
paper makes two specific contributions. The first contribution is a more complete empiri-
cal characterization of the three natural types of common consequence effects for three-
outcome gambles (Examples 1–3). The second contribution is a theoretical framework
that accommodates the patterns of mixed fanning exhibited in the three examples.

The framework we use to explain the common consequence patterns is rank-dependent
expected utility (RDEU; Quiggin, 1982; Yaari, 1987; Segal, 1989) with an inverse S-
shaped probability weighting function. Many studies have suggested that RDEU best
organizes the accumulated empirical evidence (see Camerer, 1989, 1992, 1995; Tversky

Figure 4. Example 2 in the probability triangle
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and Kahneman, 1992).2 Let (p, x; q, y) refer to a three-outcome gamble which gives p
chance at x, q chance at y, and chance at r 5 1 2 p 2 q chance at z 5 0 where x . y .
z 5 0.3 RDEU represents choices between gambles as follows:

~p, x; q, y! s ~p8, x8; q8, y8! ⇔ p~p!v~x! 1 ~p~p 1 q! 2 p~p!!v~y! .

p~p8!v~x8! 1 ~p~p8 1 q8! 2 p~p8!!v~y8!, (1.1)

where v[ is a value function and p[ is a probability weighting function (also sometimes
called a decision weighting function) such that p(0) 5 0 and p(1) 5 1. We also assume
throughout that v[ and p[ are continuous and that p[ is twice-differentiable.4

There is ample evidence that the probability weighting function, p[, is inverse S-
shaped, concave below approximately p* 5 .35 and convex above (Tversky and Kahne-
man, 1992; Camerer and Ho, 1994; Tversky and Fox, 1995; Wu and Gonzalez, 1996). It
turns out that this restriction on the weighting function is almost enough to characterize
our three examples. Specifically, in the context of RDEU, the three natural manifestations
of the common consequence effect (horizontal, vertical and diagonal shifts—Examples 1,
2, and 3 respectively) are each necessary and sufficient for a specific restriction on the
probability weighting function. To be more precise, we start with the following two
results. Within the context of RDEU:

Figure 5. Example 3 (Diagonal common consequence shift)
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(i) For shifts along the horizontal axis, concavity of p[ implies horizontal fanning in
(HFI), while convexity of p[ implies horizontal fanning out (HFO).

(ii) For shifts along the vertical axis, concavity of p[ is consistent with vertical fanning
out (VFO), and convexity of p[ consistent with vertical fanning in (VFI).

In Figure 7, we illustrate the global implications of (i) and (ii) for an S-shaped weighting
function, concave below p* and convex above p*. In Region A, indifference curves fan out
for both horizontal shifts and vertical shifts and thus fan out for diagonal shifts. However,
in Regions B and C, the S-shape alone does not imply fanning in or fanning out for
diagonal shifts parallel to the hypotenuse. Thus, that qualification alone falls short of
completely characterizing fanning behavior within the triangle. We prove the following
result concerning diagonal shifts:

(iii)
For shifts parallel to the hypotenuse, decreasing absolute concavity of p[,

2p9~p!

p8~p!
,

implies diagonal fanning out (DFO).

Figure 6. Example 3 in the probability triangle
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The measure of absolute concavity,
2p9~p!

p8~p!
, is the Pratt-Arrow measure for utility of

wealth,
2u9~w!

u8~w!
, applied to the probability weighting function.

Thus, the three conditions together provide a formalism both for testing RDEU theory
and for organizing past empirical studies. The paper proceeds as follows: In Section 2, we
describe the three conditions and discuss empirical support for each condition, some
previously reported and some new. The first condition, a shift along the horizontal axis, is
a concavity/convexity condition discussed and tested empirically in Wu & Gonzalez
(1996). That study provided a good deal of empirical support for the S-shaped weighting
function. The second condition, a shift along the vertical axis is an alternative concavity/
convexity condition. The third condition, decreasing absolute concavity in the Pratt-Arrow
sense, is a condition that is satisfied by most of the recently proposed weighting functions.

Figure 7. Fanning in and fanning out implications for S-shaped p[
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We review previous findings consistent with this property. In Section 3, we discuss the
implications of these conditions in terms of global properties of indifference curves in the
probability triangle. Finally, in Section 4, we discuss how this framework organizes much
of the past empirical research on decision making under risk. Proofs are left for the
Appendix, as well as the generalization of the conditions to gambles with more than 3
outcomes.

2. Common-consequence conditions

The conditions below have the same structure and hold outcomes x, y, and z fixed, and
thus all such gambles can be depicted in the probability triangle. We start with two
gambles, R and S, where R is mnemonic for Risky and S is mnemonic for Safe. R is riskier
in the sense that it has a higher probability of x and z, the best and worst outcomes. R and
S are transformed into R8 and S8 by shifting probability mass from one common conse-
quence to another, i.e., from either z to y, y to x, or from z to x. Of course, the only
preference patterns permitted by the independence axiom are R and R8 or S and S8. Thus,
a preference for R and S8 or S and R8 violates the independence axiom.

In all cases, transforming R to R8 and S to S8 yields strict improvements in the sense of
first-order stochastic dominance. Thus, changes in preference from R to S8 are consistent
with fanning out of indifference curves (increased risk aversion) and changes in prefer-
ence from S to R8 are consistent with fanning in of indifference curves (decreased risk
aversion).

We describe z to y shifts, y to x shifts, and z to x shifts in order. In the probability
triangle, shifts from z to y involve horizontal (western) translations, shifts from y to x
correspond to vertical (northern) translations, and shifts from z to x involve diagonal
(northwest) translations parallel to the hypotenuse. The pairs of gambles used in the three
conditions are depicted in Figure 8.

2.1. Horizontal translations: z-to-y probability shifts

We first consider shifts in probability mass from z to y. The following two conditions
differ only in the direction of preference in the second pair.

Concavity condition I: Let p . p8, q , q8, p 1 q , p8 1 q8, p8 1 q8 1 « # 1. Then if
RH 5 (p, x; q, y) ; (p8, x; q8, y) 5 SH, then RH

8 5 ~p, x; q 1 «, y! >
~p8, x; q8 1 «, y! 5 SH

8 .
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Convexity condition I: Let p . p8, q , q8, p 1 q , p8 1 q8, p8 1 q8 1 « # 1. Then if
RH 5 (p, x; q, y) ; (p8, x; q8, y) 5 SH, then RH

8 5 ~p, x; q 1 «, y! =
~p8, x; q8 1 «, y! 5 SH

8 .

Notice that RH
8 and SH

8 are merely RH and SH translated horizontally, a shift of « probability
from z to y (Figure 8). These conditions tighten Wu and Gonzalez (1996) in the following
sense: if the Concavity/Convexity condition holds for p8 5 0, it also holds for p8 . 0.
Convexity condition I was originally proposed by Segal (1987), who called it a “Gener-
alized Allais Paradox.”

Under RDEU, Concavity condition I (Convexity condition I) implies that p(p 1 q 1 «)
2 p(p 1 q) . (,) p(p8 1 q8 1 «) 2 p(p8 1 q8), which for « small is approximately p8(p
1 q) . (,) p8(p8 1 q8). As p8 1 q8 R p 1 q, we approach a local condition: p9(p 1 q)
, (.) 0. Note that both conditions, like all conditions in this paper, are “point condi-
tions.” Proposition 1 offers a precise generalization of the global implications, provided
that the conditions hold for “all «” within a range:

Proposition 1: In the context of CPT or RDEU, (i) and (ii) are equivalent:

Figure 8. Common-consequence conditions depicted in the probability triangle
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(i) p[ is strictly concave (convex) in the range (r, r̄);
(ii) Concavity (Convexity) condition I holds for all p, p8, q, q8, such that p 1 q , p8 1

q8, r # p 1 q and p8 1 q8 1 « # r̄.

Substantial empirical support for these both conditions (and hence p[ S-shaped) was
provided by Wu and Gonzalez (1996). Returning to Example 1, RDEU’s explanation of
the modal preferences, SH and RH

8 and SH
9 , p(.07) 2 p(.05) . p(.37) 2 p(.35) and p(.97)

2 p(.95) . p(.37) 2 p(.35), is consistent with concavity of p[ below (and convexity
above) p 5 .37. The pattern also demonstrates the principle of diminishing sensitivity:
additional probability has more impact at the boundaries (near 0 and near 1) than in the
middle of the probability interval. Further examples of Concavity condition I in region B
(Figure 2) are given by Prelec (1990) and Wu and Gonzalez (1996). For other illustrations
of Convexity condition I (Region A), see Kahneman and Tversky (1979), Camerer (1989),
and Wu and Gonzalez (1996).5,6

2.2. Vertical translations: y-to-x probability shifts

Next we consider shifts in probability mass from y to x. As before, the following two
conditions differ only in the direction of preference in the second pair.

Concavity condition II: Let p . p8, p 1 q , p8 1 q8 1 « , 1. Then if RV 5
(p, x; q 1 «, y) ; (p8, x; q8 1 «, y) 5 SV, then RV

8 5 ~p 1 «, x; q, y ! =
~p8 1 «, x; q8, y! 5 SV

8

.

Convexity condition II: Let p . p8, p 1 q , p8 1 q8 1 « , 1. Then if RV 5
(p, x; q 1 «, y) ; (p8, x; q8 1 «, y) 5 SV, then RV

8 5 ~p 1 «, x; q, y! >
~p8 1 «, x; q8, y! 5 SV

8

.

Both conditions involve an « shift in probability mass from y to x. Recall that RV
8 and SV

8

represent a vertical translation of RV and SV (Figure 8).
Concavity (convexity) condition II implies that p(p 1 «) 2 p(p) , (.) p(p8 1 «) 2

p(p8), when p . p8. For « small, this inequality is approximately p8(p) , (.) p8(p8),
which approaches p9(p) , (.) 0 for p 2 p8 small. Even though these conditions only
have point implications, as with the previous conditions, global curvature properties
follow if the conditions hold for “all «.” The next proposition summarizes this result.

Proposition 2: In the context of CPT or RDEU, (i) and (ii) are equivalent:

(i) p[ is strictly concave (convex) in the range (r, r̄);
(ii) Concavity (Convexity) condition II holds for all p, q, q8, r # p and p8 # r̄.
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Returning to Example 2, we found that preferences for the risky alternative decreased
and then increased, consistent with an S-shaped probability weighting function. Prefer-
ences for RV and SV

8 in Example 2 imply that p(.03) 2 p(.01) . p(.33) 2 p(.30), which
is implied by concavity of p[ below p 5 .34. Preferences for SV

8 and RV
9 are explained by

p(.93) 2 p(.90) . p(.33) 2 p(.30), an implication of convexity of p[ above p 5 .30.8

It is noteworthy that Concavity condition I required a shift in preference from S to R8,
whereas Concavity condition II requires the opposite, a shift in preference from R to S8.
This sign difference indicates that when p[ is globally concave, it will exhibit horizontal
fanning in, but vertical fanning out. In Section 3, we develop this observation and prove
that RDEU with nonlinear p[ implies regions in which there is both local fanning in and
fanning out.7 In Appendix B, we show that Concavity conditions I and II are special cases
of the n-dimensional generalization of the concavity condition.

2.3. Diagonal translations: z-to-x probability shifts

Finally, we consider shifts in probability mass from z to x. The following condition
describes such shifts:

Absolute Concavity condition: Let p 1 q8 , q, and x . y. Then if RD 5 (p 1 p8, x; q8,y)
; (p8,x;q,y) 5 SD, then RD

8 5 ~p 1 p8 1 «, x; q8, y! = ~p8 1 «, x; q, y! 5 SD
8 .

Note that RD
8 and SD

8 are constructed from RD and SD by moving « probability from z to
x (see Figure 8).

Preferences for RD and SD
8 imply that

p~p8 1 q 1 «! 2 p~p8 1 p 1 q8 1 «!

p~p8 1 q! 2 p~p8 1 p 1 q8!
$

p~p8 1 p 1 «! 2 p~p8 1 «!

p~p8 1 p! 2 p~p8!
.

Re-writing this form as

2@~p~p8 1 q 1 «! 2 p~p8 1 q!! 2 ~p~p8 1 q! 2 p~p8 1 p 1 q8 1 «!!#

p~p8 1 q! 2 p~p 1 p8 1 q8!
#

2@~p~p8 1 p 1 «! 2 p~p8 1 p!! 2 ~p~p8 1 «! 2 p~p 1 «!!#

p~p8 1 p! 2 p~p8!
, (2.1)

we have a difference equation analog to decreasing Pratt-Arrow absolute concavity. The
numerator involves the difference of two differences (analog to a second derivative), while
the denominator has a single difference (analog to a first derivative). As q R p 1 q8 and
q R p and (2.1) approaches a “local” condition, becoming
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2p9~p8 1 q 1 «!

p8~p8 1 q 1 «!
#

2p9~p8 1 q!

p8~p8 1 q!
(2.2)

the Pratt-Arrow measure of absolute concavity applied to p[,
2p9~p!

p8~p!
, decreasing in p

(Pratt, 1964). Decreasing absolute concavity of the weighting function is satisfied for
several proposed S-shaped weighting functions (Lattimore et al., 1992; Gonzalez and Wu,
1998; Prelec, 1998; Tversky and Kahneman, 1992). However, absolute concavity and
S-shape are logically independent. S-shape implies that 2p9~p! / p8~p! must decrease at
the inflection point, but not everywhere. For example, two functions proposed by Prelec
(1998), p(p) 5 [1 2 a ln(p)]2b and p(p) 5 [exp(pa 2 1)]b, are S-shaped but do not

satisfy decreasing
2p9~p!

p8~p!
everywhere. Similarly, Segal’s (1987) function, p(p) 5 1 2

(1 2 p)a has decreasing
2p9~p!

p8~p!
, but is convex everywhere.

The Pratt-Arrow measure also shows up prominently, but in a very different manner, in
Prelec’s (1998) work on the probability weighting function. Prelec characterizes p[
using common-ratio effects, noting that the Pratt-Arrow ratio is a measure of subpropor-
tionality of p[ transformed into log-log coordinates. The same measure is also found in
Segal and Spivak (1988) who show that a “conditional risk premium” in RDEU is pro-

portional to
p9~p!

p8~p!
.

The following proposition generalizes (2.2):

Proposition 3: In the context of CPT or RDEU, (i) and (ii) are equivalent:

(i) 2p9~p!

p8~p!
decreases in p in the range (r, r̄);

(ii) the Absolute Concavity condition holds for all p, p8, q, r , p 1 p8, p 1 p8 1 q8
, r̄.

To understand the condition, note that RD and SD each have a p8 chance at x. Thus, p8
chance at x might be regarded as the “endowment.” Reframing, the choice between R and
S can be seen as a choice between an incremental p chance at x or q chance at y. The
absolute concavity condition requires that preferences become more risk averse as the
endowment increases. Machina’s (1987) intuitive justification for fanning out seems es-
pecially appropriate for this class of gambles: “Intuitively, if the distribution … involves
very high outcomes, I may prefer not to bear further risk in the unlucky event that I don’t
receive it … But if (the distribution) … involves very low outcomes, I may be more
willing to bear risk in the event that I don’t receive it.” (pp. 129–130)

Recall that Example 3 (Figures 5 and 6) shows a decreasing pattern of risky choices.
Other tests consistent with the decreasing absolute concavity condition are reported in
Camerer (1989, small gains and losses), Chew and Waller (1986, the “H” and “L” gambles
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in the “HILO” structure), Conlisk (1989), and Sopher and Gigliotti (1993). Several of
Camerer’s examples, as well as those of Chew and Waller and Conlisk are very close to
the hypotenuse of the probability triangle. Hypotenuse parallelism (Camerer, 1989) sug-
gests one explanation of the findings. Under RDEU, indifference curves along the hypot-
enuse are parallel, independent of the shape of p[. The slope of the indifference curve

through a gamble (p, x; q, y) is
p8~p 1 q!v~y!

p8~p!@v~x! 2 v~y!#
. On the hypotenuse, q 5 0, thus the

slope,
v~y!

v~x! 2 v~y!
, does not depend on p or q. Most gambles that have tested absolute

concavity have been near but not along the hypotenuse 2p varies while q is a constant
measuring the distance from the hypotenuse. The indifference curves through (p, x; q, y)
and (p8, x; q, y) have nearly identical slopes as long as p[ is linear in that range, which
holds approximately except at the boundaries. When gambles move away from the hy-
potenuse, fanning out becomes more pronounced.

Buschena and Zilberman (1998), in an extensive test of 109 pairs of gambles in the
probability triangle, provide a systematic test (292 subjects) of absolute concavity. Since
their experiment was not designed specifically to test absolute concavity, only 70 pairs of
choices constitute Absolute Concavity conditions. Many of these differences are small and
statistically insignificant. Looking only at statistically significant shifts (p , .05), cases
for decreasing absolute concavity (%R , %R8) outnumber cases for increasing absolute
concavity (%R . %R8) 11 to 3 (binomial test, p , .05). Most of the statistically signifi-
cant instances of decreasing absolute concavity are near the origin (r , 1/3, p , 1/3),
where Convexity condition I and Concavity condition II both imply fanning out (and thus
northwest shifts must also yield fanning out).9

3. Global implications

We can use Concavity/Convexity conditions I and II to provide a more precise charac-
terization of the “ordinal” properties of indifference curves. Recall that a gamble (p, x; q,y)
is depicted in the triangle as (1 2 p 2 q, p) or (r, p), where r is the probability of z, the
worst outcome. The slope of the indifference curves for a gamble (p, x; q, y) is given by

f~p, r! 5 dp/dr 5
p8~1 2 r!v~y!

p8~p!@v~x! 2 v~y!#
.

Once x, y, and z are fixed, the slope of the indifference curves at (r, p) depends, of course,
only on p and r. Indifference curves fan out everywhere if they become steeper for
stochastically dominating improvements. Stated formally, f(p 1 «, r 2 d) . f(p, r) for «,

d $ 0 and « 1 d . 0, or, in differential form: for vertical fanning out (VFO),
]f
]p

. 0; and

for horizontal fanning out (HFO),
]f

]r
, 0 (increasing r creates a worse gamble in the sense
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of stochastic dominance). We define the differential form of fanning in similarly:
]f

]p
,

0 (VFI) and
]f

]r
. 0 (HFI).

If p[ is S-shaped, Propositions 1 and 2 together imply that there must exist a region
in which indifference curves must fan in and a region where indifference curves fan out.
In fact, this is true for p[ globally concave or globally convex. In other words, for all
nonlinear weighting functions, indifference curves cannot globally fan in or globally fan
out. We formalize this last statement in the following Proposition:

Proposition 4: In the context of RDEU or CPT, if p[ is nonlinear on (p*, p* 1 l), then:

]f
]r

]f
]p?p5p̂, r5r̂

. 0, for r̂ . 1 2 p* 2 l, p̂ . p*, r̂ 1 p̂ # 1.

Proposition 4 provides an alternative intuition for Roëll’s (1987) result that Machina’s
Hypothesis II is compatible with RDEU only for p(p) 5 p. If p[ is nonlinear, then there
must exist a region in which indifference curves exhibit HFO and VFI, or HFI and VFO.
Thus under RDEU, fanning out and fanning in cannot exist in different regions as in
“mixed fanning models” (Gul, 1991; Neilson, 1992). There must exist indifference curves
that exhibit a “saddle-point” quality, in which there is both local fanning in and local
fanning out.

We prove this result graphically (the formal proof is given in Appendix A). Suppose that
p[ is concave on (p*, p* 1 l). Then, by Concavity condition I, there exists a region
where HFI holds. The region is described in Figure 9. By Concavity condition II, VFO
must hold within some portion of the triangle, also illustrated in Figure 9. When we
combine these two results, we have a region in which both HFI and VFO hold.

4. Discussion

We presented three conditions that characterize the curvature of the probability weighting
function. These conditions generalize Allais’ common consequence effect by exploring
three different types of “probability shifts” within the probability triangle. Within the
context of rank-dependent expected utility theory, these common consequence conditions
imply both fanning in and fanning out in the triangle, even when the weighting function
is globally concave or globally convex. Our results both provide alternative intuition and
extend Roëll’s (1987) finding that Machina’s Hypothesis II (global fanning out) is incon-
sistent with rank-dependent expected utility theory, except for the trivial case when ex-
pected utility holds. The Absolute Concavity condition is noteworthy because it extends
the machinery of the Pratt-Arrow measure of risk preference to the probability weighting
function. This opens up the possibility that utility theory results based on the Pratt-Arrow
framework might yield insights for rank-dependent expected utility theory.10
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Overall, the empirical evidence for these three conditions adds to the mounting support
for an S-shape (first concave, then convex) probability weighting function. The psycho-
logical intuition is based on the principle of diminishing sensitivity (Tversky and Kahne-
man, 1992): individuals become less sensitive to probability changes away from the
probability endpoints (p 5 0, and p 5 1). Thus diminishing sensitivity will produce a
concave-convex shape in the probability weighting function.

The shape of the probability weighting function is currently a topic of both theoretical
and empirical research. Many of the previous attempts to understand empirically the shape
of the probability weighting function utilized goodness of fit tests on specific functional
forms of both the value function and the weighting function. This paper diverges from that
approach by offering qualitative conditions that are powerful enough to provide informa-
tion about the curvature of the weighting function yet can also be used to test specific
functional forms of p[ (Wu and Gonzalez, 1996).

Finally, these conditions provide a framework for organizing much of the last 15 years
of empirical risky choice research. With the exception of Starmer (1992), our common
consequence framework is consistent with all the common consequence effect tests we
could find (Buschena and Zilberman, 1995; Camerer, 1989; Chew and Waller, 1986;
Conlisk, 1989; Harless, 1992; Kahneman and Tversky, 1979; Prelec, 1990; Sopher and

Figure 9. VFO and HFI are implied by concavity of p[
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Gigliotti, 1993; Wu and Gonzalez, 1996). Machina’s Hypothesis II has influenced how
many researchers view empirical results: it has become standard to report not only the
percentage of subjects who violate expected utility, but whether these violations are
consistent with fanning in or fanning out. Researchers have debated what conclusions to
draw from these such studies, the ambiguity attributed to weak or inappropriate statistical
tests (e.g., Harless and Camerer, 1994) or incorrect specifications of a particular model
(e.g., Quiggin, 1993). Like Quiggin, we believe that a consistent story of the empirical
results emerges if these data are interpreted in terms of an S-shaped weighting function,
characterized by the common consequence conditions presented in this paper. The frame-
work explains fanning in/common consequence violations in the southeast corner (e.g.,
Prelec, 1990) and along the left edge (e.g., Conlisk, 1989). Of course, we do not wish to
imply that RDEU (and its sign-dependent cousin, cumulative prospect theory) can explain
all risky choice behavior. There are phenomena that RDEU and CPT cannot accommodate
without resorting to editing operations or other explanations (e.g., Wu, 1994; Birnbaum
and McIntosh, 1996; Birnbaum and Chavez, 1997), and surely researchers will find more
in the future. Nevertheless, a rank-dependent model with an S-shaped weighting function
offers a parsimonious and descriptively accurate picture of a large piece of what we
currently know about decision making under risk. Our hope is that RDEU will continue
to stimulate theoretical and empirical research in the area of risky choice.

Appendix A: Proofs

In all the proofs, we prove the result for either concavity or convexity. The “other” proof
is identical with the inequalities reversed.

Proof of Proposition 1: Suppose that CPT holds and that p[ is continuous. First, we
prove that (i) implies (ii). If (p, x; q, y) ; (p8, x; q8, y), then

p~p!v~x! 1 @p~p 1 q! 2 p~p!#v~y! 5 p~p8!v~x! 1 @p~p8 1 q8! 2 p~p8!#v~y!. (A.1)

Concavity of p[ (and p 1 q , p8 1 q8) implies that p(p8 1 q8 1 «) 2 p(p8 1 q8) #
p(p8 1 q8 1 «) 2 p(p 1 q) or

p~p8 1 q8 1 «! 2 p~p 1 q 1 «! 1 p~p 1 q! 2 p~p8! # p~p8 1 q8! 2 p~p8!.
(A.2)

Substituting (A.2) into (A.1) and re-arranging, we get p(p)v(x) 1 [p(p 1 q 1 «) 2
p(p)]v(y) $ p(p8)v(x) 1 [p(p8 1 q8 1 «) 2 p(p8)]v(y). Thus, (p, x; q 1 «, y) >
(p8, x; q81«, y).

Next, we prove that (ii) implies (i). Let (p, x; q, y)N (p8, x; q8, y). Then, by the concavity
condition, (p, x; q 1 «, y) > (p8, x; q8 1 «, y). Under CPT, the two conditions imply
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p~p 1 q 1 «! 2 p~p 1 q! $ p~p8 1 q8 1 «! 2 p~p8 1 q8!. (A.3)

Since the preceding preferences hold by assumption for all p 1 q , p8 1 q8 within the
defined range, they also hold for all p 1 q 1 « 5 p8 1 q8. Re-writing (A.3) for this case,
we get p(p 1 q 1 «) $ (p(p 1 q 1 2«) 1 p(p 1 q))/2, which is midpoint concavity.
Midpoint concavity is sufficient for concavity of p[ on (r, r̄) for r , p 1 q, p8 1 q8 ,
r̄ (Hardy, Littlewood, & Polya, 1952, Theorem 86) when p[ is continuous. h

Proof of Proposition 2: Suppose that CPT holds and that p[ is continuous. First, we
prove that (i) implies (ii). If (p, x; q 1 «, y) ; (p8, x; q8 1 «, y), then

p~p!@v~x! 2 v~y!# 1 p~p 1 q 1 «!v~y! 5 p~p8!@v~x! 2 v~y!# 1 p~p8 1 q8 1 «!v~y!.

(A.4)

Concavity of p[ (and p , p8) implies that p(p8 1 «) 2 p(p8) # p(p 1 «) 2 p(p) or

p~p8 1 «! 2 p~p 1 «! 1 p~p! # p~p8!. (A.5)

Substituting (A.5) into (A.4) and re-arranging, we get p(p 1 «)[v(x) 2 v(y)] 1
p(p 1 q 1 «)v(y)$p(p8 1 «)[v(x) 2 v(y)] 1 p(p8 1q8 1 «)v(y).

Thus,
(p 1 «, x; q, y) > (p8 1 «, x; q8, y).

To prove that (ii) implies (i), we let (p, x; q 1 «, y) ; (p8, x; q8 1 «, y). Then, by the
concavity condition, (p 1 «, x; q, y) >(p8 1 «, x; q8, y). The two conditions together imply
p(p 1 «) 2 p(p) $ p(p8 1 «) 2 p(p8). For the case of p 1 « 5 p8, we have a midpoint
concavity condition, p(p 1 «) $ (p(p 1 2«) 1 p(p))/2, which by Hardy, Littlewood, &
Polya (1952, Theorem 86) establishes that p[ is strictly concave on (r, r̄) for r , p, p8
, r̄ if p[ is continuous. h

Proof of Proposition 3: First, we establish that (i) implies (ii). Suppose that
2p9 ~p! / p8~p! is decreasing in p. If (p 1 p8, x; q8, y) ; (p8, x; q, y), then

v~x! 2 v~y!

v~y!
5

p~p8 1 q! 2 p~p 1 p8 1 q8!

p~p8 1 p! 2 p~p8!
. (A.6)

Using Theorem 1 of Pratt (1964) (take u1(x) 5 p(x), u2(x) 5 p(x 1 «) in Theorem 1e),
2p9~p! / p8~p! decreasing in p implies that

p~p8 1 q 1 «! 2 p~p 1 p8 1 q8 1 «!

p~p8 1 p 1 «! 2 p~p8 1 «!
$

p~p8 1 q! 2 p~p 1 p8 1 q8!

p~p8 1 p! 2 p~p8!
. (A.7)

Substituting (A.6) into (A.7) and re-arranging, we get
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p~p 1 p8 1 «!v~x! 1 @p~p 1 p8 1 q8 1 «! 2 p~p 1 p8 1 «!#v~y! #

p~p8 1 «!v~x! 1 @p~p8 1 « 1 q! 2 p~p8 1 «!#v~y!,

which holds if and only if (p 1 p8 1 «, x; q8, y) , (p8 1 «, x; q8, y).
The implication that (ii) implies (i) is similarly proved. The absolute concavity condi-

tion implies (A.7) for all « . 0. Once again, using Theorem 1 of Pratt (1964), (A.7)
implies that 2p9~p! / p8~p! decreases in p on (p8 1 p, p 1 p8 1 q8). h

Proof of Proposition 4: If p[ is non-linear, then there exists a region, (p*, p* 1 l) where
p[ is concave or convex. If p[ is convex in that region, p8(p* 1 d) . p8(p*) for l .
d . 0, which implies

f ~a, 1 2 p* 2 d! 5
p8~p* 1 d!v~y!

p8~a!@v~x! 2 v~y!#
,

p8~p*!v~y!

p8~a!@v~x! 2 v~y!
5 f~a, 1 2 p*!, (A.8)

for all a , p* 1 d. p[ convex also implies p8(p* 1 «) . p8(p*) for l . « . 0, which
in turn implies

f ~p* 1 «, b! 5
p8~1 2 b!v~y!

p8~p* 1 «!@v~x! 2 v~y!#
.

p8~1 2 b!v~y!

p8~p*!@v~x! 2 v~y!#
5 f~p*, b!, (A.9)

for all b , 1 2 p* 2 «. For both (A.8) and (A.9) to hold, 1 2 p* 2 l , b , 1 2 p* and
p* , b , p* 1 l. Since f(a, 1 2 p* 2 d) . f(a, 1 2 p*) and f(p* 1 «, b) , f(p*, b) for
all «, d , l, and a and b defined above, ]f/]p , 0 and ]f/]r , 0. Thus, ]f/]p ]f/]r . 0,
therefore establishing the Proposition for p[ convex. h

Appendix B: Generalization to gambles with more than 3 outcomes

Concavity conditions I and II, and Convexity conditions I and II readily generalize to
more than three outcomes. An n-outcome prospect, (p1, x1;…; pi, xi;…; pn, xn) offers pi

chance at xi, where xi . xi11 for all i. The general rank-dependent representation follows:

U~p1, x1;…; pi, xi;…; pn, xn! 5 (
i51

n

v~xi! @p ~(
j51

i

pj! 2 p ~(
j51

i21

pj!#, (A.10)

where U[ represents preferences, i.e., A s B ⇔ U(A) . U(B).
What follows is the n-outcome generalizations of the Concavity and Convexity condi-

tions:

Generalized Concavity (convexity) condition: Let (
j51

i

pj , ~.! (
j51

i

qj. Then if
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A 5 ~p1, x1;…; pi, xi; pi11, xi11;…; pn, xn! ;

~q1, x1;…; qi, xi; qi11, xi11;…; qn, xn! 5 B,

then

A8 5 ~p1, x1;…; pi 1 «, xi; pi11 2 «, xi11;…; pn, xn! s ~a)

~q1, x1;…; qi 1 «, xi; qi11 2 «, xi11;…; qn, xn! 5 B8.

Note that Concavity conditions I and II are just special cases of the Generalized condition.
In the Generalized condition, it is not necessary to distinguish between more and less
risky. Since concavity and convexity are conditions about shifts in probability mass be-
tween two adjacent outcomes, xi and xi11, what matters is the probability of receiving xi

or better, i.e., (
j51

i

pj and (
j51

i

qi. To see that only adjacent outcomes matter, note that (A.10)

implies

U~A8! 2 U~A! 5 ~v~xi! 2 v~xi11!! @p ~« 1 (
j51

i

pj! 2 p ~(
j51

i

pj!# (A.11)

and

U~B8! 2 U~B! 5 ~v~xi! 2 v~xi11!! @p ~(
j51

i

qj 1 «! 2 p ~(
j51

i

qj!#. (A.12)

Together, (A.11) and (A.12) lead to

A ; B and A8 s B8 ⇔ p ~« 1 (
j51

i

pj! 2 p ~(
j51

i

pj! . p ~« 1 (
j51

i

qj! 2 p ~(
j51

i

qj!,

which concavity requires if (
j51

i

pj , (
j51

i

qj.

The Absolute Concavity condition is similarly extended to n-outcomes:

Absolute Concavity condition: Let (
j51

i

pj , (
j51

i

qj, (
j51

i11

pj . (
j51

i11

qj

If

A 5 ~p1, x1;…; pi, xi; pi11, xi11; pi12, xi12;…; pn, xn! ;

~q1, x1;…; qi, xi; qi11, xi11; qi11, xi11;…; qn, xn! 5 B,

then
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A8 5 ~p1, x1;…; pi 1 «, xi; pi11, xi11; pi12 2 «, xi12;…; pn, xn! >
~q1, x1;…; qi 1 «, xi; qi11; xi11; qi12 2 «, xi12;…; qn, xn! 5 B8.

Thus, as the Generalized Concavity condition amounts to shifting probability to an adja-
cent outcome, the Absolute Concavity condition is characterized by shifting probability
from outcomes spaced two apart as can be seen by examining the following two equali-
ties:

U~A8! 2 U~A! 5 ~v~xi! 2 v~xi11!! @p ~« 1 (
j51

i

pj! 2 p ~(
j51

i

pj!# 1

~v~xi11! 2 v~xi12!! @p ~« 1 (
j51

i11

pj! 2 p ~(
j51

i11

pj!# (A.13)

and

U~B8! 2 U~B! 5 ~v~xi! 2 v~xi11!! @p ~« 1 (
j51

i

qj! 2 p ~(
j51

i

qj!# 1

~v~xi11! 2 v~xi12!! @p ~« 1 (
j51

i11

qj! 2 p ~(
j51

i11

qj!# (A.14)

Together, (A.13) and (A.14) lead to

A ; B and A8 aB8 ⇔
p ~« 1 (

j51

i11

pj! 2 p ~« 1 (
j51

i11

qj!

p ~« 1 (
j51

i

qj! 2 p ~« 1 (
j51

i

pj!

#

p ~(
j51

i11

pj! 2 p ~(
j51

i11

qj!

p ~(
j51

i

qj! 2 p ~(
j51

i

pj!

,

which is implied by decreasing absolute concavity (Pratt, 1964, Theorem 1).

Acknowledgements

We thank Drazen Prelec, Patrick Sileo, Amos Tversky, Peter Wakker for comments. We
also thank Ben Sommers and Jason Brown for help collecting data. This work was
supported by the Research Division of the Harvard Business School and Grant SES
91-10572 from the National Science Foundation.

Notes

1. The subjects were University of Chicago undergraduates. Surveys and instructions are available upon
request.
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2. In particular, Camerer and Ho (1994) found systematic violations of betweenness, both in the direction of
quasi-concavity and quasi-convexity, suggesting the important role of nonlinearity of probability in describ-
ing risky choice behavior. See, however, Hey and Orme (1994) and Camerer and Harless (1994).

3. In Appendix B, we generalize these results to higher-dimensional gambles. There is no loss of generality in
restricting attention to the case z 5 0. Under these restrictions, however, RDEU coincides with Cumulative
Prospect Theory (CPT; Starmer and Sugden, 1989; Luce and Fishburn, 1991; Tversky and Kahneman,
1992; Wakker and Tversky, 1993). Since CPT is basically two separate rank-dependent representations for
gains and losses, CPT reduces to RDEU for gambles involving all gains or all losses.

4. In the context of RDEU, continuity of v[ and p[ follows from some version of the continuity axiom (e.g.,
Quiggin and Wakker, 1994, or Wakker and Tversky, 1993). Furthermore, since v[ is unique up to a positive
affine transformation, we have set v(0) 5 0 for convenience, thus simplifying (1.1).

5. We are aware of only one counter-example, Starmer (1992), who found fanning in (Convexity) in Region
A.

6. Convexity condition I is a special case of the upper subadditivity condition of Tversky and Wakker (1995)
when p8 5 0 and p8 1 q8 1 « 5 1. Our formulation of upper subadditivity tightens Tversky and Wakker,
in which q 5 0, in the following sense: if upper subadditivity holds for q 5 0, it also holds for q . 0.

7. Concavity condition II is a special case of Tversky and Wakker’s (1995) lower subadditivity condition when
p8 5 0 and q 5 0. Since Tversky and Wakker require that q8 1 « 5 1, i.e., (p, x; «, y) ; y ⇒ (p 1 «, y)
, («, x; 1 2 «, y), our formulation of lower subadditivity is slightly tighter. In other words, if lower
subadditivity of p[ holds for q8 1 « 5 1, it also holds for q8 1 « , 1. Note that there are functions other
than piecewise linear, p(p) 5 a 1 bp, that are subadditive but not S-shaped. To demonstrate, take a function
that satisfies subadditivity and is concave and then convex, such as Prelec (1998) or Karmarkar (1978).
Replace a concave portion in a small interval with a slightly convex function. The resulting weighting
function is no longer S-shaped but is still subadditive. Note also that Example 2 is evidence for concavity
and convexity away from the boundaries, thus supporting the stronger hypothesis of concavity and convexity
over lower and upper subadditivity.

8. We know of only one other test of Concavity and Convexity conditions II. In Region C, Camerer (1989)
found non-significant fanning in (convexity) of p[ in two gambles. In contrast, there are several tests of
lower subadditivity, including Chew and Waller (1986) and Camerer (1989).

9. Interestingly, within the framework of Original Prospect Theory (Kahneman and Tversky, 1979), the abso-
lute concavity condition is a concavity condition. According to OPT, (p, x; q, y) is represented by p(p)v(x)
1 p(q)v(y). For example, preferences for RD and SD

8 in Example 3 are accounted for by p(.10) . p(.20) 2
p(.10), which follows from concavity of p[ below p 5 .20. Thus, we can use the absolute concavity
condition to test between OPT and CPT, a matter of some controversy (see, Camerer and Ho, 1994; Wu,
1994; Wu and Gonzalez, 1996). If CPT holds and 2p9(p)/p8(p) is decreasing in p from 0 to 1, then the
percentage of subjects choosing R should decrease monotonically in the common consequence. However, if
OPT holds and p[ is S-shaped, then the percentage of subjects choosing R should decrease and then
increase in the common consequence.

10. It is interesting to contrast our approach with that of Prelec (1998). Prelec has investigated the relationship
between the functional form of p[ and common ratio effects. Both common ratio effects (Prelec) and
common consequence effect (our paper) are independently powerful enough for qualitatively similar im-
plications on p[, leading Prelec to conclude that the weighting function is in some sense over-determined.
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