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Abstract Due to the advent of high-throughput genomic
technology, it has become possible to monitor cellular
activities on a genomewide basis. With these new
methods, scientists can begin to address important
biological questions. One such question involves the
identification of replication origins, which are regions in
the chromosomes where DNA replication is initiated. One
hypothesis is that their locations are nonrandom through-
out the genome. In this article, we analyze data from a
recent yeast study in which candidate replication origins
were profiled using cDNA microarrays to test this
hypothesis. We find no evidence for such clustering.
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Introduction

With the explosion of high-throughput genomic data,
scientists are now in the position of having the genetic
information available for addressing important biological
questions.

One question involves the existence and location of
replication origins. The biology underlying this problem is
further detailed in “Biological background.” A replication
origin is the site on the genome where cell replication is
initiated; identification of these locations is of great
importance to understanding DNA replication. Recently,
two global-wide studies attempting to identify replication
origins in yeast were reported (Raghuraman et al. 2001;
Wyrick et al. 2001). In this paper, we focus on the study of
Raghuraman et al. (2001). A major statistical goal is to

identify the chromosomal locations of peaks in the
expression profiles. One such example is given in Fig. 1.

The statistical analysis of replication origins has been
previously considered by Truong et al. (2002), but they
were not dealing with the situation of analyzing genome-
wide data. In addition, they had experimental replicates.
Replicates are not available in many genomic studies.
Most statistical methods will not be computationally
feasible for finding multiple modes because they would
require nonparametric smoothing for multiple values of
the smoothing parameter.

In this article, we use nonparametric regression methods
to infer the locations of replication origins and nonpara-
metric clustering techniques to test the hypothesis of
clustering of replication origins. “Biological background”
provides more details on the biology of replication origins
and describes the experiment of Raghuraman et al. (2001).
A statistical model for the analysis of the expression
profiles and methods for identification of replication
origins are given in “Statistical methods;” this section
also describes nonparametric methods for assessing
clustering. The proposed methodology is applied to the
yeast data of Raghuraman et al. (2001) in “Yeast data.”
Finally, we conclude with some discussion in “Discus-
sion.” Much of the technical detail for this work can be
found in Ghosh (2004).

Biological background

Complete and accurate DNA replication is integral to the
maintenance of the genetic integrity of all organisms (Bell
and Dutta 2002). In eukaryotic cells, replication begins at
chromosomal elements called replication origins. In a
recent study by Raghuraman et al. (2001), oligonucleotide
microarrays were used to identify potential origins of
replications. Yeast cells were grown for many generations
in medium containing two dense isotopes. At times t =0,
10, 14, 19, 25, 33, 44 and 60 min in the S phase, culture
samples were collected. The replicated DNA containing
one heavy and one light (HL) strand (for the parent and
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daughter strands) were separated from the unreplicated
DNA [which contained two heavy (HH) strands] using
density gradient centrifugation. The HH and HL DNA
were then separately hybridized to an oligonucleotide
microarray, which yielded an intensity measure. The
intensity measure represents the fraction of each sequence
that had replicated at each time point.

The relationship of HL/HH strands as a function of
chromosome position is illustrated in Fig. 2. Early
replicating sequences have higher HL fractions at earlier
time points, while later replicating sequences have lower
HL fractions. By considering the fraction of HL over all
time points to the fraction of both HL and HH across all
time points, we have a proxy measure for the time of
replication. The microarray data in this yield a value for
the HL percentage.

An example of the data we analyze is given in Fig. 1.
Based on these data, the goal is to find the local peaks and
valleys in the data. Peaks represent replication origins,
while valleys represent regions of replication termination.
Here, and in the sequel, we will focus only on replication
origins.

The authors calculated peaks and valleys using
successive differences and then defined robust origins of
replications as those origins that survive nine rounds of
smoothing. The choice of nine seems relatively ad hoc;
our goal is to develop a more formal statistical method for
identifying replication origins. In addition, we wish to test
the hypothesis of Gilbert (2001) that the location of origins
of replication is nonrandom.

Statistical methods

We observe the data {Yij}, I =1,⋯, I, j =1,⋯, nI, where I
indexes the chromosome, j indexes the location on the Ith
chromosome, and Yij is the corresponding expression
measurement. We then formulate the following model for
Yij as a function of chromosome location

Yij ¼ �I j=nIð Þ þ "ij; (1)

where μI(t) is the mean function for the Ith chromosome
and εij is a noise term. We assume that the error terms in
Eq. 1 are a random sample from a normal distribution with
mean zero and variance σI

2, I =1,⋯, I. We will be treating
each chromosome separately, so we will suppress depen-
dence on of μI and σI

2 on I in the sequel. In addition, we
will assume that nI = n. Because of the experimental
design of the study by Raghuraman et al. (2001), the
points t1,⋯, tn, where tI ¼ I � 1ð Þ= n� 1ð Þ , will be
treated as arising from a equispaced, fixed design setting.

Based on Fig. 1, the peaks and valleys in the curves will
be points where the first derivative of the function is zero.
Other situations in which the derivatives of a function are
of interest have been given by Gasser et al. (1984) and
Song et al. (1995).

Our approach will be to use nonparametric smoothing
techniques to estimate μ using locally weighted poly-
nomial smoothing (Fan and Gijbels 1996). Define μ(k) to
be the kth derivative of μ. Based on the estimates of μ(1)

and μ(2), the zero-crossings of μ(1) where μ(2) >0

Fig. 1 Gene expression profile of chromosome 11 as a function of
location from the microarray experiment by Raghuraman et al.
(2001)

Fig. 2 Schematic of replication origins and termination in a
chromosome. The horizontal is position on a chromosome, while the
vertical axis is the percentage of HL (replicated DNA containing one
heavy and one light strand) relative to total. Point A represents an
early replication origin, while B indicates a late replication origin.
Point C (valley) is a replication terminus
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correspond to candidate replication origins. We will use
the “solve-the-equation plug-in” method of Ruppert et al.
(1995) to estimate the variance and bandwidth.

Given the replication origins found using the methods
of the previous sections, we can now test the hypothesis
that they cluster. The null hypothesis, H0, is that the
locations of the replication origins are uniformly dis-
tributed throughout the chromosome, while the alternative
hypothesis is that the replication origins cluster.

There are two types of hypotheses involving clustering
that we wish to distinguish. The first is that there is no
clustering of replication origin locations throughout the
chromosome; this will be referred to as a global null
hypothesis of clustering. Another type of clustering
hypothesis involves determining whether or not a
particular cluster is significant, this will be referred to as
a local hypothesis of clustering.

We start by considering the global clustering null
hypothesis. The Kolmogorov-Smirnov statistic is used to
test this hypothesis. If Fm(x) denotes the empirical
cumulative distribution function of the putative replication
origins, scaled to the interval [0,1], the Kolmogorov-
Smirnov statistic for testing the global null hypothesis of
m random replication origins is

D ¼ sup
x

ffiffiffiffi

m
p

Fm xð Þ � xj jð Þ:

While small values of D are consistent with the null
hypothesis, large values of D suggest that the locations of
the replication origins are not random and will lead to
rejection of the null hypothesis.

We now turn to the problem involving local inference
about the clusters. Let X1; . . . ;Xmj

� �

be the locations of
the replication origins for the jth chromosome; these are
the locations estimated using the methods outlined above.
In the sequel, we suppress the dependence of mj on j. We
consider the r-scan statistic (Karlin and Macken 1991;
Dembo and Karlin 1992; Glaz et al. 2001)

Ri ¼
X

iþr�1

l¼i

Xlþ1 � Xl:

Note that Ri is the total distance between putative
replication origin locations starting from the ith location
with a window size of r locations. To assess clustering, we
would use mk

r, the kth smallest Ri. Smaller values of mk
r

correspond to stronger evidence of clustering. If the
locations of the replication origins were scattered
randomly on the chromosome, then by approximation
results in Karlin and Macken (1991)

Pr mr
k < xn1þ1=r

� �

� 1� exp ��ð Þ
X

k�1

i¼0

�ii!

 !

; (2)

where λ = xr/r!. In Eq. 2, x is chosen such that the

probability equals 0.01, following previous recommenda-
tions (Karlin and Macken 1991).

Yeast data

We now apply the proposed methodology to the data
discussed in “Biological background.” Because of numer-
ical error, we define replication origins as locations with
an estimated first derivative less than 1×10−6 in magnitude
and second derivative less than −1×10−9. A significance
test on the results was done by the following permutation
scheme:

1. Gene expression measurements were shuffled within
each chromosome

2. The analysis was repeated and candidate replication
origins were determined

3. Steps 1 and 2 were repeated 10,000 times

The number of replication origins per chromosome is
given in Table 1. The corresponding number in parenth-
eses represents the average number of replication origins
found, averaged across the 10,000 permuted datasets. This
represents the expected number of false positives. The
estimated proportion of false positives based on the
permutation scheme appears to be in the order of 10–
20%. However, the column totals are bigger than the 200–
400 replication origins commonly believed. We return to
this point in the “Discussion.”

The next step was to assess the clustering of replication
origins on both a global (i.e., chromosomewide) and local
basis. Based on the Kolmogorov-Smirnov statistic, there
was no evidence of clustering using any of the methods for
identifying replication origins based on Table 1. The scan
statistic with different choices of r (r =4−20) also fails to
identify any statistically significant clusters at a signifi-
cance level of 0.1.

Table 1 Analysis of replication
origins using yeast data of
Raghuraman et al. (2001) based
on methods developed in the
“Statistical methods” section.
Numbers denote estimated
number of replication origins,
while those in parentheses re-
present estimated number across
10,000 permuted datasets

Chromosome Locally weighted
LS

1 47 (9)
2 140 (21)
3 47 (6)
4 290 (58)
5 102 (11)
6 47 (7)
7 189 (34)
8 98 (14)
9 80 (14)
10 142 (28)
11 130 (18)
12 158 (22)
13 162 (28)
14 153 (31)
15 239 (33)
16 164 (28)
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Discussion

In this article, we have developed the use of nonparametric
regression, Kolmogorov-Smirnov and scan statistics in
order to identify replication origins from microarray data
and to test a hypothesis put forward by Gilbert (2001) as to
whether replication of origins occur randomly in the
eukaryotic genome.

Our analysis came up with two relatively surprising
conclusions. The first is that the number of predicted
replication origins (summarized in Table 1) is much bigger
than the 200–400 commonly believed to exist. It should be
pointed out that the origins represent computational
predictions and would need to be validated in the lab to
determine if they are true or not. Even subtracting out the
estimated number of false positives based on the
permutation scheme still yields more than 400 replication
origins.

The second conclusion is that there is no evidence to
suggest that clustering of replication origins occurs on
either a chromosomal basis or a more local basis. Potential
limitations of the analysis include a lack of experimental
replication and experimental-specific artifacts that con-
tribute to additional sources of variation.
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